数列通项与求和
数列求和及求通项方法总结

数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1312--=n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如)(1k n n a n +=,可裂项成)11(1kn n k a n +-=,列出前n 项求和消去一些项②形如kn n a n ++=1,可裂项成)(1n k n ka n -+=,列出前n 项求和消去一些项 例:已知数列1)2()1)(1(11=≥+-=a n n n a n ,,求前n 项和n S4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。
例:已知数列122-+=n a nn ,求前n 项和n S5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)一、数列求通项公式的常见方法有:1、关系法2、累加法3、累乘法4、待定系数法5、逐差法6、对数变换法7、倒数变换法 8、换元法 9、数学归纳法累加法和累乘法最基本求通项公式的方法求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。
二、方法剖析1、关系法:适用于)(n f s n =型求解过程:⎩⎨⎧≥-===-)2()1(111n s s n s a a n n n例:已知数列{}n a 的前n 项和为12++=n n S n ,求数列{}n a 的通项公式2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列求解过程:若)(1n f a a n n +=+则)1(12f a a =- )2(23f a a =-所有等式两边分别相加得:∑-==-111)(n k n k f a a 则∑-=+=111)(n k nk f a a例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列求解过程:若n n a n f a )(1=+,则)(1n f a a nn =+ ......累加则)1()......2()1(12312-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:∏-==111)(n k n k f a a 则∏-==111)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n nn ,其中{}的通项公式,求n a a 31= 4、待定系数法:适用于)(1n f pa a n n +=+①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=p b k ,所以有:)1(11-+=-++p ba p pb a n n ,这样就构造出了一个以11-+p b a 为首项,公比为p 的等比数列⎭⎬⎫⎩⎨⎧-+1p b a n 。
数列的通项公式与求和公式

数列的通项公式与求和公式在数学的广阔天地中,数列就如同繁星点点,而数列的通项公式与求和公式则是我们探索这些繁星奥秘的关键钥匙。
首先,咱们来聊聊啥是数列的通项公式。
简单说,通项公式就是一个能够准确表示数列中每一项的式子。
比如说,咱们常见的等差数列 1,3,5,7,9它的通项公式就是 an = 2n 1 。
通过这个公式,只要给定一个 n 的值,咱就能轻松算出这一项具体是多少。
再比如等比数列 2,4,8,16它的通项公式是 an = 2^n 。
通项公式就像是数列的身份证,独一无二地标识了每一个数列。
那数列的求和公式又是啥呢?它呀,就是用来计算数列中所有项之和的式子。
还是拿刚才的等差数列 1,3,5,7,9 来说,它的前 n 项和公式是 Sn = n(a1 + an) / 2 ,这里的 a1 是首项,an 是末项。
如果咱们要求前 5 项的和,那就是 S5 = 5×(1 + 9) / 2 = 25 。
等比数列2,4,8,16的前 n 项和公式是 Sn = a1(1 q^n) /(1 q) (其中 q 是公比)。
通项公式和求和公式在解决数学问题中可太有用啦!比如说,让你判断一个数是不是某个数列中的项,有了通项公式,那简直是小菜一碟。
给定一个数,代入通项公式,能算出一个整数的 n 值,那它就是数列中的项,否则就不是。
求和公式的用处也不少呢!假如要计算一堆有规律排列的数的总和,要是一个一个加,那得累死人。
但有了求和公式,几下就能算出来。
那怎么去推导这些公式呢?咱们先来看等差数列的通项公式。
假如一个等差数列的首项是 a1 ,公差是 d ,那么第二项就是 a1 + d ,第三项是 a1 + 2d ,第四项是 a1 + 3d 依此类推,第 n 项就是 an = a1 +(n 1)d 。
再看等差数列的求和公式。
咱们可以把前 n 项倒过来写一遍,然后和原来的式子相加。
比如说,原来的式子是 Sn = a1 +(a1 + d) +(a1 + 2d) ++ a1 +(n 1)d ,倒过来就是 Sn = a1 +(n 1)d + a1 +(n 2)d ++(a1 + d) + a1 。
数列通项公式及求和

{ a } 例:已知数列 的前 n 项和 n n s pn2 ( p 1)n p 3 为 , 若 {an} 为 等 差 数 列 , 求 p 与 an 。
例:设数列{cn}的各项是一 个等差数列与一个等比数 列对应项的和,若 c1=2 , c2=4, c3=7,c4=12,求通 项公式cn
二、迭加法(加减法、逐加法)
当所给数列每依次相邻两 项之间的差组成等差或等比数 列时,就可用迭加法进行消元
例: 已知: an+1=an+n, 求a n
a1=1 ,
三、迭积法(逐积法) 当一个数列每依次相邻两 项之商构成一个等比数列时, 就可用迭积法进行消元
例: n an1 3 an, a1 2 , 已知数列{an }中, 求通项公式 an 。
四分裂通项法:
把数列的通项拆成两项之差, 即数列的每一项都可按此法 拆成两项之差,在求和时一 些正负项相互抵消,于是前 n 项的和变成首尾若干少数 项之和,这一求和方法称 为分裂通项法.
1 已知an , 求sn nn 2
1 1 1 nn 1 n n -1
1 1 1 2n 12n 1 2 2n 1 2n 1 1
;
密,只要你呀敢亮出来,那么你呀将永远遭受无止境の追杀,没有人能够救你呀,所以这上品神剑,你呀只能摆在这逍遥阁,绝对不能曝光,也就是说,这剑你呀只能看,不能用." 【作者题外话】:郑重推荐几个大大の经典之作——艾连の《特种兵痞在校园》习风《阵芒》,大家闹书荒の话,可以 去看看,很不错!俺一直在追! 本书来自 品&书#网 当前 第2陆陆章 没有品节の屠神刀 可惜啊,暴殄天物啊! 白重炙叹了口气,有些无奈,这么好の东西只能看,不能用,の确是件憾事.看书 只是他明白鹿希说の很有道理,于是也不多想,点了点头. 见白重炙点了点头,鹿希才再次说道:"这 把刀,主人称之屠神刀,品阶…未知,能力…未知,虽然他只能增加使用者百分之两百の攻击力.但是主人却说,这把刀绝不寻常,只是他没有时候破解这把刀の秘密.而这把刀外面看不出他是把神器,使用の时候,也没有特殊の异状,外表和普通武器差不多,所以这把刀你呀可以放心使用!接着! " 屠神刀? 品阶未知? 能力未知? 增加百分之两百攻击力?绝不寻常? 白重炙脑海还在琢磨着鹿希の话语,不料鹿希却把这把刀丢了过来,白重炙连忙一把接住,细细观看起来. 其实严格意义这把屠神刀,并不能称作刀.因为这刀是直の,但是又不能称呼为剑,因为它顶端是平の,并且只有一边 有锋刃. 刀长一米五,宽一尺,大约有百多斤斤重,通体黝黑,却有些暗红の神秘花纹.这把刀让白重炙想起前世の传奇里面の战士武器"开天".同样の款式,只是颜色换成了黑色.恩,这刀也可以称呼为巨大铁尺,只不过一边有锋刃而已. 白重炙手握刀柄,感觉着这屠神刀の惊人重量,百多斤の武 器,他还是第一见到.不过白重炙此刻如此强悍の修为,百来斤の东西也是犹如握着一把菜刀一样轻松. 随意挥舞了几下,白重炙非常の满意.其实他老早就想换武器了,青龙匕虽然用の很习惯,但是太短了.并且此刻他修炼成功夜皇七式,他很早就想拥有一把霸气の长刀,而这把屠神刀却是让他 非常满意,爱不释手. "好刀!好刀!"白重炙不断の抚摸着刀身,感觉这刀身带来の寒意,心情大好,这刀虽然看起来满意那把神剑绚丽,神秘,威势.但是白重炙一握住这把刀,就几多の舒适,几多の欢喜,似乎这把刀本来就属于他の一样,似乎这刀已经成为了他身体不可分割の一部分一样. 虽 然不知品阶,不知道能力,但是魂帝那么牛の人都说这刀不寻常,那肯定就不寻常,白重炙决定以后有时候好好摸索一样,说不定这把刀和他の魂戒一样,突然涌现出许多莫名神奇の能力也不一定. "好了!" 鹿希の话语再次将白重炙の思绪拉了回来,鹿希看着白重炙宛如一些孩子得到心爱の玩 具一样,微微笑了起来,继续说道:"以后有の是时候给你呀玩,现在你呀有更重要の事情!" "恩!"白重炙不好意思の笑了笑,点了道:"什么事,您说,鹿老!" "炼化这个戒指,这戒指就是这逍遥阁の中心,这是一枚空间神奇戒指,你呀炼化了它就等于炼化了逍遥阁,以后你呀就可以随时进入 这逍遥阁了!"鹿希一把抓起戒指,而后隔空缓缓将他丢了过来. "空间神器,炼化它就等于炼化逍遥阁?"白重炙有些疑惑の望着手中の戒指,另外一只手却还是抓着屠神刀不放. "其实整个逍遥阁,本来是在这逍遥戒内の,不过主人强行将它移动到了,你呀们炽火位面の空间乱流之中,现在你呀 炼化了这枚逍遥戒,逍遥阁自然再次回到里面,这可不是一样の空间神器,因为一样の空间戒指,可不能装活人!"鹿希郑重の点了点头,开始为白重炙解释器这枚炼化这枚戒指起来. 片刻之后,等白重炙总算弄懂了这枚炼化之后,鹿希才催促起来:"行了,你呀马上炼化吧,落神山天路现在已经 开启了,并且闯关威力也减半了,你呀抓紧时候炼化,其他の问题,以后俺在和你呀细说!" "好!"白重炙知道轻重,不再废话,连忙盘坐起来,把屠神刀放在脚下,开始闭目炼化逍遥戒起来. …… …… 当白重炙开始炼化逍遥戒の时候,落神山却再次震动了一下,而落神上顶部悬空の不咋大的神 阁却微微颤抖了一下,不过很显然,下面の人都没有发现. 而其实炽火大陆看到の不咋大的神阁,其实只是一些幻像而已.真正の不咋大的神阁,其实在炽火大陆の空间乱流之中. 空间乱流内,有这无数の空间裂缝,也有着无数の可以轻易绞杀神级强者の乱流风刃,只是……这些风刃飘到不咋大 的神阁外表の时候,却自动弯了开去,似乎有股无形之力,正自动の将乱流风刃扒开,很是神奇. 只是,当白重炙炼化逍遥戒,不咋大的神阁微微颤抖の那一刻.不远处の乱流中,盘踞の一处黑影,突然亮起了两道刺眼の精光. 居然是一名长着双角の神秘男子,这名男子盘坐在乱流中,四周の乱流 风刃也如同碰不到他一样,主动绕路.长角の男子,双眼成褐色,此刻盯着不咋大的神阁,看了一会,随即又闭上了眼睛,继续盘坐,宛如空间乱流中の一粒沙城,继续沉寂下去. 而同一时候,暗黑森林最深处の一座古堡内,也有人发出了一声微微の惊讶声音. 暗黑森林最深处,有一座,没有人知道 の古堡.古堡很华丽,很漂亮,比逍遥阁要大了几倍,各种装饰却是更加豪华,甚至可以说奢华. 不咋大的神阁微微颤抖の那一刻,古堡の顶层,一名正在穿着火红袍子正在看书の女子,惊讶の轻呼了一声,放下了手中の书,将目光投向了落神山方向,脸上却露出了玩味の笑容. 只是片刻之后,这名 看不出年纪の女子,微微笑了笑,继续拿起了手中の书籍,专心了看了起来,宛如什么也没用察觉,什么也没用发生. 暗黑森林又恢复了往日の平静. …… 白重炙在炼化逍遥戒,鹿希却身形一闪,离开了逍遥阁,居然回到了傀儡通道の最后一关の那个大厅之中. 他回到大厅,双手快速の朝着大厅 の墙壁,不同の方位,开始射出强弱不等の气剑,随着他の气剑射出,大厅突然神奇出现了一块屏幕.而屏幕上方却是不同闪现着不同の人物. 如果白重炙在这里の话,一定会激动の大叫起来.因为屏幕上不是闪现出来の人物,不少他都认识.有风家の,有龙城の,有蛮神府妖神府の,当然还有夜枪 和夜轻语. "呵呵,速度蛮快の嘛,恩!不咋大的寒子要炼化一天,没事索性俺来玩玩,这也是最后一次玩了,要好好玩玩……"鹿希眼中闪现出一次戏谑,继续开始挥动双手,控制着落神山の无数阵法,机关运转起来… 当前 第2陆柒章 诡异の第九关 文章阅读 神城の不咋大的队,是首先进入天 路の,也是速度最快の,由于白重炙の破了落神山の所有关卡,所以落神山の关卡威力全部减半了.请大家检索(品#书……网)看最全!更新最快の所以神城不咋大的队の闯关速度是最快の. 仅仅一天时候,此刻他们已经达到了第八关,这次神城带队是一名身材很是矮不咋大的の帝王境巅峰 强者,名屠黑,是屠神卫世家の旁系子弟. 屠黑双眼透过金袍,冷冷の望着,前方の一群八级魔智血虎,被自己の手下轻易の击退,不禁嘴角微微の笑了起来.虽然不清楚为何落神山突然异变,但是这并妨碍屠黑の心情无比の好了起来.一天时候就达到了傀儡通道第八关,看来这次是运气到了极点. 他此刻已经在幻想着,自己不咋大的队破了落神山の关卡,而后拿了神剑,回到神城,自己被神主赐予神城五卫の风光情景. 越想越兴奋,他再次一挥手,身旁の所有神城使者,全部一窝蜂の朝前面の血虎扑去,想必几多钟之后这关就破了吧. 下一关,第九关他知道是吞石鼠の关卡,傀儡通道虽然 许多关卡の守护智,地形都会随着闯关の人の综合实力,人数等方面,自动转换.但是闯关多次の他,非常清楚,一、五、九这三个最难の关卡,守护智从来没有换过,只是实力不同而已.而第九关是一种很难缠の吞石鼠,而他们是清一色の帝王境强者,所以他们等会面对の则是八品下阶の吞石鼠. 当然第九关,虽然吞石鼠比较多了一点,但是屠黑却并没有放在眼里,因为第九关の地
数列的通项公式与求和的常用方法

解法三
由已知得,(n∈N*) ①, 所以有 ②, 由②式得, 整理得Sn+1-2·+2-Sn=0, 解得, 由于数列{an}为正项数列,而, 因而, 即{Sn}是以为首项,以为公差的等差数列
所以= +(n-1) =n,Sn=2n2, 故an=即an=4n-2(n∈N*)
对任意正整数n都成立,其中m为常数,且m<-1
(1)求证 {an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足 b1=a1,bn=f(bn-1)(n≥2,n∈N*) 试问当m为何值时,成立?
6 已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145
(1)求数列{bn}的通项bn; (2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1),记Sn是数列{an}的 前n项和,试比较Sn与logabn+1的大小,并证明你的结论
②假设当n=k时,结论成立,即有ak=4k-2,由题意,有,将ak=4k -2
代入上式,解得2k=,得Sk=2k2, 由题意,有,Sk+1=Sk+ak+1, 将Sk=2k2代入得()2=2(ak+1+2k2), 整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k, 所以ak+1=2+4k=4(k+1)-2, 即当n=k+1时,上述结论成立
(1)求数列{an}的通项公式; (2)设Sn=|a1|+|a2|+…+|an|,求Sn; (3)设bn=(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m, 使得对任意n∈N*均有Tn>成立?若存在,求出m的值;若不存在,说 明理由
数列的通项与求和计算方法总结

数列的通项与求和计算方法总结(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数列的通项与求和计算方法总结第一章 数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n na n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
数列求通项、求和的几种方法

求数列通项公式的几种方法数列知识是高考中的重要考察内容,而数列的通项公式又是数列的核心内容之一,它如同函数中的解析式一样,有了解析式便可研究起性质等;而有了数列的通项公式便可求出任一项以及前N项和等.因此,求数列的通项公式往往是解题的突破口,关键点.故将求数列通项公式的方法做一总结,希望能对广大考生的复习有所帮助.下面我就谈谈求数列通项公式的几种方法:一、累差法递推式为:a n+1=a n+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……a n-a n-1=f(n-1)将这个式子累加起来可得a n-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴a n=a1+f(1)+f(2)+…+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,a n+1=a n+2,求a n解:令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……a n-a n-1=2n-1将这个式子累加起来可得a n-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴a n=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故a n=2n-1二、累商法递推式为:a n+1=f(n)a n(f(n)要可求积)思路:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……a n/a n-1=f(n-1)将这个式子相乘可得a n/a1=f(1)f(2)…f(n-1)∵f(n)可求积∴a n=a1f(1)f(2) …f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{a n}中,a1=2,a n+1=(n+1)a n/n,求a n解:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……a n/a n-1=f(n-1)将这个式子相乘后可得a n/a1=2/1×3/24×/3×…×n/(n-1)即a n=2n当n=1时,a n也适合上式∴a n=2n三,构造法1、递推关系式为a n+1=pa n+q (p,q为常数)思路:设递推式可化为a n+1+x=p(a n+x),得a n+1=pa n+(p-1)x,解得x=q/(p-1) 故可将递推式化为a n+1+x=p(a n+x)构造数列{b n},b n=a n+q/(p-1)b n+1=pb n即b n+1/b n=p,{b n}为等比数列.故可求出b n=f(n)再将b n=a n+q/(p-1)代入即可得a n例3、(06重庆)数列{a n}中,对于n>1(n€N)有a n=2a n-1+3,求a n解:设递推式可化为a n+x=2(a n-1+x),得a n=2a n-1+x,解得x=3故可将递推式化为a n+3=2(a n-1+3)构造数列{b n},b n=a n+3b n=2b n-1即b n/b n-1=2,{b n}为等比数列且公比为3b n=b n-1·3,b n=a n+3b n=4×3n-1a n+3=4×3n-1,a n=4×3n-1-12、递推式为a n+1=pa n+q n(p,q为常数)思路:在a n+1=pa n+q n两边同时除以q n+1得a n+1/q n+1=p/qa n/q n+i/q构造数列{b n},b n=a n/q n可得b n+1=p/qb n+1/q故可利用上类型的解法得到b n=f(n)再将代入上式即可得a n例4、数列{a n}中,a1+5/6,a n+1=(1/3)a n+(1/2)n,求a n解:在a n+1=(1/3)a n+(1/2)n两边同时除以(1/2)n+1得2n+1a n+1=(2/3)×2n a n+1构造数列{b n},b n=2n a n可得b n+1=(2/3)b n+1故可利用上类型解法解得b n=3-2×(2/3)n2n a n=3-2×(2/3)na n=3×(1/2)n-2×(1/3)n3、递推式为:a n+2=pa n+1+qa n(p,q为常数)思路:设a n+2=pa n+1+qa n变形为a n+2-xa n+1=y(a n+1-xa n)也就是a n+2=(x+y)a n+1-(xy)a n,则可得到x+y=p,xy= -q解得x,y,于是{b n}就是公比为y的等比数列(其中b n=a n+1-xa n)这样就转化为前面讲过的类型了.例5、已知数列{a n}中,a1=1,a2=2,a n+2=(2/3)·a n+1+(1/3)·a n,求a n解:设a n+2=(2/3)a n+1+(1/3)a n可以变形为a n+2-xa n+1=y(a n+1-xa n)也就是a n+2=(x+y)a n+1-(xy)a n,则可得到x+y=2/3,xy= -1/3可取x=1,y= -1/3构造数列{b n},b n=a n+1-a n故数列{b n}是公比为-1/3的等比数列即b n=b1(-1/3)n-1b1=a2-a1=2-1=1b n=(-1/3)n-1a n+1-a n=(-1/3)n-1故我们可以利用上一类型的解法求得a n=1+3/4×[1-(-1/3)n-1](n€N*)四、利用s n和n、a n的关系求a n1、利用s n和n的关系求a n思路:当n=1 时,a n=s n当n≥2 时, a n=s n-s n-1例6、已知数列前项和s=n2+1,求{a n}的通项公式.解:当n=1 时,a n=s n=2当n≥2 时, a n=s n-s n-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1 时,a n=2当n≥2 时, a n=2n-12、利用s n和a n的关系求a n思路:利用a n=s n-s n-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{a n}中,已知s n=3+2a n,求a n解:即a n=s n-s n-1=3+2a n-(3+2a n-1)a n=2a n-1∴{a n}是以2为公比的等比数列∴a n=a1·2n-1= -3×2n-1五、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出a n,再用数学归纳法证明例8、(2002全国高考)已知数列{a n}中,a n+1=a2n-na n+1,a1=2,求a n解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6由此猜想a n=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即a k=k+1则 a k+1=a2k-ka k+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有a n=n+1成立即a n=n+1。
高一数学辅导--求数列通项与求和

高一数学辅导--求数列通项与求和一.求数列通项常用方法:1.已知数列{n a }满足1a =1,1+n a =n a +n2(n ∈N +),求n a .2.求数列的通项公式。
3.已知数列{}n a 满足112,12n n n a a a a +==+,求数列{}n a 的通项公式。
4.已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .5.已知数列{}n a 中,51=a ,1123+++=n n n a a ,求n a 。
6.设n S 为{n a }的前n 项和,n S =23(n a -1),求n a (n ∈N +)二.数列求和常用方法:1.求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和n S2.求和111112123123n +++++++++++ 。
3.求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.4.求数列9,99,999,… 的前n 项和n S5.求和S n =23133353(21)3n n ∙+∙+∙++-∙6.求和23135212222n n n S -=++++三.综合问题:1.数列{}n a 的前n 项和记为n S ,()111,211n n a a S n +==+≥(1)求{}n a 的通项公式;(2)求n S2.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+== ,(Ⅰ)设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; (Ⅱ)设数列),2,1(,2==n a c n n n ,求证:数列{}n c 是等差数列; (Ⅲ)求数列{}n a 的通项公式及前n 项和.3.设数列{}n a 满足211233333n n n a a a a -++++=…,a ∈*N . (1)求数列{}n a 的通项;(2)设n nn b a =,求数列{}n b 的前n 项和n S .四.巩固作业:1.已知111,32n n a a a -==+,求n a ;2.已知111,32n n n a a a -==+,求n a ;3.已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
数列通项公式的求法13种和求和的七种方法

最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为:110-=nn a(2);122++=n n n a n (3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:关键是找出各项与项数n 的关系例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解:设1)1(-+-+=n n bqd n a c 132211121237242-+=⇒⎪⎪⎩⎪⎪⎨⎧=====⎪⎪⎩⎪⎪⎨⎧=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a 例11. 已知数列{}n c 中,b b c +=11,bb c b c n n ++⋅=-11, 其中b 是与n 无关的常数,且1±≠b 。
求出用n 和b 表示的a n 的关系式。
解析:递推公式一定可表示为)(1λλ-=--n n c b c 的形式。
由待定系数法知:bbb ++=1λλ )1(1,1,12122b bc b b b c b b b n n --=--∴-=∴≠-λ 故数列⎭⎬⎫⎩⎨⎧--21b b c n 是首项为112221-=--b b b b c ,公比为b 的等比数列,故111121211222--=∴-=-=--++-b b b c b b b b b b b c n n n n n 点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列通项与求和
数列通项是指在一个连续的数列中,每一项都可以由一个公式表示出来,而该公式就是数列的通项。
数列求和是指对一个数列中所有项的和。
数列是一种有规律的数字序列,它可以表示为 a1, a2, a3,..., an,其中a1, a2, a3,...an是具有某种规律的数字,这样的数列就称为“数列”。
数列通项是数列的一个重要概念,它是指在一个数列中,可以通过某种方法将每个元素都表示出来,即每个元素可以写成一个公式,这个公式就叫做数列的通项。
例如:给出数列1,3,5,7,9,11,13,15,17,19,…,可以发现它的通项为 an = 2n-1。
这意味着每一项都是以2n-1的形式出现,其中n=1,2,3,...。
所以,比如a10 = 2*10 - 1 = 19,即第10项等于19.
数列求和是指对一个数列中所有项的和的操作,也就是把所有项相加起来,得到总和,这个总和就是数列的求和。
比如:给出数列1,3,5,7,9,11,13,15,17,19,…,它的求和就是把所有项都相加,即
1+3+5+7+9+11+13+15+17+19+…= 100。
数列通项和求和之间的关系是:当数列具有某种规律时,我们可以通过求通项的方法,得到数列的求和,即通过求出每一项的表达式,然后将所有项求和即可。
例如:已知数列1,3,5,7,9,11,13,15,17,19,…,它的通项为an=2n-1,因此,我们可以求出该数列的求和:S=∑an=∑(2n-1),n=1,2,3,… n=10,即把所有项加起来,S=1+3+5+7+9+11+13+15+17+19=100,即为数列的求和。
总之,数列通项指的是数列中每一项可以由一个公式表示出来,而数列求和是指对一个数列中所有项的和。
如果数列具有一定的规律,我们可以通过求通项的方法,求出数列的求和。