热力学系统的制冷系数

合集下载

铁电制冷回热循环的制冷系数和制冷率

铁电制冷回热循环的制冷系数和制冷率

(ΔQR
< 0)
(9)
312 T1 和 T2 两等温过程的熵变|ΔS1| 和|ΔS2| 计算不正确 文献 [ 2 ] 误认为 “极化率 χ在 T1 , T2 时近似相等”,以致导出了ΔQR ≠0 时与ΔQR = 0
时的一样 , 也有 | ΔS1 | = | ΔS2 | 。这是违背热力学第二定律的 。而按热力学第二定律 , 当
由于功的数值受到ΔQR 的影响 ,所以文献[2 ] 所导得的制冷系数ε的表达式 (文献 [ 2 ] 中的 (11) 和 (19) 式) , 必须改正 , 即应改为[5~7]
ε=
QL W
=
Q1 -
Q2 Q2 -
ΔQR
(ΔQR
Байду номын сангаас
>
0)
(8)
ε=
QL W
=
Q2 - | ΔQR | Q1 - Q2 +| ΔQR |
2000 年第 2 期 总第 114 期
低 温 工 程
CRYOGENICS
No12 2000 Sum No1114
铁电制冷回热循环的制冷系数和制冷率 3 Ξ
严子浚
(厦门大学物理系 厦门 361005)
摘 要 计算了铁电制冷回热循环的制冷系数和制冷率 , 并指出有关文献中的 错误 。
W
= Q1 -
Q2
+| ΔQR |
=
Δ 4
E2 A
T2
1 -
TC
-
1 T1 - TC
(14)
QL
=
Q2
- | ΔQR |
=
Δ E2 4A
2 T1 ( T1 -
TC TC) 2
-

热学公式

热学公式

热学公式1.3.1物态方程:(1.1)1.3.2体积膨胀系数、压缩系数、压强系数:(1.3)(1.4)(1.5)1.3.3理想气体(压强趋于零的极限状态下的气体/能严格满足理想气体物态方程的气体)物态方程:pV=vRT (1.7)1.3.4混合理想去气体物态方程:(1.9)1.4.3温标:T(p)=(其中不变) (1.10)(1.11)=(体积不变) (1.12)(体积不变) (1.13)1.5.1物质由大数分子组成:(1.14)法拉第常量F=分子热运动:(1.15)1.6.1理想气体微观模型:洛喜密脱常量(1.16)1.6.2单位时间内在单位面积器壁上平均分子数(1.18) (1.19)1.6.3理想气体压强公式:(1.20)(1.21)P=P=(1.23)K=(1.24)1.6.4温度的微观意义:(1.25)气体分子的平均根速度:=(1.26) 1.7.1分子间互作用势能曲线:d(1.29)或F=(1.30)令r时=0 则(1.31) 1.7.2分子碰撞有效直径、固体分子热震动、固体热膨胀:d=分子碰撞有效直径(1.31)1.7.3范德瓦尔斯方程:p=(1.33) (1.34)方程为:(1.43)2.2.2等概率性与概率的基本性质:(2.1)2.2.3平均值及其运算法则:(2.2)n(2.3)2.3.2麦克斯韦速率分布:f(v)dv=4(2.13)三种速率:(1)平均速率:==(2.14)(2)平均根速度:(2.15)(3)最概然速率(2.16)三种速率的比:(2.17) 2.4.1速度空间:f((2.20)2.4.2麦克斯韦速度分布:(2.26) 2.6.1等温大气压强公式:p(z)=p(0)) (2.61)2.7.1理想气体热容:C=(2.75)2.7.3能量均分定理:(2.81)3.1.1牛顿粘性定律:f=3.2.1菲克定律(3.10)3.3.1傅力叶定律:(3.14)热流密度:(3.15)3.8.1气体黏性系数导出:=(3.62)3.8.2气体的导热系数:K=(3.67)气体的扩散系数:D=(3.69)4.2.2体积膨胀功:W=(对外界系统所做的总功)(4.3)理想气体在几种可逆过程中功的计算:(1)等温过程:W=(2)等压过程:W=(3)等体过程:W=04.3.2内能定理:(4.12)热力学第一定律一般表达式:无限小过程第一定律表达式:dU=dQ+dW准静态过程第一定律表达式:dU=dQ4.4.1定体热熔:(4,19) (4.20)4.4.2定压热熔与焓:H=U+pV (4.22)4.5.1理想气体内能:(4.33) 4.5.2理想气体的等体、等压、等温过程:(1)等体过程:(4.39)(2)等压过程:Q(4.40)(3)等温过程:(4.42)4.5.3一般绝热过程准静态绝热过程:理想气体绝热过程中功及温度变化:4.5.6多方过程方程:(4.68)多方过程热熔:4.6.1热机效率的定义:=(4.81)(4.82) (4.83) 4.6.2卡诺热机的效率:(4.90)4.7.1制冷系数:(4.99)卡诺制冷剂效率:(4.100)5.3.1克劳休斯等式:=05.3.2熵和熵的计算:TdS=(5.23)熵的微分表达式以熵来表示热熔(5.25)(5.26)理想气体的熵:(5.29)5.3.7热力学第二定律表达式:热力学基本方程:热学习题课(2007.4.18) Ⅰ教学基本要求气体动理论及热力学1.了解气体分子热运动的图象。

蒸气压缩式制冷的热力学原理

蒸气压缩式制冷的热力学原理

➢(1)节流阀代替膨胀机 1kg制冷剂损失的膨胀功
We h3 h4' 034 '0
➢ 节流过程的不可逆损失
q'0 h4 h4' 4bb'4'4
T
3
Tk
T0 0 4'
Pk
qk 2' 2
Wc
P0
4 1'
q0
1
b' b a' a s
蒸气压缩式制冷的理论循环的T-s图
➢采用节流阀代替了膨胀机,一方面损失了膨 胀功,另一方面产生了无益气化,降低了制冷 能力,导致制冷系数有所下降。 ➢其降低的程度,称为节流损失。
lgp
pk
3 3'
2' 2
p0
4 q0
1 Wc
qk
0
h4=h3
h1 h2 h
蒸汽压缩制冷理论循环p h图
二、蒸气压缩式制冷理论循环的热力计算
(1)制冷剂单位质量制冷量q0:1kg制冷剂在蒸发器中 蒸发从被冷却介质吸收的热量。
q0=h1-h4=h1-h3 ;kJ/kg lgp
pk
3 3'
2' 2
p0
T
3 qk
2
T'k
∑w
T'0
4
1
q0
0
b
a
s
制冷循环性能指标
➢对于逆卡诺循环,制冷系数c' :
c
q0 q0 T0 W qk q0 Tk T 0
T T'k
3 qk
2
∑w
T'0
4
1
✓大小只取决于两个热源的温度; T0'↗或T k'↘ , → c' ↗

第十八章 热力学第一定律讲解

第十八章 热力学第一定律讲解

ln
V1 V3

RT1
ln
V1 8V1

2.08 RT1
Q3 A3 2.08RT1
(2)循环效率 1 Q3
Q1
1 2.08 RT1 3RT1
30.7%
例题5: 内燃机的循环之一——奥托循环.内燃机利用液体或气体 燃料,直接在气缸中燃烧,产生巨大的压强而作功.内燃机的种类很 多,试说明四冲程汽油内燃机循环的效率.
P P2
P1 1
2
解:


QA对吸(外(吸A热代之数和和)) 1
Q2 Q1
3
A

1 2
(V2
V1 )( P2

P1 )
分析哪段吸热:
0 V1 V2 V
T2 T3 T1 只有12吸热
Q吸

A12

(E2

E1)

1 2
(P1

P2
)(V2
V1 )

i 2
R(T2
T1)
A
...

p

1 2
P0
V0
V0
V0
V0
V0
V0
V0
V0
节流过程
多孔塞
p1 大压强 空间
p2 小压强
空间
1)对理想气体经历节流过程:
A E 0
T2 T1
说明理想气体经历节流过程后温度不变。
2)对真实气体,节流膨胀后温度要发生变化。因为分子间存 在相互作用的势能。
正焦耳--汤姆逊效应:节流膨胀后温度降低; 负焦耳--汤姆逊效应:节流膨胀后温度升高
和已知常量表示)

第四章热力学第二定律

第四章热力学第二定律

无限可转换能—机械能,电能
能量转换方向性的 实质是能质有差异 部分可转换能—热能
T T0
不可转换能—环境介质的热力学能
能质降低的过程可自发进行,反之需一定条件—补偿过 程,其总效果是总体能质降低。
q1 q2 wnet
代价
q2 T1 T2
q2
T2 T1
代价
wnet q1 q2
二.热力学第二定律的实质和表述
衡量制冷循环经济性的工作系数称为制冷系数,即
q2 q2 制冷系数可以大于1, w q1 q2 等于1或者小于1
衡量热泵的经济性的工作系数称为供热系数,即
/ q1 q1
供热系数总是大于1
w q1 q2
/ q1 q1 q1 q2 q2 1
w q1 q2
q1 q2
第二节 热力学第二定律 (Second law)
三、两种说法的等价性
克劳修斯说法:不可能把热从
1.违反克劳修斯说法 必然违反开尔文说法
低温物体传到高温物体而不 引起其它变化。
开尔文说法:不可能从单一
高温热源T1
热源取热,使之完全变为有 用功,而不引起其它变化。
Q1
WB
AW Q2
Q2 Q1>Q2
低温热源T2
A-违反Clausius表述 B-Carnot热机
把热能转化为机械能的循环叫正向循环,也叫热 机循环或动力循环,它使外界得到功。
热源
Q1
热机
Q2
冷源
W Q1 Q2
2、逆循环(counterclockwise direction cycle):
把热量从低温热源传给高温热源的循环叫逆 向循环,分为制冷循环和热泵循环,它消耗外界 的功。

空调用制冷技术-第一章_蒸气压缩式制冷的热力学原理

空调用制冷技术-第一章_蒸气压缩式制冷的热力学原理

理论循环的假设
(3)离开蒸发器和进入压缩机的制冷剂蒸气为 蒸发压力下的饱和蒸气, 蒸发压力下的饱和蒸气,离开冷凝器和进入膨 胀阀的液体为冷凝压力下的饱和液体 (4)制冷剂在管道内流动时,没有流动阻力损失, 制冷剂在管道内流动时,没有流动阻力损失, 忽略动能变化,除了蒸发器和冷凝器内的管子外, 忽略动能变化,除了蒸发器和冷凝器内的管子外, 制冷剂与管外介质之间没有热交换 (5)制冷剂在流过节流装置时,流速变化很小, 制冷剂在流过节流装置时,流速变化很小, 可以忽略不计, 可以忽略不计,且与外界环境没有热交换
空调领域的制冷技术原理
制冷技术:
普通制冷:高于- 普通制冷:高于-120℃ ℃ 深度制冷:-120℃~20K 低温和超低温:20K以下
食品冷藏和空调用制冷技术属于普冷范围 液体气化制冷法
蒸气压缩式制冷 吸收式制冷
制冷技术的应用
空气调节 食品的冷藏链 机械、电子工业 医疗卫生事业 土木工程 体育事业 日常生活
N.L.Sadi.Carnot 1796-1832
萨迪.卡诺
1812年进巴黎查理曼大帝公立中学学习,不久以优异成绩考入巴黎工 艺学院,从师于S.-D.泊松、J.L.盖-吕萨克、A.-M.安培和D.F.J.阿喇 戈等人。1814年进工兵学校。1816年任少尉军官。1819年在巴黎任职 于总参谋部,次年请长假回家,编入预备役,继续从事他所酷爱的自 然科学的学习和研究。大概从1820年开始,他潜心于蒸汽机的研究。 1820 1824年,卡诺发表了名著《谈谈火的动力和能发动这种动力的机器》 1824 (Reflexions sur la puissance motrice du feu etsar les machines propres a developper cette puissance),但当时并没有引起人们的注意,直到 他逝世后才引起人们的重视。1827年,卡诺又被总参谋部召回服役, 并将他以上尉身份派往现役部队任军事工程师。在里昂等地经过短期 工作后,1828年卡诺永远辞去了在军队中的职务,回到巴黎继续研究 蒸汽机的理论。1830年卡诺因父亲的关系被推选为贵族院议员,但他 断然拒绝了这个职务,因为他是一个共和主义者,认为职位的世袭不 符合共和主义的思想。1832年因染霍乱病于 8月24日逝世,年仅36岁。 由于害怕传染,他的随身物件,包括他的著作、手稿,均被焚毁。

大学物理第三章热力学第一定律第四章热力学第二定律

大学物理第三章热力学第一定律第四章热力学第二定律

B C AD
氮气 氦气
35
B C AD
氮气 氦气
解: 取(A+B)两部分的气体为研究系统, 在外界压缩A部分气体、作功为A的过程 中,系统与外界交换的热量 Q 0
Q E ( A) 0
36
B
氮气
C
AD
氦气
系统内能的变化为
E E A E B
5 E B RTB 2
内能:态函数,系统每个状态都对应着一定内能的数值。 功、热量:只有在状态变化过程中才有意义,状态不 变,无功、热可言。
9
五、热力学第一定律
1. 数学表式 ★ 积分形式 ★ 微分形式
Q E A
dQ dE dA
10
2. 热力学第一定律的物理意义 (1)外界对系统所传递的热量 Q , 一部分用于 系统对外作功,一部分使系统内能增加。 (2)热一律是包括热现象在内的能量转换和守恒 定律。
m i E RT M2
m i i m E RT R T末 T初) ( M2 2M
i dE RdT 2
8
注意 :
10 作功和传热对改变系统的内能效果是一样的。 (要提高一杯水的温度,可加热,也可搅拌)
20 国际单位制中,功、热、内能单位都是焦耳(J)。 (1卡 = 4.18 焦耳) 30 功和热量都是系统内能变化的量度,但功和热本身不 是内能。
绝热线
斜 率
PV C1
dP K 绝热 dV
P V
26
K 绝热 同一点 P0,V0,T0 斜率之比 ( ) K 等温
P0 K绝热 V0 P0 K等温 V0

P
a
等温
结论:绝热线比等温线陡峭

热工基础与应用 第3版 知识点

热工基础与应用 第3版 知识点

《热工基础及应用》第3版知识点第一章 热能转换的基本概念本章要求:1.掌握研究热能转换所涉及的基本概念和术语;2.掌握状态参数及可逆过程的体积变化功和热量的计算;3.掌握循环的分类与不同循环的热力学指标。

知识点:1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。

热力系可以按热力系与外界的物质和能量交换情况进行分类。

2.工质:用来实现能量相互转换的媒介物质称为工质。

3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。

对于热力学而言,有意义的是平衡状态。

其实现条件是:0,0,0p T μ∆=∆=∆=。

4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。

状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。

5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。

实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ∆→,0T ∆→(0μ∆→)。

6、热力循环:为了实现连续的能量转换,就必须实施热力循环,即封闭的热力过程。

热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。

动力循环的能量利用率的热力指标是热效率:0=t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。

第二章 热力学第一定律本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。

知识点:1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。

热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。

2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =∆+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学系统的制冷系数
热力学是一门研究能量转换和能量传递规律的科学。

在研究能量传
递中,制冷是一个重要的应用领域。

制冷是利用能量转换的原理,将
热量从低温区域转移到高温区域,从而使低温区域的温度降低,达到
降温的目的。

在热力学中,有一项指标被称为“制冷系数”,它是评价
制冷系统性能的重要参数。

1. 制冷系统简介
制冷系统是由制冷剂、压缩机、蒸发器、冷凝器和节流阀等组成的
一个闭合循环。

其中,蒸发器和冷凝器是热交换器,承担着热量的吸
收和释放任务。

压缩机则通过对制冷剂的压缩工作,将低温制冷剂转
化为高温高压的气体。

节流阀则起到控制制冷剂流量和压力的作用。

2. 制冷系数的定义
在制冷系统中,制冷系数(COP)是衡量系统制冷能力的重要参数。

它定义为制冷效果与能量消耗的比值,通常用功率(W)或制冷效果(Qc)除以能量消耗(W)。

制冷系数可以用于比较不同制冷系统的
性能,越高的制冷系数意味着越有效的制冷能力。

3. COP的计算
COP的计算公式为:
COP = Qc / W
其中,Qc表示制冷效果,W表示能量消耗。

制冷效果可以以制冷
量或制冷功率来表示,而能量消耗可以是电力或其他形式的能量输入。

4. COP的影响因素
制冷系数的大小受多种因素的影响。

其中,压缩机的效率是一个重
要因素。

压缩机的效率越高,同样的能量输入下,制冷量就越大,制
冷系数也就越高。

另外,蒸发器和冷凝器的热交换效果和制冷剂的选
择也会影响制冷系数的大小。

5. 提高COP的方法
为了提高制冷系统的制冷系数,可以采取以下几种方法:
(1)优化制冷系统的设计和构成,提高热交换效率。

(2)选择高效的压缩机,并进行压缩机的优化控制。

(3)选择合适的制冷剂,以获得更好的制冷效果。

(4)改进制冷系统的运行参数,提高能源利用率。

6. COP的应用
制冷系数的大小在实际应用中起着重要的作用,尤其是在商业和工
业领域。

比如,对于冷藏冷冻设备和空调系统,制冷系数的高低直接
关系到其制冷效果和能源消耗情况。

通过增加制冷系统的COP,可以
实现更高效的制冷和节能运行。

总结:
热力学系统的制冷系数是衡量制冷系统性能的重要指标,可以通过制冷效果与能量消耗的比值来计算。

通过优化制冷系统的设计、选择高效的压缩机和制冷剂,并改进系统运行参数,可以提高制冷系数。

在实际应用中,制冷系数的大小直接关系到制冷效果和能源消耗,通过提高COP可以实现更高效的制冷和节能运行。

相关文档
最新文档