概率论与数理统计—第一章概率论的基本概念
概率论与数理统计1.1基本概念

如何来研究随机现象?
随机现象是通过随机试验来研究的. 问题 什么是随机试验?
三、随机试验
定义 在概率论中,把具有以下三个特征的试验称 为随机试验. 1. 可以在相同的条件下重复地进行; 2. 每次试验的可能结果不止一个,并且能事
先明确试验的所有可能结果;
3. 进行一次试验之前不能确定哪一个结果 会出现.
2. 概率论的应用
概率论是数学的一个分支,它研究随机现象 的数量规律, 概率论的应用几乎遍及所有的科学 领域,例如天气预报、 地震预报、产品的抽样调 查,在通讯工程中概率论可用以提高信号的抗干 扰性、分辨率等等.
二、随机现象
自然界所观察到的现象: 确定性现象 随机现象
1.确定性现象
在一定条件下必然发生
“骰子出现1点”
互斥
“骰子出现2点”
图示 A 与 B 互斥. A
B
S
6. 事件 A 与 B 的差 由事件 A 出现而事件 B 不出现所组成的
事件称为事件 A 与 B 的差. 记作 A- B.
实例 “长度合格但直径不合格” 是 “长度合
格”
与 “直径合格” 的差. 图示 A 与 B 的差.
B A
A A B B
的现象称为确定性现象. 实例
“太阳不会从西边升起”,
“水从高处流向低处”, “同性电荷必然互斥”,
“函数在间断点处不存在导数” 等. 确定性现象的特征 条件完全决定结果
2. 随机现象
在一定条件下可能出现也可能不出现的现象
称为随机现象. 实例1 在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况. 结果有可能出现正面也可能出现反面.
实例1 抛掷一枚硬币,观察字面,花面出现的情况.
概率论与数理统计知识点总结(详细)

《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件..................................... 2..§4 等可能概型(古典概型)................................... 3..§5.条件概率.............................................................. 4.. .§6.独立性.............................................................. 4.. .第二章随机变量及其分布 (5)§1随机变量.............................................................. 5.. .§2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7)§1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)§1.数学期望............................................................ 1..0 .§2 方差............................................................ 1..1 .§3协方差及相关系数 (11)第五章大数定律与中心极限定理 (12)§1.大数定律.............................................. 1.2§2中心极限定理 (13)第一章概率论的基本概念§ 2 .样本空间、随机事件1•事件间的关系 A B 则称事件B包含事件A,指事件A发生必然导致事件B发生A」B ={x|x E A或x € B}称为事件A与事件B的和事件,指当且仅当A , B中至少有一个发生时,事件 A 一 B发生Ac B ={x|x乏A且X乏B}称为事件A与事件B的积事件,指当A , B同时发生时,事件A^B发生A —B ={x|x E A且x更B}称为事件A与事件B的差事件,指当且仅当A发生、B不发生时,事件A —B发生B =,则称事件A与B是互不相容的,或互斥的,指事件A与事件B不能同时发生,基本事件是两两互不相容的A _•B =S且 B =•,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件2.运算规则交换律A -• B = B -• A AB = B - A结合律(A B) C = A (B C) (A - B)C = A(B - C)分配律A _( B - C) (A 一B) - (A 一C)A - (B C) =(A - B)(A - C)徳摩根律A B = A - B A - B = A 一B§ 3.频率与概率定义在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值n A.. n称为事件A发生的频率概率:设E是随机试验,S是它的样本空间,对于E的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P(A)满足下列条件:(1)非负性:对于每一个事件 A Q <P(A)叮(2)规范性:对于必然事件S P(S) =1n n(3)可列可加性:设A,A2,…,A n是两两互不相容的事件,有P( A k)=» P(A k) ( n可k占kV以取::)2.概率的一些重要性质:(i)P( ) =0n n(ii)若A,A2,…,A n是两两互不相容的事件,则有P( A k)八P(A k) ( n可以取::)(iii )设A, B 是两个事件若A B,贝U P(B - A)二P(B) - P( A) , P(B) _ P(A)(iv)对于任意事件A, P(A)乞1(v)p(A)=1-P(A) (逆事件的概率)(vi)对于任意事件A, B 有P(A_. B)二P(A) P(B)-P(AB)§ 4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即A二6]}{勺}…{飢}, 里i“ i 2,…,i k 是1,2, n 中某k 个不同的数,则有 kk A 包含的基本事件数P(A) = 了纟卩貯卫二匚二s 中基本事件的总数§ 5 .条件概率(1) 定义:设A,B 是两个事件,且P(A) . 0,称P(B | A)二P(AB)为事件A 发生的条P(A)件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计--第一章 概率论的基本概念(2)

利用软件包进行数值计算
3 超几何概率
设有 N 件产品, 其中有 D 件次品, 今从中任取 n 件,问其中恰有 k ( k D ) 件次品的概率是多少 ?
解
在N件产品中抽取n件的取法数
C
n N
在 N 件产品中抽取n件,其中恰有k 件次品的取法数
C
nk N D
C
k D
于是所求的概率为
p
C
nk N D n N
7 12
周ቤተ መጻሕፍቲ ባይዱ 周四 周五 周六 周日
故一周内接待 12 次来访共有 712 种.
2 1
2
2 3
2 4
2 12
周一 周二 周三 周四 周五 周六 周日
12 次接待都是在周二和周四进行的共有 212 种. 故12 次接待都是在周二和周四进行的概率为
212 p 12 0.0000003 . 7
(1) 每一个班级各分配到一名特长生的分法共有
( 3!12! ) (4! 4! 4! ) 种.
因此所求概率为
25 3!12! 15! . p1 4! 4! 4! 5! 5! 5! 91
(2)将3名特长生分配在同一个班级的分法共有3种, 12! 种. 对于每一种分法,其余12名新生的分法有 2! 5! 5! 因此3名特长生分配在同一个班级的分法共有
例4 将 15 名新生随机地平均分配到三个班级中 去,这15名新生中有3名是特长生.问 (1) 每一个班 级各分配到一名特长生的概率是多少? (2) 3 名特长生分配在同一个班级的概率是多少?
解 15名新生平均分配到三个班级中的分法总数:
15 10 5 15! . 5 5 5 5! 5! 5!
《概率论与数理统计电子教案第一章

随机变量的定义
根据随机变量可能取值的性质,可以分为离散型随 机变量和连续型随机变量。
随机变量的分类
离散型随机变量分布律
分布律的定义 二项分布、泊松分布等。
常见离散型随机变量的分布 律
对于一个离散型随机变量X,其所有可能取 的值xi(i=1,2,...)与取这些值的概率 P{X=xi}(i=1,2,...)构成的表格或公式称为 离散型随机变量X的分布律。
叁 多维随机变量函数的概率密度求法
对于多维随机变量的函数,其概率密度可以通过换元法和雅可比行 列式求得。
随机变量数字特征
数学期望与方差概念
数学期望(期望值)
01
描述了随机变量取值的"平均"水平,是概率加权的平均
值。
方差
02
描述了随机变量取值的离散程度,即取值与期望值的偏
离程度。方差越大,说明随机变量的取值越分散。
大数定律应用
大数定律概念
中心极限定理内容及意义
中心极限定理内容
中心极限定理指出,大量相互独立、同分布 的随机变量之和的分布,当变量个数足够大 时,将趋于正态分布。
中心极限定理意义
中心极限定理是概率论和数理统计中的基本 定理之一,为许多统计方法的推导和应用提 供了理论基础,如置信区间、假设检验等。
棣莫弗-拉普拉斯定理
事件的独立性
计算多个事件同时发生的概率。
两个或多个事件的发生互不影响。
条件概率
在给定条件下,某事件发生的概 率。
独立试验
每次试验的结果与其他次试验的 结果无关。
随机变量及其分布
随机变量概念及分类
设随机试验的样本空间为 S={e}, X=X{e}是定义在 样本空间S上的实值单值 函数。称X=X{e}为随机变 量。
概率论与数理统计 南京大学 1 第一章概率论的基本概念 (1.3.1) 条件概率与乘法公式

条件概率P(•|B)满足概率的三条公理: (1)非负性 P(A|B)0,AF (2)正规性 P(Ω|B)=1 (3)可列可加性 若AnF,n=1,2,…,且两两
互斥,则
P( An Байду номын сангаас B) P An | B
n1
n1
• 例:盒中10个元件(4只次品6只正品),从中 不放回地任取2只,已知第一只是正品,求 第二只也是正品的概率。
• 解:设事件A表示第二只是正品,事件B表示 第一只是正品。求P(A|B)。显然
P(B) 6 , P(AB) 10
C62 C120
1 ,因此 3
P(A | B) P(AB) 1/ 3 5 . P(B) 6 /10 9
例: 已知一罐子中盛有k个白球,r个红球.每次随机地取出
一个,记下它的颜色立即放回,同时加进与被取球的同色 球c个.试求如接连取球三次,三次均为红球的概率. 解 设A={三次取出的均为红球}
Ai={第i次取出的是红球} ,i=1,2,3,则P(A)=?
A A1A2 A3 P( A) P( A1)P( A2 A1)P( A3 A1 A2 )
r r c r 2c r k r k c r k 2c
概率论与数理统计
条件概率与乘法公式
条件概率
例:一个家庭有两个小孩,假定男、女出生 率一样,令A={这两个小孩一男一女}, 所以 P(A)=1/2。
令B={两个小孩中至少有一女孩}。若已知B发 生了,即该家庭至少有一女孩,再考虑A发 生的概率时,样本空间就缩减为Ω={(男, 女),(女,男),(女,女)},总数=3, 而有利基本事件数=2,从而P(A|B)=2/3。
概率论与数理统计ppt课件(完整版)

B
A
S
(1) A B
8
2.和事件:
A B { x | x A或x B }称为A与B的和事件. 即A, B中至少有一个发生 , 称为A与B的和, 记A B. 可列个事件A1 , A 2 , 的和事件记为
A .
k k 1
3.积事件: 事件A B={x|x A 且 x B}称A与B的 A 积,即事件A与B 同时发生. A B 可简记为AB.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 灯泡的寿命{t|t≥0}.
5
例 E1,E2等. 例
2.无穷样本空间:样本点在区间或区域内取值.
B A 类似地, 事件 S 为可列个事件A1, A2, ...的积事件.
k 1 K
(2) A B A B
S
(3)A B
9
4.差事件:
事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
A - B A AB
显然: A-A=, A- =A, A-S=
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生. 基本事件: 由一个样本点组成的单点集. 如:{H},{T}. 复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}. 必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。 不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
第一章 概率论的基本概念

• 答案:赢了4局的拿这个钱的3/4,赢了3局的 拿这个钱的1/4。
• 假定他们俩再赌一局,或者A赢,或者B赢。 若是A赢满了5局,钱应该全归他;A如果输了, 即A、B各赢4局,这个钱应该对半分。现在, A赢、输的可能性都是1/2,所以,他拿的钱 应该是(1/2)×1+(1/2)×(1/2)= 3/4,当然,B就应该得1/4。
24
0.4614
• “分赌本”问题 两个人决定赌若干局,事先约 定谁先赢得5局便算赢家。如果在一个人赢4 局,另一人赢3局时因故终止赌博,应如何分 赌本?是不是把钱分成7份,赢了4局的就拿4 份,赢了3局的就拿3份呢?或者,因为最早 说的是满5局,而谁也没达到,所以就一人分 一半呢?
• 法国数学家帕斯卡接受了这个问题,并与另一 位法国数学家费尔马进行讨论,后来荷兰科学 家惠更斯也参与了研究,并把解法写入了《论 赌博中的计算》(1657年)。
(5,1),(5,2),(5,3),(5,4),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5)
事件间的关系
包含:A B或B A,称事件B包含事件A,即事
件A发生必然导致事件B发生。
相等: A B且B A,即A B,称事件A与事件B
相等。
n
和: A,B表示A、B二事件中至少有一个发生;k1 Ak
ABC ABC ABC
6) 这三个事件至少发生一个可以表示为:
A B C或
ABC ABC ABC ABC ABC ABC ABC
练习 证明下列等式:
1A B A B A 2A B B A AB AB 3B A AB AB
解 1 A B A B A B A A
证明(3):由于A1,A2 ,… ,Ak是两两互不相 容,在n次试验中A1∪A2∪…∪Ak的频数
概率论第一章

在相同的条件下,多次抛一枚均匀的硬币,设事件 A =“正面朝上” , 观察 n 次试验中 A 发生的次数.
试验者 德.摩根 蒲丰 费勒 K.皮尔逊 K.皮尔逊
n
2048 4040 10000 12000 24000
nA
1061 2048 4979 6019 12012
f n ( A)
0.5181 0.5069 0.4979 0.5016 0.5005
第五章 大数定律和中心极限定理
第六章 数理统计的基本概念 第七章 参数估计 第八章 假设检验
第一章 概率论的基本概念
§1.1 随机事件及其运算
§1.2
§1.3 §1.4 §1.5
概率的定义及其性质
古典概型与几何概型 条件概率 独立性
§1.1 随机事件及其运算
1.1.1 随机现象
自然界的现象按照发生的可能性(或者必然 性)分为两类: 一类是确定性现象,特点是条件完全决定结果 一类是随机现象,特点是条件不能完全决定结 果 在一定条件下,可能出现这样的结果,也可 能出现那样的结果,我们预先无法断言,这类现 象成为随机现象。 如何研究随机现象呢?
1.1.2 随机试验
例1-1: E1: 抛一枚硬币,观察正面H、反面T出现的情况;
E2: 掷一颗骰子,观察出现的点数;
E3: 记录110报警台一天接到的报警次数; E4: 在一批灯泡中任意抽取一个,测试它的寿命; E5: 记录某物理量的测量误差; E6: 在区间 0, 1 上任取一点,记录它的坐标。
例1-5 设A,B为两个随机事件, P(A)=0.5, P(AB)=0.8, P(AB)=0.3, 求P(B). 解 由P(AB)=P(A)+P(B)-P(AB),得 P(B)=P(AB)-P(A)+P(AB)=0.8-0.5+0.3=0.6.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如在E 4中,如果用A 表示事件“掷出奇点数”,那么A 是一个随机事件.由于在一次投掷中,当且仅当掷出的点数是1,3,5中的任何一个时才称事件A 发生了,所以我们把事件A 表示为{}1,3,5=A 。
同样地,若用B 表示事件“掷出偶点数",那么B 也是一个随机事件,{}2,4,6B =。
对于一个试验E ,在每次试验中必然发生的事件,称为E 的必然事件;在每次试验中都不发生的事件,称为E 的不可能事件.例如在3E 中,“掷出的点数不超过6"就是必然事件,用集合表示这一事件就是3E 的样本空间{}31,2,3,4,5,6S =。
而事件“掷出的点数大于6"是不可能事件,这个事件不包括3E 的任何一个可能结果,所以用空集φ表示。
对于一个试验E ,它的样本空间S 是E 的必然事件;空集φ是不可能事件。
必然事件与不可能事件虽已无随机性可言,但在概率论中,常把它们当作两个特殊的随机事件,这样做是为了数学处理上的方便。
(三)事件间的关系与运算
因为事件是一个集合,因而事件间的关系和运算是按集合间的关系和运算来处理的.下面给出这些关系和运算在概率中的提法。
并根据“事件发生"的含义,给出它们在概率中的含义。
设试验E 的样本空间为S ,而),2,1(,, =k A B A k 是S 的子集。
1°事件的包含与相等 事件“若事件A 发生必然导致事件B 发生”称事件B 包含事件A ,记为A B ⊃或者B A ⊂。
若B A ⊂且A B ⊂,则称事件A 与事件B 相等,记B A =.
2°事件的和 事件“A 与B 至少有一个发生”称为事件A 与事件B 的和,记为B A .事件B A 发生意味着:或事件A 发生,或事件B 发生,或事件A 与事件B 都发生。
事件的和可以推广到多个事件的情景。
设有n 个事件n A A A ,,,21 ,定义它们的和事件{n A A A ,,,21 中至少有一个发生}为k n
k A 1= 。
3°事件的积 事件“A 与B 都发生"称为事件A 与事件B 的积事件,记为B A ,也简记为AB .事件B A (或AB )发生意味着事件A 发生且事件B 也发生,即A 与B 都发生。
类似的,可以定义n 个事件n A A A ,,,21 的积事件k n
k A 1= ={n A A A ,,,21 都发生}. 4°事件的差 事件“A 发生而B 不发生”称为事件A 与事件B 的差事件,记为B A -。
5°互不相容事件(互斥) 若事件A 与事件B 不能同时发生,即φ=AB ,则称事件A 与事件B 是互斥的,或称它们是互不相容的。
若事件n A A A ,,,21 中的任意两个都互斥,则称这些事件是两两互斥的。
6°对立事件 事件“A 不发生”称为事件A 的对立事件,记为A 。
A 和A 满足:S A A = ,φ=A A ,A A =。
事件运算满足的定律 设C B A ,,为事件,则有
交换律:A B B A =;BA AB =。
结合律:)()(C B A C B A =;)()(BC A C AB =。
分配律:)()()(C B C A C B A =;
212)()()=++A P A P A
)为事件A 的概率。
、…、A n 两两互斥的事件,则
1212)()()()n n =++A A P A P A P A
此性质称为有限可加性.特殊的,若φ=AB ,则
)()()(B P A P B A P += 。
是两个事件,若B A ⊂,则有
()()P B P A -,既有()()P B P A ≥。
112(1)()n n P A A A +++-。
它符合“加奇减偶”法则。
设事件B A ,的概率分别为2
1,
31 。
在下列三种情况下分别求;(2);B A ⊂(3)81)(=AB P .
,}n ω,试验时,发生每个样本点的机会相同。
为等可能概型或古典概型。
下面给出等可能概型中事件概率的计算公式。
12{,,,}n ωωω=,',}k ω。
试验时,把发生每个样本点看成事件1{ω们是互不相容的且满足:2{}{}n ωω,这样就有,1{}{{}{}n i n ωωωω++=P P P P ,所以,对每一
',}k ω,所以'{k k A n ω+=包含样本点数样本点总数
P 这就是等可能概型中事件概率的计算公式。
某企业有员工200人,其中男员工160人,女员工160161200,}ωωω,,,,显然这是等可能概型,设161162200}ωωω,,,,从而,
40()200==包含样本点数样本点总数A A 袋中有五只大小形状相同的球球,求取出的两球都是黑色球的概率。
n n ⨯⨯
⨯=N N N N 放法。
第一个球可以放进一,有N -1种放法;以共有(1)(N N N n --+1)
(n N n N -+有许多实际问题与例4例如,假设每一个人的生日在一年天是等可能的,即都等于1/365,n (≤365)个人(365365n
⨯⨯-至少有两364(365365n
⨯⨯⨯- 20 23 30 40 50 64 100 。
411 0.507 0。
706 0.891 0.970 0.997 0.9999997
在一个64人的集体中,
()n +P B 是样本空间,B 1、B 2)()n ++A B P B 某电子设备制造厂所用的元件是由三家元件制造厂提供的,根据以往的记录有如下数提供的份额
)(A B P A =注意:事件的独立性与互斥是两码事,互斥性表示两个事件不能同时发生,而独立性则表示他们彼此不影响。
1 某种类型的高射炮击中敌机的概率是2n A A ,这样,本题的问题就是选2}0.99n ≥A A 12121212}1{}
{}1{}{}{}10.90.99n n n n n =-=-=-≥A A P A A A P A A A P A P A P A
0.90.9910.990.90.010.99ln 0.01ln 0.01-4.60.01ln 0.99ln 0.99ln 0.99-0.01
n n n n n n n ≥⇒-≥⇒≥⇒
≥⇒≥⇒≥≥。