高考文科数学知识点
高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高中文科的数学学习什么内容

高中文科的数学学习什么内容文科数学一共会学7本书,分别是:必修1、必修2、必修3、必修4、必修5、选修2-1、选修2-2。
文科数学主要学习的内容有:集合;函数;空间几何体;点、直线、平面之间的位置关系;直线和方程;圆和方程;算法初步;概率;统计;三角函数;平面向量;数列;不等式;常用逻辑用语与推理、证明;圆锥曲线与方程;导数及其应用;复数。
文科数学相对理科数学来说,难度较低。
因此我们要在两个地方多下功夫:做题的正确率和做题的速度。
所以不难看出文科学数学的思路就是题海战术。
很多都知道题海战术,也都是这么做的,所以效果自然不需要多说。
高中的数学是非常有规律、有体系的,学数学最忌基础没有打好,老师讲的内容没有把握好重点。
基础没有打好,无论做多少题都白做,因为不知道为什么而做,更不知道做完一道题该掌握什么,做题的目的就是为了掌握书上的知识点;还有就是自己买的习题书太多了,做不完,而且还做乱了,有一本习题书就够了,最多不要超过两本。
记住,做数学千万不能怕动手动脑子,只要你一咬牙投入进去,你做数学真的会上瘾的。
建议你提前两天预习,第一天学课本上的基础知识,第二天把习题做了,老师上课,你听的轻松,一天课完了,复习一下老师讲的重点,着重想想思路,一个定理怎么来的,一道题目怎么解的,都用了哪些定理。
一定要理解,学习如果死记硬背那就完了。
做完题了,要总结,不要怕麻烦,越怕麻烦越学不好。
高三总复习的时候好好听老师讲,把你高一时的那些习题集再拿出来做一遍,到后期你们练习卷子的时候更要注意总结,你会发现高考考的不外乎就是那几个题型。
借助外力攻克数学这根硬骨头数学在高考中的位置、分值极为重要,可以说“高考,得数学者得天下”,数学能够学好,对升入理想大学会起到很大的作用。
对文科学生来说更是如此,因为,许多文科学生,在语文、英语等方面差别不大,而来开档次的就在数学上,在平时考试与高考中,有的数学分数甚至相差30-60分。
从以往情况来看,针对文科学生在数学学习上的特点,目前要想提高数学成绩,借助“外力”来学好数学也是很有必要的。
2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第一课时 坐标系

第1节 坐标系与参数方程第一课时 坐标系考试要求 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化;3.能在极坐标系中给出简单图形表示的极坐标方程.1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.2.极坐标系与点的极坐标(1)极坐标系:如图所示,在平面内取一个定点O (极点),自极点O 引一条射线Ox (极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ.②极角:以极轴Ox为始边,射线OM为终边的角∠xOM叫做点M的极角,记为θ.③极坐标:有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).3.极坐标与直角坐标的互化4.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆 ρ=r (0≤θ<2π) 圆心为(r ,0),半径为r 的圆ρ=2r cos__θ⎝ ⎛⎭⎪⎫-π2≤θ<π2圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin__θ(0≤θ<π)过极点,倾斜角为α的直线①θ=α(ρ∈R )或θ=π+α(ρ∈R ) ②θ=α(ρ≥0)和 θ=π+α(ρ≥0)过点(a ,0),与极轴垂直的直线ρcos__θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin__θ=a (0<θ<π)1.极坐标的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.2.由极径的意义知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系,约定极点的极坐标是极径ρ=0,极角可取任意角.3.曲线的极坐标方程与直角坐标方程互化:对于简单的可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同乘以ρ等.1.思考辨析(在括号内打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( ) 答案 (1)× (2)√ (3)√ (4)×解析 (1)一般认为ρ≥0,当θ∈[0,2π)时,平面上的点(除去极点)才与极坐标建立一一对应关系;(4)极坐标方程θ=π(ρ≥0)表示的曲线是一条射线.2.(易错题)在极坐标系中,已知点P ⎝ ⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是( ) A.ρsin θ=1 B.ρsin θ= 3 C.ρcos θ=1D.ρcos θ= 3答案 A解析 先将极坐标化成直角坐标表示,P ⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即(3,1),过点(3,1)且平行于x 轴的直线为y =1, 再化为极坐标为ρsin θ=1.3.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4 答案 A解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝⎛⎭⎪⎫0≤θ≤π2.4.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝ ⎛⎭⎪⎫1,π2 B.⎝ ⎛⎭⎪⎫1,-π2 C.(1,0)D.(1,π)答案 B解析 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y , 即x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝ ⎛⎭⎪⎫1,-π2.5.(易错题)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________. 答案 x 2+(y -1)2=1解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0,即x 2+(y -1)2=1.6.(2018·北京卷)在极坐标系中,直线ρcos θ+ρsin θ=a (a >0)与圆ρ=2cos θ相切,则a =________. 答案 1+ 2解析 直线的方程为x +y -a =0,圆的方程为(x -1)2+y 2=1, 所以圆心(1,0),半径r =1, 由于直线与圆相切,故圆心到直线的距离等于半径,即|1-a |2=1,又a >0,所以a =1+ 2.考点一 平面直角坐标系中的伸缩变换1.曲线C :x 2+y 2=1经过伸缩变换⎩⎨⎧x ′=2x ,y ′=y得到曲线C ′,则曲线C ′的方程为________. 答案 x ′24+y ′2=1解析 因为⎩⎪⎨⎪⎧x ′=2x ,y ′=y ,所以⎩⎪⎨⎪⎧x =x ′2,y =y ′,代入曲线C 的方程得C ′:x ′24+y ′2=1.2.曲线C 经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后所得曲线的方程为x ′2+y ′2=1,则曲线C 的方程为________. 答案 4x 2+9y 2=1解析 根据题意,曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后所得曲线的方程为x ′2+y ′2=1,则(2x )2+(3y )2=1,即4x 2+9y 2=1,所以曲线C 的方程为4x 2+9y 2=1.3.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y ,则点A ⎝ ⎛⎭⎪⎫13,-2经过变换后所得的点A ′的坐标为________. 答案 (1,-1)解析 设A ′(x ′,y ′),由伸缩变换φ: ⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 得到⎩⎨⎧x ′=3x ,y ′=12y .由于点A 的坐标为⎝ ⎛⎭⎪⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1, 所以点A ′的坐标为(1,-1).4.双曲线C :x 2-y 264=1经过伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y后所得曲线C ′的焦点坐标为________.答案 (-5,0),(5,0)解析 设曲线C ′上任意一点P ′(x ′,y ′),将⎩⎨⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1, 化简得x ′29-y ′216=1,即为曲线C ′的方程,知C ′仍是双曲线,其焦点坐标分别为(-5,0),(5,0).感悟提升 1.平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.2.解答该类问题应明确两点:一是明确平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P (x ,y )与变换后的点P ′(x ′,y ′)的坐标关系,用方程思想求解.考点二 极坐标与直角坐标的互化例1 (1)极坐标方程ρ2cos θ-ρ=0转化成直角坐标方程为( ) A.x 2+y 2=0或y =1 B.x =1C.x 2+y 2=0或x =1D.y =1(2)点M 的直角坐标是(-1,3),则点M 的极坐标为( ) A.⎝ ⎛⎭⎪⎫2,π3B.⎝ ⎛⎭⎪⎫2,-π3 C.⎝ ⎛⎭⎪⎫2,2π3 D.⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z ) 答案 (1)C (2)C解析 (1)ρ2cos θ-ρ=0⇒ρ=x 2+y 2=0,或ρcos θ=1,即x =1.(2)∵ρ=(-1)2+(3)2=2,tan θ=3-1=- 3.又点M 在第二象限,∴θ=2π3, ∴点M 的极坐标为⎝ ⎛⎭⎪⎫2,2π3.感悟提升 1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0).2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧.训练1 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解 (1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得,ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1, 即x +3y =2.当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233. 所以点P 的直角坐标为⎝⎛⎭⎪⎫1,33,则点P 的极坐标为⎝ ⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 考点三 求曲线的极坐标方程例2 (2022·西安五校联考)在直角坐标系xOy 中,曲线C 1:(x -1)2+y 2=1(y ≥0),如图,将C 1分别绕原点O 逆时针旋转π2,π,3π2得到曲线C 2,C 3,C 4,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)分别写出曲线C 1,C 2,C 3,C 4的极坐标方程;(2)直线l :θ=π3(ρ∈R )交曲线C 1,C 3分别于A ,C 两点,直线l ′:θ=2π3(ρ∈R )交曲线C 2,C 4分别于B ,D 两点,求四边形ABCD 的面积.解 (1)将x =ρcos θ,y =ρsin θ代入C 1,得C 1的极坐标方程为ρ=2cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2,设C 1上的点(ρ0,θ0)旋转π2得到曲线C 2上的点(ρ,θ),则ρ0=ρ,θ0=θ-π2,代入C 1的方程得ρ=2cos ⎝ ⎛⎭⎪⎫θ-π2=2sin θ⎝ ⎛⎭⎪⎫0≤θ-π2≤π2,所以C 2的极坐标方程为ρ=2sin θ⎝ ⎛⎭⎪⎫π2≤θ≤π,同理,C 3的极坐标方程为ρ=-2cos θ⎝ ⎛⎭⎪⎫π≤θ≤3π2,C 4的极坐标方程为ρ=-2sin θ⎝ ⎛⎭⎪⎫3π2≤θ≤2π.(2)结合图形的对称性可知S 四边形ABCD =4S △AOB , 将θ=π3代入C 1得|OA |=ρA =1,将θ=2π3代入C 2得|OB |=ρB =3,所以S 四边形ABCD =4S △AOB =4×12·|OA |·|OB |·sin π3=3. 感悟提升 求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式.(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.训练2 在极坐标系中,O 为极点,点M (ρ0,θ0)(ρ0>0)在曲线C :ρ=4sin θ上,直线l 过点A (4,0)且与OM 垂直,垂足为P . (1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M (ρ0,θ0)在曲线C 上, 当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP |=|OA |cos π3=2. 设Q (ρ,θ)为l 上除P 外的任意一点.在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP |=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上,所以,l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=2.(2)设P (ρ,θ),在Rt △OAP 中,|OP |=|OA |cos θ=4cos θ,即ρ=4cos θ. 因为P 在线段OM 上,且AP ⊥OM ,所以θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.考点四 极坐标方程的应用例3 已知曲线C :⎩⎨⎧x =2cos α,y =2sin α(α为参数),设曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=x ,y ′=12y 得到曲线C ′,以直角坐标中的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C ′的极坐标方程;(2)若A ,B 是曲线C ′上的两个动点,且OA ⊥OB ,求|OA |2+|OB |2的最小值. 解 (1)曲线C :⎩⎪⎨⎪⎧x =2cos α,y =2sin α(α为参数),转换为普通方程为x 2+y 2=4,曲线C经过伸缩变换⎩⎨⎧x ′=x ,y ′=12y得到曲线C ′:x 24+y 2=1,极坐标方程为ρ=21+3sin 2θ.(2)设A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π2,所以|OA |2+|OB |2=ρ21+ρ22=41+3sin 2θ+41+3cos 2θ =8+12(sin 2θ+cos 2θ)(1+3sin 2θ)(1+3cos 2θ)=20(1+3sin 2θ)(1+3cos 2θ) =201+3(sin 2θ+cos 2θ)+94sin 22θ =204+94sin 22θ≥165. 当sin 2θ=±1时,|OA |2+|OB |2取得最小值165.感悟提升 1.若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题.2.在极坐标系中,如果P 1(ρ1,θ1),P 2(ρ2,θ2),那么两点间的距离公式 |P 1P 2|=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2).两种特殊情况:(1)当θ1=θ2+2k π,k ∈Z 时,|P 1P 2|=|ρ1-ρ2|; (2)当θ1=θ2+π+2k π,k ∈Z ,|P 1P 2|=|ρ1+ρ2|.3.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.训练3 (2021·昆明诊断)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =9+3t ,y =t (t为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=161+3sin 2θ.(1)求C 和l 的直角坐标方程;(2)已知P 为曲线C 上的一个动点,求线段OP 的中点M 到直线l 的最大距离. 解 (1)由ρ2=161+3sin 2θ, 得ρ2+3ρ2sin 2θ=16,则曲线C 的直角坐标方程为x 2+4y 2=16, 即x 216+y 24=1.直线l 的直角坐标方程为x -3y -9=0.(2)可知曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =2sin α(α为参数),设P (4cos α,2sin α),α∈[0,2π),则M (2cos α,sin α)到直线l :x -3y -9=0的距离为d =|2cos α-3sin α-9|2=|7sin (θ-α)-9|2≤9+72,所以线段OP 的中点M 到直线l 的最大距离为9+72.1.将直角坐标方程与极坐标方程互化: (1)y 2=4x ;(2)y 2+x 2-2x -1=0; (3)θ=π3(ρ∈R );(4)ρcos 2 θ2=1; (5)ρ2cos 2θ=4; (6)ρ=12-cos θ.解 (1)将x =ρcos θ,y =ρsin θ代入y 2=4x ,得(ρsin θ)2=4ρcos θ.化简得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0,得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0,化简得ρ2-2ρcos θ-1=0.(3)当x ≠0时,由于tan θ=y x ,故tan π3=yx =3,化简得y =3x (x ≠0); 当x =0时,y =0.显然(0,0)在y =3x 上,故θ=π3(ρ∈R )的直角坐标方程为 y =3x .(4)因为ρcos 2θ2=1,所以ρ·1+cos θ2=1,而ρ+ρcos θ=2,所以x 2+y 2+x =2.化简得y 2=-4(x -1).(5)因为ρ2cos 2θ=4,所以ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. (6)因为ρ=12-cos θ,所以2ρ-ρcos θ=1,因此2x 2+y 2-x =1,化简得3x 2+4y 2-2x -1=0.2.在极坐标系中,已知两点A ⎝ ⎛⎭⎪⎫3,π4,B ⎝ ⎛⎭⎪⎫2,π2,直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=3.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.解 (1)设极点为O .在△OAB 中,A ⎝ ⎛⎭⎪⎫3,π4,B ⎝ ⎛⎭⎪⎫2,π2,由余弦定理,得 |AB |=32+(2)2-2×3×2×cos ⎝ ⎛⎭⎪⎫π2-π4= 5.(2)因为直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=3,所以直线l 过点⎝ ⎛⎭⎪⎫32,π2,倾斜角为3π4.又B ⎝ ⎛⎭⎪⎫2,π2, 所以点B 到直线l 的距离为(32-2)×sin ⎝ ⎛⎭⎪⎫3π4-π2=2.3.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)因为ρ=x 2+y 2,ρsin θ=y ,所以ρ=21-sin θ化为ρ-ρsin θ=2,所以曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,所以直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).4.(2022·南宁调研)在直角坐标系xOy 中,圆C 1:(x -1)2+y 2=1,圆C 2:(x +2)2+y 2=4.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1,C 2的极坐标方程;(2)设A ,B 分别为C 1,C 2上的点,若△OAB 为等边三角形,求|AB |. 解 (1)因为圆C 1:(x -1)2+y 2=1, 圆C 2:(x +2)2+y 2=4,所以C 1:x 2+y 2=2x ,C 2:x 2+y 2=-4x , 因为x 2+y 2=ρ2,x =ρcos θ, 所以C 1:ρ=2cos θ,C 2:ρ=-4cos θ.(2)因为C 1,C 2都关于x 轴对称,△OAB 为等边三角形, 所以不妨设A (ρA ,θ),B ⎝ ⎛⎭⎪⎫ρB ,θ+π3,0<θ<π2.依题意可得,ρA =2cos θ,ρB =-4cos ⎝ ⎛⎭⎪⎫θ+π3.从而2cos θ=-4cos ⎝ ⎛⎭⎪⎫θ+π3,整理得,2cos θ=3sin θ,所以tan θ=233,又因为0<θ<π2,所以cos θ=217,|AB |=|OA |=ρA =2217.5.(2021·成都诊断)在直角坐标系xOy 中,已知曲线C 的方程为(x -1)2+y 2=1,直线l 的方程为x +3y -6=0.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 和直线l 的极坐标方程;(2)若点P (x ,y )在直线l 上且y >0,射线OP 与曲线C 相交于异于点O 的点Q ,求|OP ||OQ |的最小值.解 (1)由极坐标与直角坐标的互化公式x =ρcos θ,y =ρsin θ得 曲线C 的极坐标方程为ρ=2cos θ. 由题意得直线l 的极坐标方程为ρcos θ+3ρsin θ-6=0,即ρsin ⎝ ⎛⎭⎪⎫θ+π6=3.(2)设点P 的极坐标为(ρ1,θ),点Q 的极坐标为(ρ2,θ),其中0<θ<π2. 由(1)知|OP |=ρ1=6cos θ+3sin θ,|OQ |=ρ2=2cos θ. ∴|OP ||OQ |=ρ1ρ2=62cos 2θ+23sin θcos θ=61+cos 2θ+3sin 2θ=61+2sin ⎝⎛⎭⎪⎫2θ+π6.∵0<θ<π2,∴π6<2θ+π6<7π6,∴-12<sin ⎝ ⎛⎭⎪⎫2θ+π6≤1. ∴当sin ⎝ ⎛⎭⎪⎫2θ+π6=1,即θ=π6时,|OP ||OQ |取得最小值2.6.已知曲线C 1:x 2+(y -3)2=9,A 是曲线C 1上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点A 绕点O 逆时针旋转90°得到点B ,设点B 的轨迹方程为曲线C 2. (1)求曲线C 1,C 2的极坐标方程;(2)射线θ=5π6(ρ>0)与曲线C 1,C 2分别交于P ,Q 两点,定点M (-4,0),求△MPQ的面积.解 (1)曲线C 1:x 2+(y -3)2=9, 即x 2+y 2-6y =0. 从而ρ2=6ρsin θ.所以曲线C 1的极坐标方程为ρ=6sin θ. 设B (ρ,θ),则A ⎝ ⎛⎭⎪⎫ρ,θ-π2,则有ρ=6sin ⎝ ⎛⎭⎪⎫θ-π2=-6cos θ.所以曲线C 2的极坐标方程为ρ=-6cos θ. (2)M 到射线θ=5π6(ρ>0)的距离为d =4sin 5π6=2,射线θ=5π6(ρ>0)与曲线C 1的交点P ⎝ ⎛⎭⎪⎫ρP ,5π6,其中,ρP =6sin 5π6=3,射线θ=5π6(ρ>0)与曲线C 2的交点Q ⎝ ⎛⎭⎪⎫ρQ ,5π6,其中,ρQ =-6cos 5π6=33,则|PQ |=|ρP -ρQ |=33-3, 则S △MPQ =12|PQ |d =33-3.。
北京高考数学知识点和分值

北京高考数学知识点和分值随着高中生们的学习逐渐进入高考冲刺阶段,数学成为了他们备战的重要一环。
北京高考的数学科目有其独特之处,下面我们就来探讨一下北京高考数学的知识点和分值。
首先,北京高考的数学科目分为文科和理科两个版本,且每个版本的内容和分值都有所差异。
文科数学注重学生的数学素养的培养和应用层次的拓展,而理科数学则更加注重数学知识的深入和技巧的熟练应用。
两个版本的数学科目都包含了数学的基础知识和一定的拓展内容,所以学生在备考时要有所选择和区分。
在文科数学中,重点知识点包括函数、方程、不等式、概率等内容。
其中,函数是文科数学的基石,也是高考中最重要的知识点之一。
文科数学要求学生掌握函数的性质、图像和应用等方面的知识。
另外,方程和不等式也是文科数学中的关键内容,学生需要掌握解方程和不等式的方法和技巧。
概率是另一个重要的知识点,学生需要了解概率的概念、计算方法以及概率在日常生活中的应用。
而在理科数学中,重点知识点包括函数、数列、三角函数、导数和积分等内容。
函数和数列都是数学的基本概念,理科数学要求学生对函数和数列的性质和应用进行深入的理解和掌握。
三角函数是理科数学的重点之一,学生需要掌握三角函数的基本性质、计算方法和图像等知识。
导数和积分是高等数学的重要内容,学生在备考时需要对导数和积分的概念和运算法则有充分的了解和掌握。
在北京高考中,数学占总分的比例一般在30%左右,但具体的分值分配还是与考试科目和版本有关。
文科数学一般会有两个卷子,总分为150分,每个卷子有若干个大题,每个题的分值不等;而理科数学一般只有一个卷子,也是总分150分,题目的类型和分值分配与文科数学有所不同。
所以,学生在备考中要根据自己的版本和学习情况有针对性地进行复习和训练。
除了知识点和分值,北京高考数学考试还注重学生的计算能力、解题能力和应用能力的培养。
因此,学生在备考过程中,除了要熟悉各个知识点的概念和运算方法,还要多做一些综合性和应用性的题目,培养自己的解题思路和方法。
冲刺高考文科数学必看题型归纳

冲刺高考文科数学必看题型归纳随着高中阶段的学习即将结束,文科同学们的高考备战也进入冲刺阶段。
作为高考的一大考试科目,数学在文科生的备考中显得尤其重要。
为此,本篇文章将对文科数学的必看题型进行归纳,帮助同学们在时间紧迫、压力巨大的备考过程中更好地掌握知识点,备战高考。
一、函数1. 函数的奇偶性:(1)$f(-x)=-f(x)$,则函数为奇函数;(2)$f(-x)=f(x)$,则函数为偶函数;(3)$f(x)\ne f(-x)$,则函数既不是奇函数也不是偶函数。
2. 函数的周期性:(1)对于任意一个实数$x$,都有$f(x+T)=f(x)$,则函数是以$T$($T>0$)为周期的周期函数,$T$ 称为函数的周期;(2)当$T$ 为最小正周期时,函数是最简周期函数。
3. 函数的单调性:(1)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)<f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递增的;(2)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)>f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递减的。
4. 函数极值问题:(1)极大值:若存在$x_0\in D_f$,使得$f(x)\le f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极大值;(2)极小值:若存在$x_0\in D_f$,使得$f(x)\ge f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极小值;(3)极值:极大值和极小值统称为极值。
二、解析几何1. 点、向量的基本概念:(1)点:在xoy 坐标系中,设坐标轴OX、OY 的交点为坐标原点O,则任意一点$P(x,y)$ 都可表示为向量$\overrightarrow{OP}(x,y)$。
(2)向量:向量是具有大小和方向的几何量,用向量符号$\overrightarrow{a}$ 表示。
2023年高考数学(文科)一轮复习——导数的概念及运算

第1节导数的概念及运算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=1x,y=x2,y=x3,y=x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,当x=x0时,f′(x0)是一个确定的数,当x变化时,f′(x)便是x的一个函数,称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln__a f (x )=ln xf ′(x )=1x f (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.思考辨析(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( )(4)曲线y =f (x )在某点处的切线与曲线y =f (x )过某点的切线意义是相同的.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错.(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (距离单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( ) A.9.1米/秒 B.6.75米/秒 C.3.1米/秒D.2.75米/秒答案 C解析 h ′(t )=-9.8t +8, ∴h ′(0.5)=-9.8×0.5+8=3.1.3.(2022·银川质检)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≤0,-x 2+ax ,x >0为奇函数,则曲线f (x )在x =2处的切线斜率等于( ) A.6 B.-2C.-6D.-8答案 B解析 f (x )为奇函数,则f (-x )=-f (x ). 取x >0,得x 2-2x =-(-x 2+ax ),则a =2. 当x >0时,f ′(x )=-2x +2.∴f ′(2)=-2.4.(2020·全国Ⅲ卷)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.答案 1 解析 由f ′(x )=e x (x +a )-e x(x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.5.(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________.答案 5x -y +2=0解析 y ′=⎝ ⎛⎭⎪⎪⎫2x -1x +2′=(2x -1)′(x +2)-(2x -1)(x +2)′(x +2)2=5(x +2)2, 所以k =y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.6.(易错题)设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.答案 - 2解析 由f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,得f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,则f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2·cos π2-sin π2,解得f ′⎝ ⎛⎭⎪⎫π2=-1,所以f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.考点一 导数的运算1.下列求导运算不正确的是( ) A.(sin a )′=cos a (a 为常数)B.(sin 2x )′=2cos 2xC.(x )′=12xD.(e x -ln x +2x 2)′=e x -1x +4x 答案 A解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B 、C 、D 正确.2.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.答案 1-1x -2x 2+2x 3解析 由已知f (x )=x -ln x +2x -1x 2.∴f ′(x )=1-1x -2x 2+2x 3.3.设f ′(x )是函数f (x )=cos xe x +x 的导函数,则f ′(0)的值为________. 答案 0 解析 因为f (x )=cos xe x+x , 所以f ′(x )=(cos x )′e x -(e x )′cos x (e x )2+1=-sin x -cos xe x +1, 所以f ′(0)=-1e 0+1=0.4.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f (1)=________. 答案 -234解析 因为f (x )=x 2+3xf ′(2)+ln x , ∴f ′(x )=2x +3f ′(2)+1x .令x =2,得f ′(2)=4+3f ′(2)+12,则f ′(2)=-94. ∴f (1)=1+3×1×⎝ ⎛⎭⎪⎫-94+0=-234.感悟提升 1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 考点二 导数的几何意义 角度1 求切线的方程例1 (1)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.答案 (1)3x -y =0 (2)x -y -1=0 解析 (1)y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为3x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 角度2 求曲线的切点坐标例2 (2022·皖豫名校联考)若曲线y =e x +2x 在其上一点(x 0,y 0)处的切线的斜率为4,则x 0=( ) A.2 B.ln 4 C.ln 2D.-ln 2答案 C解析 ∵y ′=e x +2,∴e x 0+2=4,∴e x 0=2,x 0=ln 2. 角度3 导数与函数图象问题例3 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13. ∵g (x )=xf (x ), ∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题意可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.感悟提升 1.求曲线在点P (x 0,y 0)处的切线,则表明P 点是切点,只需求出函数在P 处的导数,然后利用点斜式写出切线方程,若在该点P 处的导数不存在,则切线垂直于x 轴,切线方程为x =x 0.2.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.切点坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐标是解题的关键.训练1 (1)(2022·沈阳模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A.y =0 B.y =2x C.y =xD.y =-2x(2)(2021·长沙检测)如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,令h(x)=f(x)x,h′(x)是h(x)的导函数,则h′(1)的值是()A.2B.1C.-1D.-3答案(1)B(2)D解析(1)∵f(x)=2e x sin x,∴f(0)=0,f′(x)=2e x(sin x+cos x),∴f′(0)=2,∴所求切线方程为y=2x.(2)由图象知,直线l经过点(1,2).则k+3=2,k=-1,从而f′(1)=-1,且f(1)=2,由h(x)=f(x)x,得h′(x)=xf′(x)-f(x)x2,所以h′(1)=f′(1)-f(1)=-1-2=-3.考点三导数几何意义的应用例4 (1)已知曲线f(x)=x ln x在点(e,f(e))处的切线与曲线y=x2+a相切,则实数a 的值为________.(2)(2022·河南名校联考)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,则实数a的取值范围是________.答案(1)1-e(2)[2,+∞)解析(1)因为f′(x)=ln x+1,所以曲线f(x)=x ln x在x=e处的切线斜率为k=2,又f(e)=e,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切,故可联立⎩⎪⎨⎪⎧y =x 2+a ,y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e. (2)∵直线2x -y =0的斜率为k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0. 又4x +1x ≥24x ·1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞).感悟提升 1.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程(组)并解出参数:(1)切点处的导数是切线的斜率;(2)切点在切线上;(3)切点在曲线上.2.利用导数的几何意义求参数范围时,注意化归与转化思想的应用.训练2 (1)(2021·洛阳检测)函数f (x )=ln x -ax 在x =2处的切线与直线ax -y -1=0平行,则实数a =( ) A.-1 B.14 C.12D.1(2)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =________. 答案 (1)B (2)1解析 (1)∵f (x )=ln x -ax ,∴f ′(x )=1x -a .又曲线y =f (x )在x =2处切线的斜率k =f ′(2), 因此12-a =a ,∴a =14.(2)y =x 3+ax +b 的导数为y ′=3x 2+a , 可得在点(1,1)处切线的斜率为k =3+a ,又k +1=3,1+a +b =3,解得k =2,a =-1,b =3,即有2a +b =-2+3=1.公切线问题求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,其中直线与抛物线相切可用判别式法. 一、共切点的公切线问题例1 设点P 为函数f (x )=12x 2+2ax 与g (x )=3a 2ln x +2b (a >0)的图象的公共点,以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为( ) A.23e 34 B.32e 34 C.43e 23D.34e 23答案 D解析 设P (x 0,y 0),由于P 为公共点, 则12x 20+2ax 0=3a 2ln x 0+2b .又点P 处的切线相同,则f ′(x 0)=g ′(x 0), 即x 0+2a =3a 2x 0,即(x 0+3a )(x 0-a )=0.又a >0,x 0>0,则x 0=a ,于是2b =52a 2-3a 2ln a .设h (x )=52x 2-3x 2ln x ,x >0, 则h ′(x )=2x (1-3ln x ).可知:当x ∈(0,e 13)时,h (x )单调递增;当x ∈(e 13,+∞)时,h (x )单调递减. 故h (x )max =h (e 13)=32e 23, 于是b 的最大值为34e 23,选D. 二、切点不同的公切线问题例2 曲线y =-1x (x <0)与曲线y =ln x 的公切线的条数为________. 答案 1解析 设(x 1,y 1)是公切线和曲线y =-1x 的切点, 则切线斜率k 1=⎝ ⎛⎭⎪⎫-1x ′|x =x 1=1x 21,切线方程为y +1x 1=1x 21(x -x 1),整理得y =1x 21·x -2x 1.设(x 2,y 2)是公切线和曲线y =ln x 的切点, 则切线斜率k 2=(ln x )′|x =x 2=1x 2,切线方程为y -ln x 2=1x 2(x -x 2),整理得y =1x 2·x +ln x 2-1.令1x 21=1x 2,-2x 1=ln x 2-1,消去x 2得-2x 1=ln x 21-1.设t =-x 1>0,即2ln t -2t -1=0,只需探究此方程解的个数.易知函数f (x )=2ln x -2x -1在(0,+∞)上单调递增,f (1)=-3<0,f (e)=1-2e >0,于是f (x )=0有唯一解,于是两曲线的公切线的条数为1.1.函数f (x )=x 2+ln x +sin x +1的导函数f ′(x )=( ) A.2x +1x +cos x +1 B.2x -1x +cos x C.2x +1x -cos xD.2x +1x +cos x答案 D解析 由f (x )=x 2+ln x +sin x +1得f ′(x )=2x +1x +cos x . 2.曲线y =x +1x -1在点(3,2)处的切线的斜率是( )A.2B.-2C.12D.-12答案 D解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2(x -1)2,故曲线在点(3,2)处的切线的斜率k =y ′|x =3=-2(3-1)2=-12. 3.(2021·安徽皖江名校联考)已知f (x )=x 3+2xf ′(0),则f ′(1)=( ) A.2 B.3C.4D.5答案 B解析 f ′(x )=3x 2+2f ′(0), ∴f ′(0)=2f ′(0),解得f ′(0)=0, ∴f ′(x )=3x 2,∴f ′(1)=3.4.(2022·豫北十校联考)已知f (x )=x 2,则过点P (-1,0),曲线y =f (x )的切线方程为( ) A.y =0 B.4x +y +4=0 C.4x -y +4=0 D.y =0或4x +y +4=0 答案 D解析 易知点P (-1,0)不在f (x )=x 2上,设切点坐标为(x 0,x 20),由f (x )=x 2可得f ′(x )=2x ,∴切线的斜率k =f ′(x 0)=2x 0. ∵切线过点P (-1,0),∴k =x 20x 0+1=2x 0,解得x 0=0或x 0=-2,∴k =0或-4,故所求切线方程为y =0或4x +y +4=0.5.(2022·昆明诊断)若直线y =ax 与曲线y =ln x -1相切,则a =( ) A.e B.1C.1eD.1e 2答案 D解析 由y =ln x -1,得y ′=1x ,设切点为(x 0,ln x 0-1),则⎩⎨⎧ax 0=ln x 0-1,a =1x 0,解得a =1e 2. 6.已知函数f (x )在R 上可导,其部分图象如图所示,设f (4)-f (2)4-2=a ,则下列不等式正确的是( )A.a <f ′(2)<f ′(4)B.f ′(2)<a <f ′(4)C.f ′(4)<f ′(2)<aD.f ′(2)<f ′(4)<a 答案 B解析 由函数f (x )的图象可知,在[0,+∞)上,函数值的增长越来越快,故该函数图象在[0,+∞)上的切线斜率也越来越大. 因为f (4)-f (2)4-2=a ,所以f ′(2)<a <f ′(4).7.函数f (x )=(2x -1)e x 的图象在点(0,f (0))处的切线的倾斜角为________. 答案 π4解析 由f (x )=(2x -1)e x , 得f ′(x )=(2x +1)e x ,∴f ′(0)=1,则切线的斜率k =1, 又切线倾斜角θ∈[0,π), 因此切线的倾斜角θ=π4.8.已知曲线f (x )=13x 3-x 2-ax +1存在两条斜率为3的切线,则实数a 的取值范围是________. 答案 (-4,+∞) 解析 f ′(x )=x 2-2x -a ,依题意知x 2-2x -a =3有两个实数解, 即a =x 2-2x -3=(x -1)2-4有两个实数解, ∴y =a 与y =(x -1)2-4的图象有两个交点, ∴a >-4.9.(2021·济南检测)曲线y =f (x )在点P (-1,f (-1))处的切线l 如图所示,则f ′(-1)+f (-1)=________.答案-2解析∵直线l过点(-2,0)和(0,-2),∴直线l的斜率f′(-1)=0+2-2-0=-1,直线l的方程为y=-x-2.则f(-1)=1-2=-1.故f′(-1)+f(-1)=-1-1=-2.10.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)因为f′(x)=3x2-8x+5,所以f′(2)=1,又f(2)=-2,所以曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y -4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),因为f′(x0)=3x20-8x0+5,所以切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),所以x30-4x20+5x0-2=(3x20-8x0+5)·(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,所以经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.11.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.解(1)根据题意,得f′(x)=3x2+1.所以曲线y=f(x)在点(2,-6)处的切线的斜率k=f′(2)=13,所以所求的切线方程为13x-y-32=0.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x20+1,所以直线l的方程为y=(3x20+1)(x-x0)+x30+x0-16.又直线l过点(0,0),则(3x20+1)(0-x0)+x30+x0-16=0,整理得x30=-8,解得x0=-2,所以y0=(-2)3+(-2)-16=-26,l的斜率k′=13,所以直线l的方程为y=13x,切点坐标为(-2,-26).12.若函数f(x)=a ln x(a∈R)与函数g(x)=x在公共点处有共同的切线,则实数a 的值为()A.4B.12 C.e2 D.e答案 C解析由已知得f′(x)=ax,g′(x)=12x,设切点横坐标为t,∴⎩⎨⎧a ln t=t,at=12t,解得t=e2,a=e2.13.曲线y=x2-ln x上的点到直线x-y-2=0的最短距离是________. 答案 2解析设曲线在点P(x0,y0)(x0>0)处的切线与直线x-y-2=0平行,则y′|x=x0=⎝⎛⎭⎪⎫2x-1x| x=x0=2x0-1x0=1.∴x0=1,y0=1,则P(1,1),则曲线y=x2-ln x上的点到直线x-y-2=0的最短距离d=|1-1-2|12+(-1)2= 2.14.(2021·宜昌质检)已知函数f(x)=1x+1+x+a-1的图象是以点(-1,-1)为对称中心的中心对称图形,g(x)=e x+ax2+bx,若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(0,g(0))处的切线互相垂直,求a+b的值.解由y=x+1x的图象关于点(0,0)对称,且y=f(x)的图象可由y=x+1x的图象平移得到,且函数f(x)=1x+1+x+a-1=1x+1+(x+1)+a-2的图象是以点(-1,-1)为对称中心的中心对称图形,得a-2=-1,即a=1,所以f(x)=1x+1+x.对f(x)求导,得f′(x)=1-1(x+1)2,则曲线y=f(x)在点(1,f(1))处的切线斜率k1=f′(1)=1-14=3 4.对g(x)求导,得g′(x)=e x+2x+b,则曲线y=g(x)在点(0,g(0))处的切线斜率k2=g′(0)=b+1.由两曲线的切线互相垂直,得(b+1)×34=-1,即b=-73,所以a+b=1-73=-43.。
2023年高考数学(文科)一轮复习讲义——变量间的相关关系与统计案例

第4节 变量间的相关关系与统计案例考试要求 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆);3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;4.了解回归分析的基本思想、方法及其简单应用.1.相关关系与回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是:散点图;统计量有相关系数与相关指数.(1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系. 2.线性回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b ^x +a ^__,则b ^=, a ^=y --b ^x -.其中,b ^是回归方程的斜率,a ^是在y 轴上的截距.回归直线一定过样本点的中心(x -,y -). 3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.(2)样本点的中心:对于一组具有线性相关关系的数据(x 1, y 1)(x 2, y 2),…,(x n, y n ), 其中(x -,y -)称为样本点的中心. (3)相关系数当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.(4)相关指数:R 2=.其中是残差平方和,其值越小,则R 2越大(接近1),模型的拟合效果越好. 4.独立性检验(1)利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验. (2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)为y 1 y 2 总计 x 1 a b a +b x 2 c dc +d总计a +cb +d a +b +c +d则随机变量K 2=n (ad -bc )2(a +b )(a +c )(b +d )(c +d )n =a +b +c +d 为样本容量.1.求解回归方程的关键是确定回归系数a ^,b ^,应充分利用回归直线过样本点的中心(x -,y -).2.根据回归方程计算的y ^值,仅是一个预报值,不是真实发生的值.3.根据K 2的值可以判断两个分类变量有关的可信程度,若K 2越大,则两分类变量有关的把握越大.1.思考辨析(在括号内打“√”或“×”)(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( )(2)通过回归直线方程y ^=b ^x +a ^可以估计预报变量的取值和变化趋势.( ) (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( ) (4)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( ) 答案 (1)√ (2)√ (3)√ (4)√2.(易错题)(2022·兰州模拟)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,n ∈N *,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( ) A.-1 B.0C.12D.1答案 D解析 由题设知,所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,可知这组样本数据完全正相关,故其相关系数为1,故选D.3.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( ) A.模型1的相关指数R 2为0.98 B.模型2的相关指数R 2为0.80C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25答案 A解析在两个变量y与x的回归模型中,它们的相关指数R2越近于1,拟合效果越好,在四个选项中A的相关指数最大,所以拟合效果最好的是模型1.4.(2020·全国Ⅰ卷)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bxB.y=a+bx2C.y=a+b e xD.y=a+b ln x答案 D解析由散点图可以看出,这些点大致分布在对数型函数的图象附近.故选D. 5.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:理科文科男1310女720已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为________.答案 5%解析 K 2的观测值k ≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.6.(2022·银川模拟)某车间为了提高工作效率,需要测试加工零件所花费的时间,为此进行了5次试验,这5次试验的数据如下表:零件数x (个) 10 20 30 40 50 加工时间y (min)62a758189若用最小二乘法求得回归直线方程为y ^=0.67x +54.9,则a 的值为________. 答案 68解析 x -=10+20+30+40+505=30,y -=62+a +75+81+895=61+2+a 5,所以61+2+a5=0.67×30+54.9, 解得a =68.考点一 相关关系的判断1.某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下:月份 1 2 3 4 5 6 人均销售额 6 5 8 3 4 7 利润率(%)12.610.418.53.08.116.3根据表中数据,下列说法正确的是( ) A.利润率与人均销售额成正相关关系 B.利润率与人均销售额成负相关关系 C.利润率与人均销售额成正比例函数关系D.利润率与人均销售额成反比例函数关系 答案 A解析 由统计表可得利润率与人均销售额不是正比例关系,也不是反比例关系,排除C 和D ;其属于正相关关系,A 正确,B 错误.2.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )A.r 2<r 4<0<r 3<r 1B.r 4<r 2<0<r 1<r 3C.r 4<r 2<0<r 3<r 1D.r 2<r 4<0<r 1<r 3 答案 A解析 由散点图知图①与图③是正相关,故r 1>0,r 3>0, 图②与图④是负相关,故r 2<0,r 4<0,且图①与图②的样本点集中在一条直线附近,因此r 2<r 4<0<r 3<r 1,故选A. 3.(2022·合肥模拟)根据如下样本数据,得到回归直线方程y ^=b ^x +a ^,则( )x 3 4 5 6 7 8 y-3.0 -2.00.5-0.52.54.0A.a ^>0,b ^>0 B.a ^>0,b ^<0 C.a ^<0,b ^>0D.a ^<0,b ^<0答案 C解析 作出散点图(图略),由散点图可知,a ^<0,b ^>0. 感悟提升 判断相关关系的两种方法:(1)散点图法:如果样本点的分布从整体上看大致在某一曲线附近,变量之间就有相关关系;如果样本点的分布从整体上看大致在某一直线附近,变量之间就有线性相关关系.(2)相关系数法:利用相关系数判定,|r |越趋近于1,相关性越强. 考点二 回归分析 角度1 线性回归方程及应用例1 (2021·成都诊断)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限x (单位:年)与失效费y (单位:万元)的统计数据如下表所示:使用年限x (单位:年) 1234567失效费y (单位:万元)2.903.30 3.604.40 4.805.20 5.90(1)由上表数据可知,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(精确到0.01)(2)求出y 关于x 的线性回归方程,并估算该种机械设备使用10年的失效费. 参考公式:相关系数r =∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2∑ni =1(y i -y -)2.线性回归方程y ^=b ^x +a ^中斜率和截距最小二乘估计计算公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -. 参考数据:∑7i =1(x i -x -)(y i -y -)=14.00, ∑7i =1(y i -y -)2=7.08,198.24≈14.10.解 (1)由题意,知x -=1+2+3+4+5+6+77=4,y -=2.90+3.30+3.60+4.40+4.80+5.20+5.907=4.30,∑7i =1(x i -x -)2=(1-4)2+(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2+(7-4)2=28, ∴r =14.0028×7.08=14.00198.24≈14.0014.10≈0.99.因为y 与x 的相关系数近似为0.99,所以y 与x 的线性相关程度相当大,从而可以用线性回归模型拟合y 与x 的关系. (2)∵b ^=∑7i =1 (x i -x -)(y i -y -)∑7i =1 (x i -x -)2=1428=0.5, ∴a ^=y --b ^x -=4.3-0.5×4=2.3.∴y 关于x 的线性回归方程为y ^=0.5x +2.3.将x =10代入线性回归方程,得y ^=0.5×10+2.3=7.3, ∴估算该种机械设备使用10年的失效费为7.3万元. 角度2 非线性回归方程及应用例2 (2022·郑州调研)人类已经进入大数据时代.目前,数据量级已经从TB(1 TB =1 024 GB)级别跃升到PB(1 PB =1 024 TB),EB(1 EB =1 024 PB)乃至ZB(1 ZB =1 024 EB)级别.国际数据公司(IDC)研究结果表明,2008年全球产生的数据量为0.49 ZB ,2009年数据量为0.8 ZB ,2010年增长到1.2 ZB ,2011年数据量更是高达1.82 ZB.下表是国际数据公司(IDC)研究的全球近6年每年产生的数据量(单位:ZB)及相关统计量的值:表中z i =ln y i ,z -=16∑6i =1z i . (1)根据上表数据信息判断,方程y =c 1·e c 2x (e 是自然对数的底数)更适宜作为该公司统计的年数据量y 关于年份序号x 的回归方程类型,试求此回归方程(c 2精确到0.01);(2)有人预计2022年全世界产生的数据规模将超过2011年的50倍.根据(1)中的回归方程,说明这种判断是否准确,并说明理由. 参数数据:e4.56≈95.58,e4.58≈97.51,回归方程y ^=a ^+b ^x 中,b ^=∑n i =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -nx - y -∑n i =1x 2i -nx -2, a ^=y --b ^x -.解 (1)由y =c 1·e c 2x 得ln y =c 2x +ln c 1, 即z =c 2x +ln c 1,∴c 2=∑6i =1(x i -x -)(z i -z -)∑6i =1(x i -x -)2=6.7317.5≈0.38.又∵z -=c 2x -+ln c 1,0.38×3.5+ln c 1=2.85,ln c 1=1.52. ∴ln y =0.38x +1.52,即y =e 0.38x +1.52为所求的回归方程. (2)根据(1)知回归方程为y =e 0.38x +1.52.当x =9时,y =e 0.38×9+1.52=e 4.94>e 4.56≈95.58,95.581.82≈52.52.据此可以判断2022年全球产生的数据量超过2011年的50倍,因此,这种判断是准确的.感悟提升 回归分析问题的类型及解题方法 (1)求回归方程①根据散点图判断两变量是否线性相关,如不是,应通过换元构造线性相关. ②利用公式,求出回归系数b ^.③待定系数法:利用回归直线过样本点的中心求系数a ^.(2)利用回归方程进行预测,把线性回归方程看作一次函数,求函数值. (3)利用回归直线判断正、负相关,决定正相关还是负相关的是系数b ^.(4)回归方程的拟合效果,可以利用相关系数判断,当|r |越趋近于1时,两变量的线性相关性越强.训练1 下面给出了根据我国2015~2021年水果人均占有量y (单位:kg)和年份代码x 绘制的散点图和线性回归方程的残差图.(2015年~2021年的年份代码x 分别为1~7)(1)根据散点图分析y 与x 之间的相关关系;(2)根据散点图相应数据计算得∑7i =1y i =1 074,∑7i =1x i y i =4 517,求y 关于x 的线性回归方程;(精确到0.01)(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果. 附:回归方程y ^=a ^+b ^x 中斜率和截距的最小二乘估计公式分别为 b ^=∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -nx - y -∑n i =1x 2i-nx -2, a ^=y --b ^x -.解 (1)从散点图可以看出,这些点的分布整体上在一条直线附近,且当x 由小变大时,y 也由小变大,所以y 与x 之间具有线性相关关系,且是正相关. (2)由题意可知,x -=1+2+3+4+5+6+77=4,y -=17∑7i =1y i=1 0747, ∑7i =1x 2i =12+22+32+42+52+62+72=140, ∴b ^=∑7i =1x i y i-7x - y -∑7i =1x 2i -7x -2=4 517-7×4×1 0747140-7×42=22128≈7.89,∴a ^=y --b ^x -=1 0747-7.89×4≈121.87,∴y 关于x 的线性回归方程为y ^=7.89x +121.87.(3)由残差图可以看出历年数据的残差均分布在-2~2之间,且图中各点比较均匀地分布在数值0所在直线附近,带状区域很窄,说明对应的回归直线拟合效果较好.考点三 独立性检验例3 (2021·武汉质检)有关研究表明,正确佩戴安全头盔,规范使用安全带能够将交通事故死亡风险大幅降低,对保护群众生命安全具有重要作用.2020年4月,“一盔一带”安全守护行动在全国各地开展,行动期间,公安交管部门将加强执法管理,依法查纠摩托车和电动自行车骑乘人员不佩戴安全头盔,汽车驾乘人员不使用安全带的行为,助推养成安全习惯,该行动开展一段时间后,某市针对电动自行车骑乘人员是否佩戴安全头盔问题进行调查,在随机调查的1 000名骑行人员中,记录其年龄和是否佩戴头盔情况,得到统计图如图所示.(1)估算该市电动自行车骑乘人员的平均年龄; (2)根据所给的数据,完成列联表:是否佩戴头盔是否(3)根据(2)中的列联表,判断是否有99%的把握认为佩戴安全头盔与年龄有关. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)该市电动自行车骑乘人员平均年龄为25×0.25+35×0.35+45×0.2+55×0.15+65×0.05=39(周岁). (2)完成2×2列联表如下:(3)K 2的观测值k =1 000×(60×540-60×340)2600×400×880×120=12522≈5.682<6.635.故没有99%的把握认为佩戴安全头盔与年龄有关.感悟提升 1.在2×2列联表中,如果两个变量没有关系,则应满足ad -bc ≈0. |ad -bc |越小,说明两个变量之间关系越弱;|ad -bc |越大,说明两个变量之间关系越强.2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:(1)根据样本数据制成2×2列联表:(2)根据公式K2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)计算K2的观测值k;(3)通过比较观测值k与临界值的大小关系来作统计推断.训练2 (2022·南宁模拟)第五代移动通信技术(5G技术)是最新一代蜂窝移动通信技术,也是继4G、3G和2G系统之后的延伸.5G的性能目标是高数据速率、减少延迟、节省能源、降低成本、提高系统容量和大规模设备连接.某大学为了解学生对“5G”相关知识的了解程度,随机抽取100名学生参与测试,并根据得分划分成“不太了解”或“比较了解”两类后整理得到如下列联表:(1)补全列联表,并判断是否有99.9%的把握认为“学生对5G的了解程度与性别有关”;(2)从“不太了解”的学生中按性别分层抽取6人,再从这6人中随机选取2人参加“5G”知识讲座,求抽到的2人中恰有1名女生的概率.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(n=a+b+c+d). 临界值表:解(1)补全的列联表如下:不太了解 比较了解 总计 男生 25 33 58 女生 5 37 42 总计3070100所以K 2的观测值k =100×(25×37-33×5)258×42×30×70≈11.291>10.828,故有99.9%的把握认为“学生对5G 的了解程度与性别有关”. (2)“不太了解”的男生有25人,女生有5人,按性别分层抽样从中抽取6人,则男生应抽取5人,记为a ,b ,c ,d ,e ,女生应抽取1人,记为x ,再从这6人中随机抽取2人共有15种情况:xa ,xb ,xc ,xd ,xe ,ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,抽到恰有1名女生有5种情况:xa ,xb ,xc ,xd ,xe , 所以所求的概率为515=13.1.为调查中学生近视情况,测得某校在150名男生中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力( ) A.回归分析 B.均值与方差 C.独立性检验 D.概率答案 C解析 “近视”与“性别”是两类变量,其是否有关,应用独立性检验判断. 2.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图(1);对变量u ,v ,有观测数据(u i ,v i )(i =1,2,…,10),得散点图(2),由这两个散点图可以判断( )A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关 答案 C解析 由题图(1)可知,y 随x 的增大而减小,各点整体呈下降趋势,x 与y 负相关,由题图(2)可知,u 随v 的增大而增大,各点整体呈上升趋势,u 与v 正相关. 3.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数R 2来刻画回归的效果,R 2值越接近于1,说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.正确的是( ) A.①② B.②③ C.①③ D.①②③答案 D4.(2022·昆明诊断)下表是关于某设备的使用年限x (单位:年)和所支出的维修费用y (单位:万元)的统计表:x 2 3 4 5 6 y3.44.25.15.56.8由表可得线性回归方程y ^=0.81x +a ^,若规定:维修费用y 不超过10万元,一旦大于10万元时,该设备必须报废.据此模型预测,该设备使用年限的最大值约为( ) A.7B.8C.9D.10答案 D解析 由已知表格,得x -=15×(2+3+4+5+6)=4, y -=15×(3.4+4.2+5.1+5.5+6.8)=5,因为回归直线恒过样本点的中心(x -,y -), 所以5=0.81×4+a ^,解得a ^=1.76, 所以回归直线的方程为y ^=0.81x +1.76,由y ≤10,得0.81x +1.76≤10,解得x ≤82481≈10.17,由于x ∈N *,所以据此模型预测,该设备使用年限的最大值为10.故选D. 5.某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:附表:参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .参照附表,得到的正确结论是( )A.在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别有关B.在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别无关C.有99.99%以上的把握认为喜欢“应用统计”课程与性别有关D.有99.99%以上的把握认为喜欢“应用统计”课程与性别无关 答案 A解析 ∵K 2的观测值k =55×(20×20-5×10)225×30×30×25≈11.978>10.828,所以有99.9%的把握认为喜欢“应用统计”课程与性别有关,即在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别有关. 6.下列说法:①残差可用来判断模型拟合的效果;②设有一个回归方程:y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归直线:y ^=b ^x +a ^必过点(x -,y -);④在一个2×2列联表中,由计算得K 2的观测值k =6.665,则有99%的把握确认这两个变量间有关系(其中P (K 2≥6.635)=0.010), 其中错误的个数是( ) A.0 B.1 C.2 D.3答案 B解析 对于①,残差可用来判断模型拟合的效果,残差越小,拟合效果越好,∴①正确;对于②,回归方程y ^=3-5x 中,变量x 增加一个单位时,y 平均减少5个单位,∴②错误;对于③,线性回归直线y ^=b ^x +a ^必过样本点的中心(x -,y -),∴③正确; 对于④,在2×2列联表中,由计算得k =6.665,对照临界值得,有99%的把握确认这两个变量间有关系,∴④正确. 综上,其中错误的命题是②,共1个,故选B.7.已知x 和y 的散点图如图所示,在相关关系中,若用y =c 1e c 2x 拟合时的相关指数为R 21,用y ^=b ^x +a ^拟合时的相关指数为R 22,则R 21,R 22中较大的是________.答案 R 21解析 由散点图知,用y =c 1e c 2x 拟合的效果比y ^=b ^x +a ^拟合的效果要好,所以R 21>R 22,故较大者为R 21.8.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2的观测值k ≈3.918,经查临界值表知P (K 2≥3.841)≈0.05.则下列结论中,正确结论的序号是________. ①有95%的把握认为“这种血清能起到预防感冒的作用”;②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%;④这种血清预防感冒的有效率为5%. 答案 ①解析 k ≈3.918≥3.841,而P (K 2≥3.814)≈0.05,所以有95%的把握认为“这种血清能起到预防感冒的作用”.要注意我们检验的是假设是否成立和该血清预防感冒的有效率是没有关系的,不是同一个问题,不要混淆.9.在一次对人体脂肪含量和年龄的关系的研究中,研究人员获得了一组样本数据,并制成如图所示的人体脂肪含量与年龄的关系的散点图,下列结论中正确的是________(填序号).①人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%; ②人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%;③人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%; ④人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%. 答案 ②解析 观察图形,可知人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%.10.(2022·河南名校联考)某学校食堂统计了最近5天到餐厅就餐的人数x (单位:百人)与食堂向食材公司购买所需食材(原材料)的数量y (单位:袋),得到如下统计表:(1)根据所给的5组数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(2)已知购买食材的费用C (单位:元)与数量y (单位:袋)的关系为C =⎩⎨⎧400y -20,0<y <36(y ∈N ),380y ,y ≥36(y ∈N ),投入使用的每袋食材相应的销售单价为700元,多余的食材必须无偿退还食材公司,据悉下周一大约有1 500人到食堂餐厅就餐,根据(1)中求出的线性回归方程,预测食堂应购买多少袋食材,才能获得最大利润,最大利润是多少?(注:利润L =销售收入-原材料费用)参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -nx - y -∑n i =1x 2i-nx -2,a ^=y --b ^x -. 参考数据:∑5i =1x i y i =1 343,∑5i =1x 2i =558,∑5i =1y 2i=3 237. 解 (1)由所给数据可得x -=13+9+8+10+125=10.4,y -=32+23+18+24+285=25,所以b ^=∑5i =1x i y i -5x - y -∑5i =1x 2i-5x -2=1 343-5×10.4×25558-5×10.42=2.5,又a ^=y --b ^x -=25-2.5×10.4=-1, 所以y 关于x 的线性回归方程为y ^=2.5x -1. (2)由(1)中求出的线性回归方程知,当x =15时,y =36.5,即预计需要购买食材36.5袋. 因为C =⎩⎪⎨⎪⎧400y -20,0<y <36(y ∈N ),380y ,y ≥36(y ∈N ),所以当y <36时,利润L =700y -(400y -20)=300y +20,y ∈N , 此时当y =35时,利润L max =300×35+20=10 520(元);当y ≥36时,根据线性回归方程预测需要购买食材36.5袋,并且剩余的食材只能无偿退还,此时当y =36时,利润L =700×36-380×36=11 520(元), 当y =37时,利润L =700×36.5-380×37=11 490(元).综上,食堂应购买36袋食材,才能获得最大利润,最大利润为11 520元. 11.(2022·“四省八校”开学考试)据我国一项专题调查显示,某市高级职称的中年知识分子中竟有高达75.3%的人处于亚健康状态,更令人担忧的是85%以上的企业管理者处于慢性疲劳状态或亚健康状态,这是由他们所处的特殊工作及生活的环境和行为模式所决定的.亚健康是指非病非健康的一种临界状态.如果这种状态不能及时得到纠正,非常容易引起身心疾病.某高科技公司为了了解亚健康与性别的关系,对本公司部分员工进行了不记名问卷调查,该公司处于正常工作状态的员工(包括管理人员)共有8 000人,其中男性员工有6 000人,女性员工有2 000人,从8 000人中用分层抽样的方法随机抽取了400人作为样本进行健康状况的调查.(1)求男性员工、女性员工各抽取多少人?(2)通过调查得到如图所示的统计图,其中a=0.2,b=0.1.根据统计图,完成下面2×2列联表,健康亚健康总计男员工女员工总计400问是否有97.5%的把握认为人处于亚健康状态与性别有关?参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d. 参考数据:P(K≥k0)0.050.0250.0100.005k0 3.841 5.024 6.6357.879解(1)由题意知样本容量与总体的比值为4008 000=120,∴男性员工抽取了6 000×120=300(人),女性员工抽取了2 000×120=100(人).(2)由统计图可知,样本中男员工处于亚健康状态的人数为300×0.2=60,样本中女员工处于亚健康状态的人数为100×0.1=10,2×2列联表为健康 亚健康 总计 男员工 240 60 300 女员工 90 10 100 总计33070400则K 2的观测值k =400×(240×10-60×90)2300×100×330×70≈5.195>5.024,∴有97.5%的把握认为人处于亚健康状态与性别有关.12.已知某次考试之后,班主任从全班同学中随机抽取一个容量为8的样本,他们的数学、物理成绩(单位:分)对应如下表:学生编号 1 2 3 4 5 6 7 8 数学成绩 60 65 70 75 80 85 90 95 物理成绩7277808488909395给出散点图如下:根据以上信息,判断下列结论:①根据散点图,可以判断数学成绩与物理成绩具有线性相关关系; ②根据散点图,可以判断数学成绩与物理成绩具有一次函数关系;③从全班随机抽取甲、乙两名同学,若甲同学数学成绩为80分,乙同学数学成绩为60分,则甲同学的物理成绩一定比乙同学的物理成绩高. 其中正确的为________(填序号). 答案 ①解析 由散点图知,各点大致分布在一条直线附近,故可以判断数学成绩与物理成绩具有线性相关关系,但不能判断数学成绩与物理成绩具有一次函数关系,故①正确,②错误;若甲同学数学成绩为80分,乙同学数学成绩为60分,则甲同学的物理成绩可能比乙同学的物理成绩高,故③错误.13.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x 6,y 6)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,6)都在曲线y =bx 2-12附近波动.经计算∑6i =1x i =12,∑6i =1y i =14,∑6i =1x 2i =23,则实数b 的值为________. 答案 1723解析 令t =x 2,则曲线的回归方程变为线性的回归方程,即y =bt -12, 此时t -=∑6i =1x 2i 6=236,y -=∑6i =1yi 6=73,代入y =bt -12,得73=b ×236-12,解得b =1723.14.近年来,国资委、党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:(1)求y 关于x 的线性回归方程(计算结果保留两位小数);(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -,K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .临界值表:解 (1)依题意得,x -=1+2+3+4+55=3,y -=8+10+13+25+245=16,故∑5i =1(x i -x -)(y i -y -)=(-2)×(-8)+(-1)×(-6)+1×9+2×8=47, ∑5i =1(x i -x -)2=4+1+1+4=10,则b ^=∑5i =1(x i -x -)(y i -y -)∑5i =1 (x i -x -)2=4710=4.7,a ^=y --b ^x -=16-4.7×3=1.9.所以y 关于x 的线性回归方程为y ^=4.7x +1.9. (2)依题意,女性不愿意参与管理的人数为50, 计算得K 2的观测值为k =300×(150×50-50×50)2200×100×200×100=300×5 000×5 000200×100×200×100=18.75>10.828, 故有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.。
高考文科数学三角函数的图象和性质考点讲解

返回目录
返回目录
高考复习讲义
考点全通关 4
三角函数的图象和性质 考点二 y=Asin(ω x+φ )的图象与性质
1.五点法作y=Asin(ω x+φ )(A>0,ω >0)的简图
X=ωx+φ
0
π
2π
所有理想化模型均忽略对所研究 x 问题无影响的因素,是研究问题的 一种理想方法.在高中学习的理想 模型还有:点电荷、理想气体、弹 y=Asin(ωx+φ) 0 A 0 簧振子、点光源等.
继续学习
高考复习讲义
考点全通关 8
三角函数的图象和性质 考点二 y=Asin(ω x+φ )的图象与性质
2.变换作图法作y=Asin(ω x+φ )(A>0,ω >0)的图象
由上可知函数y=sin x到y=Asin(ω x+φ )的图象的变换途径为:相位变换→周期变化
→振幅变换,或周期变换→相位变化→振幅变换.
继续学习
高考复习讲义
考点全通关 11
三角函数的图象和性质
通关秘籍
2.速率是瞬时速度的大小,但平均速率不是平均速度 的大小,因为平均速率是路程与时间的比值,它与平 均速度的大小没有对应关系.
Your text
STEP 02
Click here to add your text or Copy Your text and paste it here
-A
0
继续学习
高考复习讲义
考点全通关 5
三角函数的图象和性质 考点二 y=Asin(ω x+φ )的图象与性质
1.五点法作y=Asin(ω x+φ )(A>0,ω >0)的简图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考文科数学知识点【导语】在高考复习进程中,文科的学生要怎样做好数学知识点的复习准备呢?下面是作者收集整理的高考文科数学知识点以供大家学习。
高考文科数学知识点:导数一、综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)运用问题(初等方法常常技能性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特点,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引发注意。
二、知识整合1.导数概念的知道。
2.利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:(1)熟练掌控各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
高考文科数学知识点:不等式不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的运用。
因此不等式运用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的增进作用。
在解决问题时,要根据题设与结论的结构特点、内在联系、挑选适当的解决方案,终究归结为不等式的求解或证明。
不等式的运用范畴十分广泛,它始终贯串在全部中学数学当中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的肯定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,终究都可归结为不等式的求解或证明。
知识整合1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论根据,方程的根、函数的性质和图象都与不等式的解法密切相干,要善于把它们有机地联系起来,相互转化。
在解不等式中,换元法和图解法是常用的技能之一。
通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。
方程的根、函数的性质和图象都与不等式的解密切相干,要善于把它们有机地联系起来,相互转化和相互变用。
3.在不等式的求解中,换元法和图解法是常用的技能之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4.证明不等式的方法灵活多样,但比较法、综合法、分析法还是证明不等式的最基本方法。
要根据题设、题断的结构特点、内在联系,挑选适当的证明方法,要熟悉各种证法中的推理思维,并掌控相应的步骤,技能和语言特点。
比较法的一样步骤是:作差(商)→变形→判定符号(值)。
高考文科数学知识点:立体几何1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的进程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、运算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,第一应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌控立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”;(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;(5)夹在两个平行平面间的平行线段相等;(6)经过平面外一点只有一个平面和已知平面平行。
高考文科数学复习方法1.强化“三基”,夯实基础所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年的高考数学试题可见“出活题、考基础、考能力”还是命题的主导思想。
因此在复习时应注意加强“三基”题型的训练,不要急于求成,好高骛远,抓了精深的,丢了基本的。
考生要深化对“三基”的知道、掌控和运用,高考试题改革的重点是:从“知识立意”向“能力立意”转变,考试大纲提出的数学学科能力要求是:能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。
新课标提出的数学学科的能力为:数学地提出问题、分析问题和解决问题的能力,数学探究能力,数学建模能力,数学交换能力,数学实践能力,数学思维能力。
考生复习基础知识要抓住本学科内各部分内容之间的联系与综合进行重新组合,对所学知识的认识形成一个较为完全的结构,到达“牵一发而动全身”的境域。
强化基本技能的训练要克服“眼高手低”现象,主要在速算、语言表达、解题、反思改正等方面下工夫,尽量不丢或少丢一些不应当丢失的分数。
要重视基本数学思想方法在日常训练中的渗透,逐渐提高学生的思维能力。
夯实解题基本功。
高考复习的一个基本点是夯实解题基本功,而对这个问题的一个片面做法是,只抓解题的知识因素,其实,解题的效益取决于多种因素,其中最基本的有:解题的知识因素、能力因素、体会因素、非智力因素。
学生在答卷中除了知识性毛病之外,还有逻辑性毛病和策略性毛病和心理性毛病。
数学高考历来重视运算能力,运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要公道,并且在复习中要成心识地养成书写规范,表达准确的良好习惯。
2.全面复习,系统整理知识,查漏补缺,优化知识结构这是第一阶段复习中应当重点解决的问题。
考生在这一进程应牢牢抓住以下几点:①概念的准确知道和实质性知道;②基本技能、基本方法的熟练和初步运用;③公式、定理的正逆推导运用,抓好相互的联系、变形和巧用。
经过全面复习这一阶段的努力,应使到达以下要求:①按大纲领求知道或掌控概念;②能知道或独立完成课本中的定理证明;③能熟练解答课本上的例题、习题;④能扼要说出各单元题目类型及主要解法;⑤形成系统知识的公道结构和解题步骤的规范化。
这一阶段的直接效益是会考得优,其根本目的是为数学素养的提高准备物质基础。
认真做好全面复习,才谈得上灵活性和综合性,才能适应高考踩分点多、覆盖面广的特点。
这一阶段复习的基本方法是从大到小、先粗后细,把教学中分割讲授的知识单点、知识片断组织合成知识链、知识体系、知识结构,使之各科内容综合化;基础知识体系化;基本方法类型化;解题步骤规范化。
这当中,辅以图线、表格、口诀等已被证明是有益的,“习题化”的复习技术亦被证明是成功的,如,基本内容填空,基本概念判定,基本公式串连,基本运算挑选。
3.加强对知识交汇点问题的训练课本上每章的习题常常是为巩固本章内容而设置的,所用知知趣对照较单一。
复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。
要形成有效的知识网络。
知识网络就是知识之间的基本联系,它反应知识产生的进程,知识所要回答的基本问题。
构建知识网络的进程是一个把厚书(课本)读薄的进程;同时通过综合复习,还应当把薄书读厚,这个厚,应当比课本更充实,在课本的基础上加入一些更宏观的认识,更个性化的知道,更具操作性的解题体会。
综合性的问题常常是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。
要解决这类考题,关键在于弄清题意,将之分解,找到突破口。
由于课程内容的变化,使知识的交汇点显现了新动向,如从概率统计中产生运用型试题,从导数运用中与函数性质的联袂,从解析几何中产生与平面向量的联系、立体几何、三角函数、数列内容中渗透相干知识的综合考核(如三角与向量的结合、数列与不等式结合、概率与数列内容的结合)等。
4.不搞题海取胜,重视题目的质量和处理水平如果采取题海战术、猜题押题等手段来应对升学考试,其结果是步入了“低效率、重负担、低质量”的恶性循环的怪圈。
应当控制总题量,不依靠题海取胜,当处理的题目到达一定的数量后,决定复习成效的关键性因素就不再是题目的数量,而在于题目的质量和处理水平。
①考生对峙意新颖、结构精致的新题予以足够的重视,要保证有相当数量的这类题目,但也不一味排挤一些典型的所谓“新题”、“热题”。
传统的好题,包括课本上的一些例、习题应成为保存节目。
陈题新解、熟题重温可使学生获得新的感受和乐趣。
②要控制题目的难度,在“稳”、“实”上狠下工夫,那些只有运用“特技”才能解决的“偏、怪、奇”的题,坚决摒弃。
③要讲求讲评试卷的方法和技能。
题目训练更强调收效。
考生学好数学就必须做题,各种类型题目的训练是必须的,但决不能搞题海战术。
做题的目的是训练分析问题解决问题的数学能力,是检验对数学基本概念、公式的掌控和运用能力。
因此,做题一定要强调有收效,不要做了也不知道,乃至不知道做对没有。
强化通性通法的训练,让自己到达一做就可以得分的地步。
要善于在解题落后行归纳总结,不要盲目地毫无针对性地要求学生做题,更没有必要大量反复地做同一类型的题,要认识到知道了10道题的收效要大于匆忙做100道重复的题。
重要的是能够举一反三,融会贯通。
高考文科数学答题方法一、规范书写高考文科数学答题技能之一就是规范书写,这一点是文理通用的技能。
卷面评分标准就是规范度,这就要求不但要对、而且要全且规范。
会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
由于字迹潦草,会使阅卷老师的第一印象不良,“感情分”也就相应低了,所以高考答题书写要工整,保证卷面能得分。
二、讲求策略对于高考文科数学题要力求做的对、全、得满分,高考文科数学有两种常用方法:1。
分步解答:对于疑难问题,考生可以将它划分为一系列的步骤,先解决问题的一部分,能解到几步就写几步,每进行一步就可得到这一步的分数,也能够把条件和目标译成数学表达式,设运用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。