数形结合巧解题
数形结合巧解题

数形结合巧解题从开始接触数学以来,与我们经常打交道的无非就是“数”与“形”,那么大家有没有试过把它们结合起来呢,也就是数形结合。
如果没有,请从现在开始试一试吧,你会发现它巧妙的解题思路。
下面我们就来慢慢的体会它的巧妙之处。
一、计算(1)22121+ 如图,把一个面积为1的正方形等分成两个面积为21的长方形,接着把面积为21的长方形等分成两个面积为41的正方形。
利用图形揭示的规律是:求22121+的和,刚好等于求黄色和蓝色部分面积的和,所以将全部的面积减去红色的面积,剩下就是我们要求的,而红色部分的面积又等于蓝色部分的面积,即221,那么,原式=1-221=43 类似地,同理可得:(2)22321121++=1-231=87(3) 22243211121+++=1-241=1615 …….. 依次下去,求22243211121++++…….+21n 就不难了,等于1-21n ,而且,我们可以发现,当n 无限增大时,这一式子的值最接近于这一正方形的面积1。
二、几何图形与乘法公式按图所示的两种方式分割正方形,用两种方法求正方形的面积。
b a(1)y x(2)图(1):①S=)(2b a + ②S=ab ab b a +++22 可得:)(2b a +=ba ab 222++ 图(2):①S=4xy+)(2y x - ②S=)(2y x + 可得:)(2y x +=4xy+)(2y x -上述运用了数形结合把复杂的问题简单化,抽象问题具体化了,它将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。
所以,同学们在学习的过程中可以尝试一下数形结合,你会有意想不到的收获。
“数形结合”巧计算

“数形结合”巧计算数形结合使“代数问题几何化,几何问题代数化”。
比如列方程解应用题时常画线段图、有理数用数轴上的点来表示等等,都是数形结合的典型例子。
对于一些较难的数学问题,采用由形思数、由数想形,结合具体问题,灵活进行数形转化,往往可使复杂问题简单化、抽象问题具体化。
下面就以举例谈谈“数形结合”解问题。
例如,求1+2+3+4+…+n的值,其中n是正整数.分析:对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对正整数n是奇数,还是偶数进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下.方案一:如图1,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n 个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n 的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为21)(+nn,即1+2+3+4+…+n=21)(+nn.图1方案二:设计图形如图2所示.图2因为组成此正方形的小圆圈共有n行,每行有n个,所以共有(n×n)个,即n2个.∴1+3+5+7+…+(2n-1)=n×n=n2.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)【分析】这是一道通过材料阅读,从中得出“解题方法型”的试题;试题中渗透了运用“数形结合”的思想。
巧用数形结合解难题

( ,) , 1 2 时 要使 y< , 2只需使 l ≥ ( —1 即 a 2 o &2 2 ) , ≤ .
综上可知 , 当 1 。 2时 , 等 式 ( 一 1。 1 对 l∈ ( , ) < ≤ 不 z )< o & z 12
恒成立 ;
填空 中更显其优势. 下面通过举 例来说 明数形结 合思想
解题 方法 与技巧 HN XE J OU A KO ZO GU I XE CN A A
巧
用
数
形
结
合
解
难
题
青海黄 南 州 中学( 1 3 0 包永海 810 )
数形结合 , 实质是将抽象 的数 学语言 与直观的 图形 结合起来 , 使抽象思维和形象思维 结合起来 , 通过“ 以形 Nhomakorabea一
、
一
解 :‘ 。 . 一厂 z 是定义在 R上 的奇 函数 ,‘ ( , ) () . 点 0 o . 是其对称 中心. 。 f x 2 一 一厂( ) 厂 一 ) 即 又 . (4 ) 。 - z 一-( ,
- 1 z 一厂 1 ) .直 线 z 1 厂 +I ( ) (一z ,‘ . 一 是 一厂 z 的对 称 轴 , ()
z 一- 1 x , ) 厂 - )当一l ≤o时 ,() ( ≤ 厂 一一寺 , (.) 则厂86
( 任编辑 责
金
铃)
3 9
k x 3l c 1 ¨ 。 l
中学 教 学 参 考
解 题方 法与技 巧
x 12时 , E( ,) 不等式 ( 一1 oo z ) ̄lg x恒不成立
( ) . A. . 05 B. 0 5 一 . C. . 15 D. 1 5 一 .
巧用数形结合思想求函数最值

巧用数形结合思想求函数最值六招破解函数最值及巧用数形结合求参数问题一、六招破解函数最值问题函数最值问题一直是高考的一个重要的热点问题,在高考中占有极其重要的地位.为了让大家能够更加系统、全面地掌握函数最值问题的解决方法,下面就其问题的常用解法,分类浅析如下:1.配方法配方法是求二次函数最值的基本方法,如函数F(x)=6z/(x)2+/7/(x)+c(qHO)的最值问题,可以考虑用配方法.[例 1]已知函数 =(eA—a)2+(e A—tz)2(tzeR, aHO),求函数 y 的最小值.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和-:角换元,我们可以根据具体问题及题目形式灵活选择换元的方法,以便将复杂的函数最值问题转化为简单的函数最值问题.如可用三角换元解决形如/+/=1及部分根式函数形式的最值问题.3・不等式法利用不等式法求解函数最值,主要是指运用基本不等式及其变形公式來解决函数最值问题的一-种方法.常常使用的基本不等式有以下几种:aIb#a|b。
er2ab(a, b 为实数),° ^y[ab(a0, b20), abW。
J 些艺(a, b为实数).14[例3]函数fix) =-+t^(O<x< 1)的最小值为・兀1X4.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种方法在高考屮是必考的,多在解答题中的某一问出现.[例4]已知函数»=xln x,则函数心)在也r+2](r>0)上的最小值为.5.导数法设函数兀Q在区间[a, b]上连续,在区间(a, b)内可导,则的在[a, b]上的最大值和最小值应为兀0在(d, b)内的各极值与», fib) 中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.[例5]函数»=x3-3x+l在闭区间[—3,0]上的最大值,最小值分别是,•6.数形结合法数形结合法是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的…种常用的方法.这种方法借助儿何意义,以形助数,不仅可以简捷地解决问题,还可以避免诸多失误,是我们开阔思路、正确解题、提高能力的-种重要途径.[a,[例 6]对 a, bWR,记 max|d, b\=\i1 函数=max||x+l|, |x—2||(x£R)的最小值是.二、巧用数形结合妙解3类求参数问题通过以下三个方面体会数形结合思想的运用.1.通过基本函数模型及变式的图象求参数的取值范围或值|lg x|, OvxWlO,若a,b,c互不相等,[例1]已知函数fix)=<1—2^+6,兀>10,_!»=»=»,则abc的取值范围是(2•通过函数的零点与方程的解的相互关系求函数零点和方程的解及参数的范围[例2]已知mGR,函数/(x)=x2+2(m2+l)x+7,g(x)=-(2m2—m+2)x+m.(1)设函数p(x)=/U)+g(x)・如果p(x)=0在区间(1,5)内有解但无重根,求实数加的取值范围;d,总存在唯一非零实数b(bHa),使得/2(d)=/z(b)成立?若存在,求加的值;若不存在,请说明理由.3.通过圆或圆锥曲线的部分图形与函数图象的关系来求参数的范围[例3]如果函数y=l+p4—F(|x|W2)的图象与函数2)。
利用数形结合思想方法巧解题

∑ ++2 =_A 。 _ l / 2 =I _ A ' B T .
:
三 :
口2i +2
1
问题是每次延长多长的距离呢?计算发现 :
Q
口2 ‘
¨
34 ‘3 3。 √ ‘ 3
从 AAi 。2 延长到 Am , : 只要 A Am 一 2
J
 ̄-. pI n -
t i t2 +1
2彳l n * 一
使得 B 。 ,o2 ; A = AA =1
延 长 AA 到 A , 得 AA =a ; 02 使 2。 3
延 长 AA 到 A , - 6 ; 04 6/ A A = [  ̄
依 次下去 ,
延 到 2 使 Ⅲ: , , 长 。 1 得 :: 穹 … : + 2
则 /+ 胁. -2 A 2 1
t n/ A2 a i 。= =
= = 音 , 等= , 南
+ _ 2 0 )
延长 AA到 Ai , 厶4B 2 = … , 02 2 2使得 + 2 A 2 …, f 延长 AA 到 A 2使得 厶4 B 2 2 2 1 o 2 , + 2 A = ; + +
延 长 AA o 到 A : 使 得 A :+ :+, :A :=
A0 A + 2=A0 A2 + A2 A4 + A4 A6+ … + 2 2+ + … + ‘ ‘2
, i
A2A2 + 2
= + + … +
a2 - a+ l=
+0 , 3
O' n +1 2
=9 + -9 2 口 2 口 l a 2+.
又 A + 2 是锐角 , 则可记 Af B 2= … 2 2A 2 + ( =12, ,) , … ,. 1
数形结合解题方法和技巧

数形结合解题方法和技巧
本文介绍数形结合解题方法和技巧,帮助读者更好地理解和应用这一方法,提高数学解题能力。
数形结合是一种常用的数学解题方法,它将数学问题与几何图形相结合,通过直观的几何图形来帮助解决复杂的数学问题。
下面,我们介绍一些数形结合解题的方法和技巧。
一、利用几何图形的性质
几何图形具有许多特定的性质,如线段长度、角度大小、平行关系等。
在解题时,我们可以利用这些性质来帮助我们理解问题,甚至可以通过这些性质来推导出未知数的值。
例如,在一道求解三角形题目中,我们可以利用三角形的边角关系,通过余弦定理或正弦定理来求解未知角度或边长。
二、利用几何图形的变换
几何图形可以通过平移、旋转、翻折等变换来改变形态,而这些变换并不改变图形的本质属性。
在解题时,我们可以利用这些变换来帮助我们理解问题。
例如,在一道求解相似三角形题目中,我们可以
通过旋转或翻折等变换将原图形变换成易于求解的图形,然后再进行计算。
三、利用几何图形的切分
几何图形可以通过切分来将复杂的问题分解成简单的问题。
在解题时,我们可以利用这些切分来帮助我们理解问题。
例如,在一道求解曲线图形题目中,我们可以通过切分将曲线分割成一些简单的线段或曲线,然后再分别进行计算,最后再将结果相加得到答案。
数形结合是一种非常有用的解题方法,可以帮助我们更好地理解和解决数学问题。
巧用数形结合法解题

教 学研 究
2 0 1 3 年0 3 月
巧 用数形 结合 法解题
钟 宁
( 广 东省兴宁市第三 中学 ,广 东 兴 宁 5 1 4 5 0 0 )
数形 结合 法是根据 数量与 图形之 间 的内在关系 ,认 识 研究对象 的数 学特征 ,寻找解 决问题 的一种 数学思想 。 它 的 主要 特 点 : 数 一形 一 问题 的解 决 ,或 形 一 数 一 问题的解 决 。利用数 形结 合法可 以把复 杂 问题简单 化 ,抽 象 问题 具体化 ,实现 抽象概 念与 具体形 象 的联系和 转化 , 它 兼有 数的严 谨与 形的直 观之长 ,是优 化解 题过程 的重 要 途 径之 一 。要 想在 数学解题 中运 用这 一数学 思想方 法 ,就 必 须 熟 练 了解 掌 握 一 些概 念 和运 算 的几 何 意义 及 常 见 直 线 、 曲线或几 何 图形隐含 的代数特 征 。数形 结合法 解题 应 用 的渠道 主要如 下几方面 。 数形结合法在二元一次方程与一次函数中的应用。 许 多条件 最值 问题 ,用 代数方 法求解 比较 困难 ,但 其 条 件与 一次 函数结 合起来 有某种 几何解 释 ,此 时可试用 直 角坐标 系转 化构造 图形,用数 形结合法 ,求其最值 。 例1 :若5 x + 1 2 y = 6 0 , 则 / 两 最 小值 是 ( )
・ .
1 l
,
‘ 直线y : 1( 6 O 一 5 x ) 与x y 轴 的交 点坐标
、
“ 数 ”的联 系 ,用直观法 求得 “ 数 ”的解答 ,从 “ 形 ”开 始到 “ 数 ”的终 结 ,形 、数 的结合和 分离 贯穿 了解题 的全 过程 ,也是 以 “ 形 ”解 “ 数 ”将 问题解决的过程 。
“数形结合”巧解小学数学思维题

9(a+b+c)<70
a+b+c<70÷9
a+b+c< 8
a+b+c大于6小于8,所以a+b+c=7
例4: 计算:
我们用一个大正方形 表示整数1,依次表示出 、 、 ……
从图中可以 ,所以:
=1-
=
例5:计算:6²+8²+14²+22²+36²+58²
6、8、14、22、35、58这个数列是斐波那契数列,6²可以看作是边长为6的正方形,依次类推。
不难看出:6²+8²+14²+22²+36²+58²
=(36+58)×58-(8-6)×6
=5452-12
=5440
例6:甲、乙两站相距610千米,两站之间有丙站。快车从甲站开往丙站,已经行驶了90千米,慢车从乙站开往丙站,已经行驶了它全部路程的 ,这时丙站正好处在快慢两车中间的位置上,求甲站到丙站的距离。
例2:(16+△)÷(20-△)=3
根据题意有(16+△)是(20-△)的3倍,把(20-△)看作一份,(16+△)有这样的3份。由此画出线段图:
20- △:
16+△:
一份(20-△)就是36÷(1+3)=9 △=20-9=11
例3:9a+10b+11c=70(五年级思维题)
(a,b,c是非0的自然数)
求a+b+c=
先画长9、宽a的长方形,再画长10、宽b的长方形,最后画长11、宽c的长方形。
把这个图形补成一条边长11、一条边长(a+b+c)的长方形。由图可知,这个长方形的面积一定小于70,即:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合巧解题
高考中有很多题目都是以数形结合的形式出现,这类题目可以用抽象思维与具体操作结合在一起进行解答。
在解释数形结合题之前,首先要弄清楚题目具体是什么,即题意要求什么和所给的数据有何关系,弄清题意是解答数形结合题的必要环节。
数形结合的题目中包含了数学概念和图形元素,其中的数据可以通过几何图形来表示,而该几何图形又可以被转换成数学表达式,结合数据可以确定问题的形式,为此,找到题目中的数据及几何图形,分析并结合几何图形的特点及性质,计算出求解的数学表达式,便可以无视细节,直接解题求解。
对于数形结合的题目来说,要掌握几种常见的图形,如角、三角形、正方形、圆等。
针对它们的特点和性质,可以有针对性的运用,进行解答。
例如,总角度和一般是360°,正方形以及长方形的对角线是同样的长度,圆的弧线长度等于其直径乘以2π等,这些性质可以用来解决题目,帮助我们了解几何图形的规律。
除此之外,解决数形结合的题目,还需要运用具体的数学计算和解答方法,如利用比例法解决比例问题、利用概率解决统计问题、利用几何推理进行几何图形问题的解答等。
有了这些具体的技巧和方法,对于遇到的数形结合题目,就可以轻松有效地解决。
此外,解答数形结合题目时,还可以有一些技巧和方法,以提高解决效率。
例如,可以先从题目中抓住最易于理解和解答的部分,以减少弄清题意的时间;其次,可以在解题过程中尽量避免直
接计算,而是寻求一些类比、联系,从而利用现有的知识和技巧来解决类似问题;最后,回顾解题过程中出现的数据尝试简化题目,以期获得更高效的解法。
数形结合巧解题是一种涉及几何、数学及解题技巧的综合性能力,要想更快地、更准确地解决题目,就必须做到熟练掌握几何图形的特点与性质,理解不同几何图形之间的联系,并运用相应的解题技巧和方法,把握几何图形与数学表达式的关系,从而更有效的完成解题任务。