人教版高中必修1《函数单调性》单元教学设计

合集下载

高中数学1.3函数的单调性教学设计新人教A版必修1

高中数学1.3函数的单调性教学设计新人教A版必修1

《函数单调性》教学设计基于函数单调性概念是高中教材中方式化程度较强,先生较难理解和要让先生充分了解概念后面所蕴涵的数学思想的主张,笔者以“数学本原性成绩驱动”数学概念教学为指点理念,在对函数单调性概念在高中教材中的地位和作用进行详细分析的基础上进行了新的教学设计及课堂实录。

◆教材分析教材的地位和作用《函数的单调性》是《高中数学人教A版》(必修1)第一章1.31节的内容。

它既是在先生学过函数概念等知识后的延续和拓展,又是后面研讨指数函数、对数函数、三角函数等各类函数的单调性的基础,在全部高中数学中起着承上启下的作用。

研讨函数单调性的过程表现了数学的数形结合和归纳转化的思想方法,反映了从特殊到普通的数学归纳思想方式,这对培养先生的创新认识、发展先生的思想能力,掌握数学的思想方法具有严重意义。

函数的单调性是函数的四个基本性质之一,在比较几个数的大小、对函数作定性分析(求函数的值域、最值,求函数解析式的参数范围、绘函数图象)和与不等式等其它知识的综合运用上都有广泛的运用;同时在这一节中利用函数图象来研讨函数性质的数形结合的思想将贯穿于我们全部高中数学教学。

教材的重点与难点教学重点:(1)领会函数单调性概念,体验函数单调性的方式化过程,深化理解函数单调性的本质,并明确单调性是一个局部概念;(2)函数单调性概念的运用教学难点:打破抽象,深化理解函数单调性方式化的概念。

◆教学目标分析根据新课标的要求和教学内容的结构特点,根据先生学习认知的心思规律和本质教育的要求,结合先生的理论程度,本节课教学目标如下:知识目标:(1)从本质上理解函数单调性概念;(2)运用方式化的函数单调性概念进行判断与运用。

能力目标:(1)培养先生的观察能力,分析归纳能力,领会归纳转化的思想方法。

(2)使先生体验和理解从特殊到普通的数学归纳推理思想方式。

(3)培养先生从具体到抽象的能力。

情感目标:(1)培养先生自动探求、不畏困难、敢于创新的认识和精神。

高一数学教学设计(函数单调性)

高一数学教学设计(函数单调性)

教学设计课题:函数的单调性东至一中戴青松一.教学内容:人教版数学必修1第1.3.1《函数的单调性》二.教材分析:教材的地位和作用《函数的单调性》是《高中数学人教A版》(必修1)第一章1.3.1节的内容。

它既是在学生学过函数概念等知识后的延续和拓展,又是后面研究指数函数、对数函数、三角函数等各类函数的单调性的基础,在整个高中数学中起着承上启下的作用。

研究函数单调性的过程体现了数学的数形结合和归纳转化的思想方法,反映了从特殊到一般的数学归纳思维形式,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。

函数的单调性是函数的四个基本性质之一,在比较几个数的大小、对函数作定性分析(求函数的值域、最值,求函数解析式的参数范围、绘函数图象)以及与不等式等其它知识的综合应用上都有广泛的应用;同时在这一节中利用函数图象来研究函数性质的数形结合的思想将贯穿于我们整个高中数学教学。

三.学情分析学生已有的认知基础是,初中学习过函数的概念,初步认识到函数是一个刻画某些运动变化数量关系的数学概念;进入高中以后,又进一步学习了函数的概念,认识到函数是两个数集之间的一种对应.学生还了解函数有三种表示方法,特别是可以借助图象对函数特征加以直观考察.此外,还学习过一次函数、二次函数、反比例函数等几个简单而具体的函数,了解它们的图象及性质.尤其值得注意的是,学生有利用函数性质进行两个数大小比较的经验.“图象是上升的,函数是单调增的;图象是下降的,函数是单调减的”仅就图象角度直观描述函数单调性的特征学生并不感到困难.困难在于,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言描述.即把某区间上“随着x的增大,y也增大”(单调增)这一特征用该区间上“任意的x 1<x 2,有f (x 1)<f (x 2)”(单调增)进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的x 1,x 2.教学中,通过一次函数、二次函数等具体函数的图象及数值变化特征的研究,得到“图象是上升的”,相应地,即“随着x 的增大,y 也增大”,初步提出单调增的说法.通过讨论、交流,让学生尝试,就一般情况进行刻画,提出“在某区间上,如果对于任意的x 1<x 2有f (x 1)<f (x 2)”则函数在该区间上具有“图象是上升的”、“随着x 的增大,y 也增大”的特征.进一步给出函数单调性的定义.然后通过辨析、练习等帮助学生理解这一概念. 企图在一节课中完成学生对函数单调性的真正理解可能是不现实的.在今后,学生通过判断函数的单调性,寻找函数的单调区间,运用函数的单调性解决具体问题,等一系列学习活动可以逐步理解这个概念.四.教学目标陈述根据新课标的要求和教学内容的结构特征,依据学生学习认知的心理规律和素质教育的要求,结合学生的实际水平,本节课教学目标如下:知识目标:(1)从本质上理解函数单调性概念;(2)运用形式化的函数单调性概念进行判断与应用。

函数单调性教学设计教学参考

函数单调性教学设计教学参考

函数的单调性(教学设计)一、本节内容在教材中的地位与作用:《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。

在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、累函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。

二、学情、教法分析:按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。

依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。

所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。

在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。

三、教学目标与教学重、难点的制定:依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为:1 .通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛, 学会运用函数图像理解和研究函数的性质。

高中数学“函数的单调性”单元教学设计

高中数学“函数的单调性”单元教学设计
课时安排
必修1函数的单调性一个课时:函数单调性的概念
选修2–2函数的单调性一个课时:利用导数解决函数的的单调性
重难点分析
必修1函数的单调性的重点:函数单调性的概念,判断和证明简单函数的单调性。难点:函数的单调性概念的认知和应用定义证明单调性的代数推理论证。
选修2–2函数的单调性的重点:利用导数解决函数单调性问题。难点:“为什么会将导数与函数的单调性联系起来?”
数形结合思想要贯穿于整个的单调性的教学中。
单元学习主题设计检验提示
检验指标
实现程度
1.主题是否与课标要求相一致?

2.主题是否是一个或多个学科领域中的核心或起着核心作用?能否反映学科本质?(可以利用知识网、概念图、思维导图)

3.主题能否反映富有挑战性的、能吸引师生兴趣的学习问题或任务?

4.主题是否与生活、生产中的真问题相关?能否让学生理解主题的意义和价值。
5.教科书从几个典型的函数实例出发,结合图像给出了用导数符号判定函数的的单调性的方法,比较直观,也容易理解接受,教学时可以利用信息技术给出更多的函数例子,以进一步丰富学学生自主构建解决问题的算法,发展学生的算法思想;同时,要注意从学生已有的知识出发,引导学生对两种方法比较,以增强对导数这一工具的意义的认识。
【作业表单2:单元学习主题设计及检验提示单】
单元学习主题
高中数学“函数的单调性”单元教学设计
设计意图说明
函数的单调性是函数众多性质中的重要性质之一。函数的单调性是函数的概念和图像知识的延续,它和奇偶性合称为函数的简单性质。函数的单调性是研究指数函数、对数函数和幂函数及其他函数单调性的理论基础,在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需要用到函数的单调性。另外求极值和最值都是以单调性作为基础,所以研究透彻单调性再求极值和最值就变得很容易了。

高中数学教学课例《函数的单调性》课程思政核心素养教学设计及总结反思

高中数学教学课例《函数的单调性》课程思政核心素养教学设计及总结反思

以及与其他知识的综合应用上都有广泛的应用。通过对
这一节课的学习,既可以让学生掌握函数单调性的概念
和证明函数单调性的步骤,又可加深对函数的本质认
识。也为今后研究具体函数的性质作了充分准备,起到
承上启下的作用。
(按最新版《课程标准》中的目标维度)
理解函数的单调性的意义;了解能用文字语言和符
教学目标 号语言正确表述增函数、减函数、单调性、单调区间的
(5)课堂小结(内容由多媒体给出)师生共同归 纳总结。
通过小结使学生理清本节课的重难点。
(简要写出围绕所要研究的主题搜集的课堂教学 信息,并简要反思在构建高效课堂的背景下,课程教学 要怎么转变才能更好实现育人目标?)
一,根据函数图像来判断函数在区间上的单调性以 课例研究综
及单调区间,通过练习学生已经可以熟练的掌握根据函 述
高中数学教学课例《函数的单调性》教学设计及总结反思
学科
高中数学
教学课例名
《函数的单调性》

(简单说明本课的学习内容,说明课题教学的重点
和难点)
函数的单调性一节属高中数学第一册(上)的必修
内容,在高考的重要考查范围之内。函数的单调性是函
数的一个重要性质,也是在研究函数时经常要注意的一
教材分析 个性质,并且在比较几个数的大小、对函数的定性分析
了复习回顾函
(2)数的表达式;第二通过第二问激发学生对探 索研究、学习新知识的热情,为导入新课及顺利完成教 学任务做了思想上的准备。
(3)用多媒体显示增函数、减函数的定义。仔细 体会定义中的两个简单不等关系“”和“或”它刻画 了函数递增或递减的性质。这就是数学魅力!
(4)多媒体给出书 P41 例 1。借助函数的图像看 单调性既形象又直观,是一个好办法。学会根据解析式 和定义从数量上分析辨认,这才是我们研究函数单调性 的基本途径。(指出用定义证明的必要性)

高中数学 1.3.1函数的单调性教学设计 新人教A版必修1

高中数学 1.3.1函数的单调性教学设计 新人教A版必修1

1.3.1 函数的单调性【教学目标】1.知识与技能:(1)通过对初中已学过的函数图象的观察、分析,逐步理解函数的单调性;(2)能根据图象的升降特征,划分函数的单调区间;逐步借助图象、自然语言和数学符号语言,建立增(减)函数的概念;(3)理解增(减)函数的定义,会证明函数在指定区间上的单调性.2.过程与方法:能够观察研究函数图象的特点,来研究函数的单调性性质.3.情感、态度、价值观:培养学生学习数学的兴趣,体会函数图象的变化规律及蕴含本质.【教学重点、难点】重点:增(减)函数的概念以及用定义证明函数的单调性.难点:增(减)函数概念的形成过程及准确表述与理解.【教学方法】自主学习、合作探究、讲练结合.【教学基本流程】(3) 1x ,2x 取值的任意性.应用 举例例1. 定义在区间[5,5-]上的函数)(x f y = 的图象,根据图象说出)(x f y =的单调区间, 以及在每一单调区间上,)(x f y =是单调增 函数还是单调减函数.解:函数()y f x =的单调区间[)5,2-,[)2,1-,[)1,3,[]3,5.其中()y f x =在区间[)5,2-,[)1,3上是减函数,在区间[)2,1-,[]3,5上是增函数.例2. 物理学中的玻意耳定律Vk =p (k 正常数)告诉我们,对于一定量的气体,当其体积V 减小时,压强p 将增大.试用函数的单调性证明之. 思考: 1.本题中函数解析式是什么?哪个字母 表示自变量?定义域(即自变量取值范围)是什么? 2.需要证明该函数在相应区间上是增函数还是减函数? 3.如何利用定义证明该函数的单调性? 证明:根据单调性的定义,设1v ,2v 是定义域(0,+∞)上的任意两个实数,且1v <2v ,21121212()()v v k kp v p v k v v v v --=-=。

由1v ,2v ∈(0,+∞),得12v v >0;学生观察回答,教师课件展示,及时评价学生的答案.教师强调区间的读法,写法.让学生根据思考的问题,提出破解方法.学生思考回答问题,自己动手练习,并让学生板演.教师巡视指导,进行点评.让学生通过图象观察单调区间.掌握并理解用定义证明单调性的步骤.【板书设计】。

高中数学人教A版 必修1《3.2.1函数的单调性与最大(小)值》教案 Word

高中数学人教A版 必修1《3.2.1函数的单调性与最大(小)值》教案 Word

四、教学过程
教学
环节
教学内容设计意图
情境引入
课堂探究通过观察生活中熟悉的事物,引入本节新课。

提高学生概括、推理的能力。

通过思考,观察函数的图象,从特殊到一般,归纳总结最值的定义,提高学生的解决问题、分析问题的能力。

得出定义
类比定义类比得出最小值定义
函数最值的几何意义
常见题型
通过实际问题让学生明白怎样求二次函数在整个定义域上的最值以及利用函数的单调性求函数的最值,提高学生解决问题的能力,进一步掌握单调性与最值的关系。

课堂
小结
通过总结,
让学生进
一步巩固
本节所学
内容,提高
概括能力,
板书设计
课后练习

课后提高学生的数学运算能力和逻辑推理能力。

通过练习。

函数的基本性质(单元教学设计)-高中数学新教材必修第一册

函数的基本性质(单元教学设计)-高中数学新教材必修第一册

《函数的基本性质》单元教学设计一、内容和及其解析(一)内容函数的单调性;函数的最大值、最小值;函数的奇偶性.(二)内容解析1. 内容本质变化中的不变性是性质,变化中的规律性也是性质.函数是刻画客观世界中运动变化的重要数学模型,因此,我们可以通过研究函数的变化规律来把握客观世界中事物变化的规律.高中阶段研究的函数性质有:单调性、最大(小)值、奇偶性、周期性、函数的零点、增减的快慢等.本节研究函数的单调性、最大(小)值、奇偶性.单调性是函数最重要的性质,刻画了函数值y随自变量x增大而增大或减小的变化趋势,绝大多数函数都具有单调性.函数的最大(小)值与函数的单调性有着密切的联系.通常,知道了函数的单调性,就能较方便地确定函数的最大(小)值,因此,求解函数的最大(小)值一般需要先判断函数的单调性.函数的奇偶性是一种特殊的对称性.如果函数具有奇偶性就能将研究函数的“工作量”减半.函数的单调性是函数的局部性质,函数的奇偶性和最大(小)值都是函数的整体性质.函数的单调性、最大(小)值、奇偶性的定义,都是在分析函数图象特征的基础上,利用代数运算对其进行定量刻画,进而用严格的数学符号语言精确刻画函数的性质.2.蕴含的思想方法在函数性质概念形成的过程中,从图象特征到形式化定义,从形到数,蕴含着数形结合的思想.从几个特殊函数出发,归纳出共同特征,再概括形成函数的一般性质,这是特殊到一般的研究方法.利用定义证明具体函数性质的过程,最后形成标准化的求解步骤,蕴含着算法思想.3.知识的上下位关系函数的“集合——对应说”,并用抽象符号f(x)表示函数,为用严格的数学符号语言精确刻画函数的性质奠定了基础.函数的概念与性质这部分内容,先从一般性角度研究函数概念及其性质,使学生在宏观上了解函数的内容和方法,起到先行组织者的作用.为后续研究基本初等函数、数列、导数及其应用、概率的基本性质、随机变量等内容提供了依据.4. 育人价值在函数性质概念形成的过程中,从特殊到一般,从直观到抽象,有利于发展学生的数学抽象、直观想象的核心素养;在利用定义判断或证明具体函数性质的过程中,有利于发展学生逻辑推理、数学运算的核心素养.5.教学重点用符号语言表示函数的单调性、奇偶性,用定义法证明函数的单调性、用定义法判断函数的奇偶性.二、目标及其解析(一)目标1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.2.结合具体函数,了解奇偶性的概念和几何意义.(二)目标解析达成上述目标的标志是:1.在从图象直观到自然文字语言描述再到符号语言表达函数单调性的过程中,能感悟引入符号表示“12,x x D ∀∈”的作用和力量,把一个含有“无限”的问题转化为一种“有限”的方式进行表达.2.会用符号语言正确表达函数的单调性、最大(小)值,并能说出“任意”“都有”“存在”等关键词的含义,知道函数单调性和最大(小)值的现实意义.能说出判断函数单调性的基本步骤,会用函数单调性的定义证明函数的单调性.能说出求函数最大、最小值的基本步骤,会用函数最大值、最小值的定义求最值,能说明最值与单调性之间的关系.3.能类比单调性的定义的学习过程,用符号语言表达函数的奇偶性,并说明偶(奇)函数的定义与函数图象关于y 轴(原点)对称之间是等价的.知道判断函数奇偶性的基本步骤,会用函数奇偶性的定义判断函数的奇偶性.三、教学问题诊断分析1.问题诊断及破解方法(1)函数单调性的符号语言描述的构建.学生在初中学习一次函数、反比例函数、二次函数时已经会从图象的角度观察“从左到右图象上升”“从左到右图象下将”的变化趋势,并且会用文字语言“y 随x 的增大而增大或减小”描述这种变化规律,而本单元需要将自然语言转化为符号语言:12,x x D ∀∈,当12x x <,都有()()12f x f x <(或()()12f x f x >),则称函数()f x 在区间D 上的单调递增(或递减),这样的语言学习是学生第一次接触,对学生而言是一个很大的难点.破解方法:从某种意义上来讲,这也属于语言的学习,可以遵循“示范—模仿—熟练运用”的学习规律.在教学中,以初中学习过的具体函数为载体,老师示范如何完成图形语言——自然语言——符号语言的转化,进而用符号语言完整表达函数的单调性,再让学生模仿.在具体函数中熟练掌握符号语言的表达方式的基础上,再给出函数单调性严格的定义.最后,在用定义证明具体函数单调性的过程中,进一步让学生理解符号语言.(2)利用定义证明函数的单调性.学生刚开始证明函数单调性时,会出现不作差,直接写出函数值大小关系或者变形不充分就做判断的情况,这是因为学生对证明的每一步依据的“大前提”模糊导致的,经常出现依据函数单调性证明函数单调性的状况.破解方法:教学中先利用简单的具体函数的单调性证明问题,帮助学生理解代数变形的必要性,然后进一步梳理证明的步骤,总结变形的基本方法,逐步学会函数单调性的代数证明.(3)最大(小)值概念的理解.对于最大(小)值的概念,学生往往对条件“0x I ∃∈,使得()0f x M =”的必要性的理解会存在一些困难.破解方法:在教学中,可以给出丰富而典型的数学情境,给出正例和反例,让学生归纳最值的本质特征,体会“∀”和“∃”这两方面的条件缺一不可.也可以结合基本不等式求最值的问题进行解释.2.教学难点用符号语言表达函数的单调性、最大(小)值;利用定义证明函数的单调性.四、教学支持条件函数的性质指的是在变化过程中的不变性和规律性,所以要借助信息技术绘制函数图象,将静态的图象进行动态演示,展示函数值随自变量变化而变化的情况.五、课时分配本单元分3课时.第1课时,函数的单调性;第2课,函数的最大值、最小值;第3课时,函数的奇偶性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中必修1《函数单调性》单元教学设计
《人教版高中必修1《函数单调性》单元教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
教学分析:函数单调性是高中数学函数的一个最基本的性质,学生在学习函数单调性中共分三个阶段:1.初中以具体函数为例,从图像上直观感知函数的单调性;2.在高中数学必修1用逻辑推理来研究和证明函数的单调性;3.在人教版选修2-2中利用导数来研究函数的单调性。

函数单调性是函数的一个基本性质,是函数概念和图像知识的延续,利用单调性来研究指数函数,对数函数,幂函数及其他函数的单调性的理论基础,在解决函数值域,最值,极值,不等式等多方面问题中有着重要的作用。

目标分析:在学习高中数学必修1函数单调性时,要理解单调性的概念,会判断和证明简单函数的单调性,在这一过程中,数形结合和分类讨论思想要始终贯穿于整个单调性的教学中。

在教学中要举一些典型的例子,利用特殊到一般的教学思想来激发学生探求数学知识的欲望和学习数学的激情。

在选修2-2学习导数研究单调性时,会利用导数解决函数的单调性,使复杂问题简单化,由此体会到导数的价值。

课时安排:1.必修1函数的单调性2课时;
2.选修2-2利用导数解决函数单调性1课时。

教学重难点:
重点:函数单调性的概念与证明简单函数的单调性;
难点:函数单调性的判断,利用导数求导数。

教学建议:
1.在高中数学必修1函数单调性的教学中,以初中知识为基础,用初中所学的函数中来研究单调性;
2.通过实例进行具体分析,由特殊到一般,结合图像来分析,由具体到抽象,逐步加深对概念的理解和深化;
3.教学中要注意引导自主分析问题和解决问题的能力,要深刻体会数学思想,建立数学思维;
4.在教学中要随时培养学生数形结合的思想,能做出图像的一定要画出图形;
5.在教学中尽可能利用现代先进教学手段来辅佐教学。

人教版高中必修1《函数单调性》单元教学设计这篇文章共2081字。

相关文档
最新文档