模拟交换机、数模混合机、数字程控交换机的区别

模拟交换机、数模混合机、数字程控交换机的区别
模拟交换机、数模混合机、数字程控交换机的区别

模拟交换机、数模混合机、数字程控交换机的区别

发布日期:2008-03-27 来源:互联网作者:manage 浏览次数:2209

核心提示:数字程控交换机和模拟交换机的区别,数字程控交换机主要特点是:一、通话距离远、传输速度快、通话音质清晰、误码少。二、全绳路无阻塞,那么模拟交换机它有绳路线限制,当然交换机容量越少它的通话绳路也就越少。三、数字交换机接口丰富、它可以接入环路中

数字程控交换机和模拟交换机的区别,数字程控交换机主要特点是:

一、通话距离远、传输速度快、通话音质清晰、误码少。

二、全绳路无阻塞,那么模拟交换机它有绳路线限制,当然交换机容量越少它的通话绳路也就越少。

三、数字交换机接口丰富、它可以接入环路中继、载波、E/M、2M等中继、包括数字用户的2B+D,具备组网、局用机汇接功能。比如2M中继接入等于把交换机变成一台虚拟网。这些都是模拟交换机无法比拟的。

(2)交换机功能、程控交换机功能很多,在这不能详细阐述、用户可参照以上产品介绍和交换机使用说明书。

(3)交换机厂家选择、购买交换机选择厂家对用户今后使用非常关键、那么如何选择厂家、要了解生产厂家企业背景和真实情况及它的产品质量。

(4)用户选择何种外型、虽然国家提倡用户购买数字程控交换机,但毕竟价格较高,最关键是是否实用。那么用户要对自己企业使用交换机远景作一番评估,比如随着企业发展,可能企业以后对外联网需要、或者一机多家单位使用、可扩容性要强、需要数字交换机特殊功能、电话使用量大等等。总之企业以后可以用的着地方选购数字程控交换机、保证它不会被淘汰。但用户如果只把它当作内部联络工具,或对外只接几条中继线,那么根本不需要购买数字程控交换机,那样只会浪费企业资金。

数模混合设计实验报告

数模混合设计 实验报告 作者:竹叶听筝 时间:2012年12月05日课程题目:声光报警系统

摘要:声光报警器在实际的生活中可以见到许多,运用于生活的许多方面。声光报警电路可作为防盗装置,在有情况时它通过指示灯闪光和蜂鸣器鸣叫,同时报警。声光报警器可用在危险场所,通过声音和光信号向人们发出示警信息。 Abstract: sound and light alarm can be seen in real life many, used in many aspects of life. Sound and light alarm circuit can be used as anti-theft device, when it lights flash and buzzer tweet, alarm at the same time. Sound and light alarms can be used in hazardous locations, issued a warning to people through sound and light signals. 关键词:报警器声音光信号示警 1、设计原理 根据设定的基准报警电压。当输入电压超出报警值时发出声和光报警信号。当输入电压信号减小恢复到报警值以下时,要求有一定的回程余量才能撤销报警信号。也就是要实现电压信号的迟滞比较功能。LED灯闪烁,蜂鸣器报警。 2、方案比较 方案一:通过单片机控制进行AD采样计算,当采样电压超过,设定输入电压时,通过单片机控制LED闪烁,蜂鸣器报警,当输入电压小于设定Vh电压时,单片机撤销报警信号。此方案性能稳定,思路清晰,但性价比不高,涉及微处理器,以及软件编程,开发难度较大。 方案二:采用LM311滞回比较器,比较输入电压值,当大于设定电压时,比较器输出端为高电平,通过光电耦合器,进行传递信号,通过555定时器输出1HZ频率脉冲,是LED灯闪烁,同时蜂鸣器报警,当输入电压小于阈值电压时,LM311输入低电平,撤销报警信号。此方案采用纯硬件方法实现神声光报警,具有成本低,调试容易且通过光耦合器进行数字电路和模拟电路的隔离,同样也具有较高的稳定性。三、系统总体方案描述

仿真操作流程

仿真操作流程: 1,选择机床:按下机床工具按钮,出现机床选择对话框,选FANUC系统—FANUC-0I----车床-----标准(平床身前置刀架)------OK 2,定义毛坯:按下“毛坯选择按钮”出现毛坯选择对话框,根据零件标注尺寸,确定毛坯直径和长度,OK 3,安装零件:按下“零件安装按钮”出现零件安装对话框,鼠标箭头指向所选毛坯(变蓝)------点击“零件安装”出现零件安装对话框------点击向右“+”使零件向右走到极限位置。 4,安装刀具:按下“选择刀具”按钮----确定刀位号-----选择刀片形状----刀柄形状(左向)主偏角95度,刀尖半径设为0度---OK 5,启动机床:按下“绿色”启动按钮,按下红色“急停”(只能按下奇次数,否则“机床报警灯”亮,不能操作) 6,机床回原点(或叫回参考点):点亮“回原点灯”按下“X”,再按下“+”,按下

“Z”再按下“+”,待“X原点灯”和 “Z原点灯”都亮以后。OK 7,对刀操作:将手动灯点亮,按亮X轴再按“-”使刀架靠近工件,再按亮Z轴再 按“-”使刀具靠近工件,如果想加速, 按下中间带螺纹的快速键。 Z轴对刀:在端面切削少量至中心,沿X 轴退出,离开工件,按系统面板OFFSET 按键,打开工具补正/并把(摩耗变成形状),在缓冲区输入:Z0,按下软键“测量”对应刀号Z下方出现正直,如果出现负值,说明刀具没有回原点, X轴对刀:手动在外圆处切削少量毛坯,沿Z轴退出,停止主轴,按下拉菜单“测量”保留小余1的圆弧半径,出现工件测量对话框,将鼠标箭头指向刚切削的外圆处,点击变黄,记下变蓝标号X下方的X值,输入此值到工具补正/形状的缓冲区X某值,点击软键“测量”X下方出现正值,如果出现负值,说明开始没有完成回原点工作。 8,编辑程序:点亮“编辑”工作灯,按下系统面板“PROG程序”按钮,输入

最新整理怎么在思科模拟器配置交换机VTP

怎么在思科模拟器配置交换机V T P 交换机除了能够连接同种类型的网络之外,还可以在不同类型的网络(如以太网和快速以太网)之间起到 互连作用。在思科模拟器上怎么配置交换机V T P?V T P被组织成管理域(V T P D o m a i n),V T P可以分为三种模式:服务器模式(S e r v e r),客户机模式(C l i e n t),透明模式,下面我们来看看配置方法 方法步骤 1、首先,打开思科模拟器软件,连接三台交换机的连接线,将所有交换机互相连接起来,一台当服务器,一台当客户机,另外一台当透明模式。 2、把三台交换机的配置清除干净,重启交换机,配置命令为: S1#d e l e t e f l a s h:v l a n.d a t S1#e r a s e s t a r t u p-c o n f i g S1#r e l o a d 配置S1为V T P s e r v e r,配置命令为: 复制内容到剪贴板 S1(c o n f i g)#v t p m o d e s e r v e r 3、配置S3为V T P t r a n s p a r e n t,配置命令是:

S3#v l a n d a t a b a s e S3(v l a n)#v t p t r a n s p a r e n t S3(v l a n)#v t p p a s s w o r d c i s c o(配置交换机的密码) S e t t i n g d e v i c e V L A N d a t a b a s e p a s s w o r d t o c i s c o 4、配置S2为V T P c l i e n t,配置命令是: S2(c o n f i g)#v t p m o d e c l i e n t S e t t i n g d e v i c e t o V T P C L I E N T m o d e. S2(c o n f i g)#v t p d o m a i n V T P-T E S T D o m a i n n a m e a l r e a d y s e t t o V T P-T E S T. S2(c o n f i g)#v t p p a s s w o r d c i s c o 5、在S1上创建V L A N,检查S2、S3上的V L A N信息,配置命令是: S1(c o n f i g)#v l a n2 S1(c o n f i g)#v l a n3 查看s1,s2,s3的V L A N配置信息。命令是: S1#s h o w v l a n S2#s h o w v l a n S3#s h o w v l a n 6、查看V T P信息,查看交换机的v t p详细信息和版本等信息:

数模混合设计报告

数模报告 时钟电路的设计与制作 成都理工大学工程技术学院 专业:电子信息科学与技术 学号: 指导教师: 姓名: 日期:

计时电路设计原理与制作 一、设计任务 设计并制作一个60秒计时电路,要求自制直流稳压电源,能够提供给数字时钟+5V的电压。同时具有手动复位的功能,能够产生一个1Hz的秒计时脉冲。并且具有进位功能能够显示出完整的24小时制的时钟电路,同时具有手动校时电路,能够对计时电路手动校正时间,校时电路包括对分、时校时。设计并仿真出时、分电路。 1、模拟电路部分设计要求 (1)制作输出电压可调的直流稳压电源,输出电压范围为 1.25~15V,通过电位器调节至5V。 (2)该直流稳压电源可供数字电路正常工作。 2、数字电路部分设计要求 (1)设计一个具有“时”、“分”、“秒”显示的电子钟(23小时59分59

秒)如图,应具有校时功能。 时分秒 . . . . 二、设计思路 1、直流稳压电源:为时钟电路提供一个+5V 的电压,驱动时 钟电路的正常工作。 2、脉冲产生模块:能够产生秒脉冲信号,从而实现对计时模块的控制。 3、计时循环模块:能够对时钟脉冲计数,并且能够对计数电路自动复位。

4、译码显示模块:用数码管将计数循环电路模块的状态转换为数字显示出来。 5、秒控制模块:实现对秒计时器的复位功能。 6、时、分校时模块:能够实现对电路中的时、分显示进行校时。 三、设计方案 1、直流稳压电源:通过变压器将220V的家庭用电降为电压更低的正弦交流电(如22V),然后通过电桥(整流电路,利用单向导电性能的整流元件)将正负交替变化的正弦交流电压转换成单方向的脉动直流电压,通过滤波电路尽可能的将单向脉动直流电压中的脉动部分(交流分量)减小,使输出电压成平滑的直流电压。再通过稳压芯片使输出的直流电压在电源发生波动或负载变化时保持稳定。常用的稳压芯片有7815、7805、7809、LM317等。 2、多谐振荡电路:多谐振荡器是一种能够产生矩形波的自激振荡器,也称矩形波形发生器。多谐指矩形波中除了基波成分外,还有高次谐波成分。多谐振荡器没有稳态,只有两个暂稳态,在工作时,电路的状态在这两个暂稳态之间自动地交替变换,由此产生矩形波脉冲信号,常用作脉冲信号源及时序电路中的时钟信号。具体地说,如果开始时多谐振荡处于0状态,那么它在0状态停留一段时间后将自动转入1状态,在1状态停留一段时间后又将自动转入0状态,如此周而复始,输出矩形波。通过对电容、电阻的计算来确定1秒的脉冲信号,实现对计数器的时钟控制,多谐振荡器在接通电源以后,不需要外触发信号,便能够自动产生矩形脉冲。多谐振荡器又很多种,例如对称

思科交换机模拟软件使用教程

思科交换机模拟软件使 用教程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

思科交换机模拟软件使用教程 Packet Tracer 建构CCNA实验攻略(1)——配置Cisco交换机 Packet Tracer 是一款非常不错的Cisco(思科)网络设备模拟器,对于想考思科初级认证(如CCNA)的朋友们来说,Packet Tracer 是非常不错的选择。利用Packet Tracer 练习思科IOS操作命令很不错的。

要配置好Cisco交换必需要熟悉IOS命令及相关的知识。 一、几种配置命令模式 switch> 这种提示符表示是在用户命令模式,只能使用一些查看命令。 switch# 这种提示符表示是在特权命令模式。 switch(config)# 这种提示符表示是全局配置模式 switch(config-if)# 端口配置命令模式 图一几种命令模式 二、检查、查看命令 这些命令是查看当前配置状况,通常是以show(sh)为开始的命令。show version查看IOS的版本、show flash查看flash内存使用状况、show mac-address-table查看MAC地址列表

图二 图三 图四 图五Show 帮助命令显示当前所有的查看命令 图六查看端口状态信息 三、密码设置命令 Cisco交换机、路由器中有很多密码,设置好这些密码可以有效地提高设备的安全性。 switch(config)#enable password 设置进入特权模式进的密码 switch(config-line) 可以设置通过console端口连接设备及telnet远程登录时所需要的密码

数模混合设计

数模混合课程设计 实践报告 题目:FM发射机设计 指导老师:徐灵飞 系别:电子信息与信息工程系 班级:电子信息工程1班 姓名:周荣 学号:201320107104 2015年4月13日

摘要: 该实验主要包括三个电路:电源电路、数字电路、模拟电路;其中电源电路有以LM7805为主要所构成的电源电路以及以单片机STC89C52为主要所构成的电源电路两部分组成,数字电路由复位、晶振及按键电路以及LED电路两部分组成,模拟也由FM调制电路以及音频检测电路两部分组成;通过三部分的同步合作,最终实现了由发射者通过调解频率使之接受者能够接收到发射者覆盖的相应频率的信息,方便实用。 系统设计 1.总体框图 单片机独立按键 输入电压 在此可设定 FM输出频 率FM调制电 路 光电报警 5V线性整流稳 压电路 12V输入 LED数码管显 示 音频输入 音频检测 音频信号强度 LED灯显示

2.系统各部分电路图

PCB图

设计内容及要求 1.(1)单片机里面的程序烧写,需要在单片机实验室借一台开发板,直接进 行烧写。 2.元器件和跳线都在电路板正面安装。绘制PCB时一定要注意元件引脚的极性如,二极管及电解电容。对于三极管,最好查阅对应的数据手册,确定正反面(对于TO-92A封装的器件来讲,一般平的一面是正面)及PCB封装引脚的顺序。 3.调试时应采用分步调试方法,先焊接电源电路,调出5V输出电压,再焊接数字电路部分(单片机及相关外围电路)的元件,调出按键和LED数码管电路(等够通过按键改变LED显示内容-FM频率)。然后再焊接模拟电路部分的元件(音频检测电路和FM调制电路),调FM调制电路。在调试过程中按步骤尽心,谁是排除出现的故障,直至最后整体电路板调试成功。 元器件清单

simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真 ——模拟通信系统 姓名:XX 完成时间:XX年XX月XX日

一、实验原理(调制、解调的原理框图及说明) AM调制 AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。AM调制原理框图如下 AM信号的时域和频域的表达式分别为 式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。 AM解调 AM信号的解调是把接收到的已调信号还原为调制信号。 AM信号的解调方法有两种:相干解调和包络检波解调。 AM相干解调原理框图如下。相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。 AM包络检波解调原理框图如下。AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成。 DSB调制 在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号 中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。DSB调制原理框图如下

DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为 DSB解调 DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图 SSB调制 SSB调制分为滤波法和相移法。 滤波法SSB调制原理框图如下所示。图中的为单边带滤波器。产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。产生上边带信号时即为,产生下边带信号时即为。 滤波法SSB调制的频域表达式 相移法SSB调制的原理框图如下。图中,为希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移。

利用Cisco Packet Tracer模拟交换机的基本配置

交换机的配置 课程名称:计算机网络实用技术 实验题目:交换机的配置 实验目的: 掌握交换机的配置方法。 实验设备: 计算机1台、Cisco Packet Tracer 模拟软件1套。 实验内容: 1、交换机命令模式间的切换。 2、交换机的基本配置。 3、vlan 的配置 4、vlan 间路由 实验过程: 一、交换机命令模式间的切换 1、模拟网络环境 打开RouterSim 模拟软件,添加一台交换机(以3550为例)。双击交换机图标,打开命令行窗口。 2、命令模式间的切换 User Exec 口令 enable 命令 configure 命令 interface 命令 line 命令 vlan database 命令Login User Exec 模式 Privileged Exec 模式 Global Configuration 模式 VLAN Database 模式 Line Configuration 模式 Interface Configuration 模式 (1)User EXEC 模式(用户模式) 提示符:Switch> 访问方法:回车,开始一个进程。 退出方法:输入exit 命令离开该模式。 (2)Privileged EXEC 模式(特权模式)

提示符:Switch# 访问方法:在用户模式中输入enable命令。 退出方法:输入exit或disable 命令,返回到用户模式。 (3)VLAN Database 模式(VLAN 配置模式) 提示符:Switch(vlan)# 访问方法:在特权模式中输入vlan database命令。 退出方法:输入exit 命令,返回到特权模式。 (4)Global configuration 模式(全局配置模式) 提示符:Switch(config)# 访问方法:在特权模式中输入configure 命令。 退出方法:输入exit命令或end 命令,或者键入Ctrl+Z 组合键,返回到特权模式。 (5)Interface configuration 模式(接口配置模式) 提示符:Switch(config-if)# 访问方法:在全局配置模式中输入interface 命令,并且必须指明要进入哪一个接口配置子模式。 例:Switch(config)#interface fastethernet 0/1 退出方法:输入exit 命令,返回到全局配置模式;输入end命令,或键入Ctrl+Z 组合键,返回到特权模式。 (6)Line Configuration 模式(线路配置模式) 提示符:Switch(config-line)# 访问方法:在全局配置模式中输入“line vty”或“line console”命令,指定交换机使用的终端线路类型。 Switch(config)#line vty 0 15 退出方法:输入“exit”命令,返回至全局配置模式,按下“Ctrl+Z”组合键或输入“end”命令,返回至特权模式。 二、交换机的基本配置。 (1)查看系统信息 Switch#show version (2)查看交换机当前运行的配置文件 Switch#show running-config (3)查看交换机VLAN信息 Switch#show vlan (4)设置交换机IP地址 Switch(config)#interface vlan 1 Switch(config-if)#ip address 192.168.1.253 255.255.255.0 Switch(config-if)#no shutdown (5)配置默认网关 Switch(config)#ip default-gateway 192.168.1.254 (6)给交换机命名 switch(config)#hostname S2150G S2150G(config)#no hostname switch(config)# (7)给交换机配置管理密码 switch(config)#enable secret 123456

数模混合仿真详细文档

用SpectreVerilog进行模数混仿,以Sigma-Delta ADC为例 SpectreVerilog模数混仿, 模拟部分用Spectre, 数字部分用Verilog-XL. 所以还需要安装Cadence LDV软件, 其内含Verilog-XL仿真器. 这里以自行设计的二阶全差分Sigma-Delta ADC为例, 详细介绍用SpectreVerilog的仿真过程. 所用工艺库为TSMC 0.18u,电源电压:1.8V. 1. 准备 Sigma-Delta ADC分模拟和数字部分两块, 其中模拟部分为调制器, 数字部分为数字滤波器. 如下图. 其中out为调制器的输出, 这里是1位0,1数据流. 数字滤波器为Verilog RTL级代码. Schematic: Symbol:

Verilog Code: module DigitalFilter (in2out, out, clk, clr, in); output in2out; output [`wordsize-1:0] out; input clk; input clr; input in; reg in2out; wire clk_half1, clk_half2; …… Endmodule 同时为了直观的观看输出结果,因此把输出的数字字转化为模拟量,这里用Verilog-A做一个理想的DA转换器。 因此最好事先用Spectre仿真模拟部分, 用ModelSim或Verilog-XL等仿真数字部分. 这里假定我们已有: 1) 模拟部分的原理图(包括Symbol); 2) 数字部分的Verilog代码,DigitalFilter.v, 模块名:DigitalFilter(in2out,out,clk, clr,in); 3) 数字部分的TestBench代码, DigitalFilter_TB.v, 模块名: DigitalFilter_TB. 下图为最终的系统图:

网络设备模拟器PT教程-交换机路由基础

网络设备模拟器Packet Tracer教程第一章认识Packet Tracer软件 (1) 第二章交换机的基本配置与管理 (2) 第三章交换机的端口配置与管理 (3) 第四章交换机的Telnet远程登陆配置 (5) 第五章交换机的端口聚合配置 (7) 第六章交换机划分Vlan配置 (9) 第七章三层交换机基本配置 (11) 第八章利用三层交换机实现VLAN间路由 (13) 第九章快速生成树配置....................................................................... 错误!未定义书签。 第十章路由器的基本配置 (16) 第十一章路由器单臂路由配置 (18) 第一章认识Packet Tracer软件 Packet Tracher介绍 ●Packet Tracer是Cisco公司针对CCNA认证开发的一个用来设计、配置和故障排除 网络的模拟软件。 ●Packer Tracer模拟器软件比Boson功能强大,比Dynamips操作简单,非常适合网 络设备初学者使用。 学习任务 1、安装Packer Tracer; 2、利用一台型号为2960的交换机将2pc机互连组建一个小型局域网; 3、分别设置pc机的ip地址; 4、验证pc机间可以互通。 实验设备 Switch_2960 1台;PC 2台;直连线 PC1 IP:192.168.1.2 Submask:255.255.255.0 Gateway:192.168.1.1

PC2 IP:192.168.1.3 Submask:255.255.255.0 Gateway:192.168.1.1 PC1 ping PC2 Reply PC2 ping PC1 Reply PC2 ping Gateway Timeout 第二章交换机的基本配置与管理 实验目标 ●掌握交换机基本信息的配置管理。 实验背景 ●某公司新进一批交换机,在投入网络以后要进行初始配置与管理,你作为网络管理 员,对交换机进行基本的配置与管理。 技术原理 ●交换机的管理方式基本分为两种:带管理和带外管理。 ●通过交换机的Console端口管理交换机属于带外管理;这种管理方式不占用交 换机的网络端口,第一次配置交换机必须利用Console端口进行配置。 ●通过Telnet、拨号等方式属于带管理。 ●交换机的命令行操作模式主要包括: ●用户模式Switch> ●特权模式Switch# ●全局配置模式Switch(config)# ●端口模式Switch(config-if)# 实验步骤: ●新建Packet Tracer拓扑图 ●了解交换机命令行 ●进入特权模式(en) ●进入全局配置模式(conf t) ●进入交换机端口视图模式(int f0/1) ●返回到上级模式(exit) ●从全局以下模式返回到特权模式(end) ●帮助信息(如? 、co?、copy?) ●命令简写(如conf t) ●命令自动补全(Tab) ●快捷键(ctrl+c中断测试,ctrl+z退回到特权视图) ●Reload重启。(在特权模式下) ●修改交换机名称(hostname X) 实验设备 Switch_2960 1台;PC 1台;配置线;

数模混合IC设计流程

数模混合IC设计流程 1.数模混合IC设计 近十年来,随着深亚微米及纳米技术的发展,促使芯片设计与制造由分离IC、ASIC 向SoC转变,现在SoC芯片也由数字SoC全面转向混合SoC,成为真正意义上的系统级芯片。如今人们可以在一块芯片上集成数亿只晶体管和多种类型的电路结构。此时芯片的制造工艺已经超越了传统制造理论的界限,对电路的物理实现具有不可忽略的影响。因此,片上系统所依赖的半导体物理实现方式,面临着多样化和复杂化的趋势,设计周期也越来越长。目前越来越多的设计正向混合信号发展。最近,IBS Corp做过的一个研究预测,到2006年,所有的集成电路设计中,有73%将为混合信号设计。目前混合信号技术正是EDA业内最为热门的话题。设计师在最近才开始注意到混合信号设计并严肃对待,在他们意识到这一领域成为热点之前,EDA公司已经先行多年。EDA业内领头的三大供应商Mentor Graphics、Synopsys和Cadence在几年前即开始合并或研发模拟和混合信号工具和技术。其中Mentor Graphics是第一个意识到这一点,并投入力量发展混合信号技术的EDA供应商。 我们先分析数模混合IC设计的 流程,简单概括如图: 首先要对整个IC芯片进行理论 上的设计。对于模拟部分,可以直接 在原理图的输入工具中进行线路设 计;而对于数字部分,主要通过各种 硬件描述语言来进行设计,比如通用 的VHDL及Verilog,数字部分的设 计也可以直接输入到原理图工具中。 当完成原理图的设计时,必须对设计 及时的进行验证。如果原理设计没有 问题,就说明设计是可行的,但这还 停留在理论的阶段,接下来必须将它 转换为实际的产品。这时需要用版图 工具将电路设计实现出来,对于模拟 电路部分,可以使用定制版图工具; 对于数字电路部分,也可以采用P&R (自动布局布线)工具实现。在完成 整个电路各个模块的版图后,再将它 们拼装成最终的版图。这时的版图并 不能最终代表前面所验证过的设计, 必须对它进行验证。首先版图要符合 流片工艺的要求,这时要对版图做DRC(Design Rule Check)检查;而版图的逻辑关系是不是代表原理图中所设计的,同样要进行LVS(Layout Versus Schematic)检查;最后,由于在实现版图的过程中引入了许多寄生效应,这些寄生的电阻电容有可能对我们的设计产生致

思科模拟器基本命令(交换机)

知识归纳 思科模拟器命令: 设置交换机名字为yzh Switch> 进入超级终端控制台 Switch>enable 进入交换机特权模式 Switch# Switch#configure terminal 进入交换机全局配置模式 Switch(configure)#hostname yzh 改变名字为XXX yzh(configure)# 显示改名成功 yzh(configure)#exit 退回上级操作模式,即返回特权模式 yzh# yzh#exit 返回到用户模式 yzh> 参看交换机有关信息 yzh# yzh#configure terminal 进入交换机全局配置模式 yzh#show version 查看交换机的版本信息 yzh#show vlan 查看交换机的VLAN信息,默认情况下所有借口均属于VLAN yzh#show running-config 查看交换机当前生效的配置信息 配置交换机接口f0/2 yzh> yzh>enable yzh# yzh#configure terminal 进入交换机配置模式 yzh(config)#interface fastEthernet 0/2 进入交换机接口fa0/2 yzh(config-if)# 进入接口配置模式 yzh(config-if)#speed 100 设置接口F0/2速率为100M yzh(config-if)#duplex half 配置接口的双工模式是半双工 yzh(config-if)#no shutdown 开启接口,使得处于工作状态,等待转发数据。yzh(config-if)#exit 输入exit返回全局模式 yzh(config)#exit 返回特权模式 yzh# 位于特权模式 yzh#show interfaces fastEthernet 0/2 查看刚才对接口f0/2配置情况 设置交换机Enable特权密码为admin yzh> 进入超级终端控制台 yzh>enable 进入交换机特权模式 yzh#configure terminal 进入交换机配置模式 yzh(config)#enable secret admin 设置Enable密码为admin 注:验证密码自己思考。 查看设备配置信息 yzh#show running-config

spectraverilog数模混合仿真

Cadence 的数模混合仿真工具spectraverilog能够实现数字模拟电路联仿的功能,对于模拟电路的输入信号可以利用数字接口很方便的进行设置。主要用来进行功能仿真。 步骤: 1.准备schematic,如电路单元mix 2.从库管理器中建立mix单元的config view. 在use template中选择spectraverilog,然后ok 将top cell中的myview改为实际的schemtic,然后ok

正确的结果如下图 保存,点击open打开config后的schematic,在tools中选择mix signal opts. 在mix-signal菜单中,尝试第二项的每一个小项,可以看到模拟和数字的相关划分。 由于数字部分默认的电压为5V,转换电平为1.5V和3.5V,因此,如果电路的电源电压不同的与5V,需要对于数模混合接口部分进行设置,在mix-signal菜单中的第三项中进行设置。对于模拟部分来讲,其按照模型进行计算,无需在数模接口部分进行端口设置,对于数字接口来讲,需要将默认的5V电平以及1.5V,3.5V转换电平变为与模拟部分相符的电压

值,比如电源3V,转换电平为1.5V和3.5V。设置如下, 对于与模拟器件相连接的数字输出端,将高电平由5V改为3V 对于与模拟器件相连接的数字输入端,将转换电平由1.5V改为3.5V改为1V和2V

所有数模混合接口的相关的数字端口都需要改动,如下图所示的数模接口部分 3.调出analog仿真工具,并设置为spectreverilog

4.编写端口的输入激励文件 设置传输分析的时间长度

数模混合仿真详细文档.

用 SpectreVerilog 进行模数混仿,以 Sigma-Delta ADC为例 SpectreVerilog 模数混仿 , 模拟部分用 Spectre, 数字部分用 Verilog-XL. 所以还需要安装 Cadence LDV软件 , 其内含 Verilog-XL 仿真器 . 这里以自行设计的二阶全差分 Sigma-Delta ADC为例 , 详细介绍用SpectreVerilog 的仿真过程 . 所用工艺库为 TSMC 0.18u,电源电压:1.8V. 1. 准备 Sigma-Delta ADC分模拟和数字部分两块 , 其中模拟部分为调制器 , 数字部分为数字滤波器 . 如下图 . 其中 out 为调制器的输出 , 这里是 1位 0, 1数据流 . 数字滤波器为 Verilog RTL级代码 . Schematic : Symbol :

Verilog Code: module DigitalFilter (in2out, out, clk, clr, in; output in2out; output [`wordsize-1:0] out; input clk; input clr; input in; reg in2out; wire clk_half1, clk_half2; …… Endmodule 同时为了直观的观看输出结果,因此把输出的数字字转化为模拟量,这里用Verilog-A 做一个理想的 DA 转换器。 因此最好事先用 Spectre 仿真模拟部分 , 用 ModelSim 或 Verilog-XL 等仿真数字部分 . 这里假定我们已有 :

PSpice AD基本仿真

PSpice A/D数模混合仿真 孙海峰Cadence的PSpice A/D可以对电路进行各种数模混合仿真,以验证电路的各个性能指标是否符合设计要求。PSpice A/D主要功能是将Capture CIS产生的电路或文本文件(*.cir)进行处理和仿真,同时附属波形观察程序Probe对仿真结果进行观察和分析。 PSpice A/D数模仿真技术主要包括以下几类仿真: 1、直流扫描分析(DC Sweep):电路的某一个参数在一定范围内变化时,电路直流输出特性的分析和计算。 2、交流扫描分析(AC Sweep):计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入输出阻抗。 3、噪声分析(Noise):在设定频率上,计算电路指定输出端的等效输出噪声和指定输入端的等效输入噪声电平。 4、直流偏置点分析(Bias Point):当电路中电感短路,电容断路时,电路静态工作点的计算。进行交流小信号和瞬态分析之前,系统会自动计算直流偏置点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。 5、时域/瞬态分析(Transient):在给定激励下,电路输出的瞬态时域响应的计算,其初始状态可由用户自定义,也可是直流偏置点。 6、蒙特卡洛分析(Monte-Carlo):根据实际情况确定元件参数分布规律,然后多次重复进行指定电路特性的分析,每次分析时的元件参数都采用随机抽样方式,完成多次分析后进行统计分析,就可以得到电路特性的分散变化规律。 7、最坏情况分析(Worst):电路中元件处于极限情况时,电路输入输出特性分析,是蒙特卡洛的极限情况。

8、参数扫描分析(Parametric Sweep )电路中指定元件参数暗规律变化时,电路特性的分析计算。 9、温度分析(Temperature ):在指定温度条件下,分析电路特性。 10灵敏度分析(Sensitivity ):计算电路中元件参数变化对电路性能的影响。 以上就是PSpice A/D 所能进行的电路数模混合仿真的内容,下面就介绍具体如何使用PSpice A/D 来对电路进行数模仿真。 运用PSpice 仿真的基本流程如下图: 一、绘制仿真原理图 调用软件自带的仿真模型库(Tools/Capture/Library/PSpice )中的元件,这里的元件模型都是具有电气特征的,可以直接进行PSpice A/D 仿真。原理图绘制方法和Capture 中一样,不再赘述,绘制以下RC 单通道放大器原理图如下: 绘制仿真原理图 仿真 观察分析仿真结果 调整电路 调整仿真参数 设置仿真参数

设计数模混合电路抗干扰的秘密

设计数模混合电路抗干扰的秘密 数模混合电路设计当中,干扰源、干扰对象和干扰途径的辨别是分析数模混合设计干扰的基础。通常的电路中,模拟信号上由于存在随时间变化的连续变化的电压和电流有效成分,在设计和调试过程中,需要同时控制这两个变量,而且他们对于外部的干扰更敏感,因而通常作为被干扰对象做分析;数字信号上只有随时间变化的门限量化后的电压成分,相比模拟信号对干扰有较高的承受能力,但是这类信号变化快,特别是变化沿速度快,还有较高的高频谐波成分,对外释放能量,通常作为干扰源。 作为干扰源的数字电路部分多采用CMOS工艺,从而导致数字信号输入端极高的输入电阻,通常在几十k欧到上兆欧姆。这样高的内阻导致数字信号上的电流非常微弱,因而只有电压有效信号在起作用,在数模混合干扰分析中,这类信号可以作为电压型干扰源,如CLK 信号,Reset等信号。除了快速交变的数字信号,数字信号的电源管脚上,由于引脚电感和互感引起的同步开关噪声(SSN),也是数模混合电路中存在的重要一类电压型干扰源。此外,电路中还存在一些电流信号,特别是直流电源到器件负载之间的电源信号上有较大的电流,根据右手螺旋定理,电流信号周围会感应出磁场,进而引起变化的电场,在分析时,直流电源作为电流型干扰源。 无论电压型还是电流型的干扰源,在耦合到被干扰对象时,既可能通过电路传导耦合,也可能通过空间电磁场耦合,或者二者兼有。然而一般的仿真分析工具,往往由于功能所限,只能分析其中一种。例如在传统的SPICE电路仿真工具中,只考虑电路传导型的干扰,并不考虑空间电磁场的耦合;而一般的PCB 信号完整性(SI)分析工具,只考察空间电磁场耦合,将所有的电源、地都看作理想DC直流,不予分析考虑。耦合路径提取的不完整,也是困扰数模混合噪声分析的重要原因。 数模混合设计中,电源和地的划分,是业内争论的焦点。传统的设计中,数字模拟部分被严格分开;然而随着系统越来越复杂,数模电路集成度不断提高,分割又会造成数字信号跨分割,信号回流不完整,进而影响信号完整性,另外,电源的分割还造成电源分配系统的阻抗过高;有人提出“单点连接”:还是做分割,但是在跨分割的信号下方单点连接以避免跨分割问题;但是如果数模之间信号很多,难于分开,这种“单点连接”也存在困难,因而又有人提出不分割,只是保持数字和模拟部分不要交叉;还有一些资料介绍,在跨分割的信号旁边包地线或者并联的电容,用来提供完整回流路径。无论哪种方法,似乎都有一定道理,而且都有成功的先例,然而所有这些分割方案的有效性以及可能存在的问题,一直没有检验的标准。 数模混合电路的仿真,还存在模型的问题。业界普遍接受的模拟电路仿真模型还是SPICE 模型,数字电路信号完整性分析使用IBIS模型。多家EDA公司的仿真软件已经推出支持多种模型的混合模型仿真器,然而摆在设计师案头的主要困难是器件模型,特别是模拟器件模型很难得到。在数字设计看来,时域的瞬态分析,即某一时间点上确定的电压值,是仿真的主要手段,就像调试中的示波器那样直观。没有精确的模型,瞬态分析就无法实现。然而对模拟设计,特别是噪声分析,激励源在时间轴上难于描述或很难预测,只知道他的频率带宽范围和大致幅度,这时候我们通常会引入频域扫频分析,考察扫频信号在关注点的变化,如同频谱分析仪的作用。或者干脆如网络分析仪(NA)那样考察信号或噪声通过的通道的频域SYZ参数,进而预测干扰发生的频率和幅度。可见,数模混合噪声分析,既需要支持混合模型的仿真器,也需要仿真器同时支持时域分析和频域分析。

数模混合电路的设计(很详细规范)

目录: 前言 一、数模混合设计的难点 二、提高数模混合电路性能的关键 三、仿真工具在数模混合设计中的应用 四、小结 五、混合信号PCB设计基础问答 前言: 数模混合电路的设计,一直是困扰硬件电路设计师提高性能的瓶颈。众所周知,现实的世界都是模拟的,只有将模拟的信号转变成数字信号,才方便做进一步的处理。模拟信号和数字信号的转变是否实时、精确,是电路设计的重要指标。除了器件工艺,算法的进步会影响系统数模变换的精度外,现实世界中众多干扰,噪声也是困扰数模电路性能的主要因素。本文通过Ansoft公司的“AD-Mix Sig nal Noise Design Suites” 数模混合噪声仿真设计软件的对数模混合设计PCB 的仿真,探索分析数模混合电路的噪声干扰和优化设计的途径,以达到改善系统性能目的。 一、数模混合设计的难点 数模混合电路设计当中,干扰源、干扰对象和干扰途径的辨别是分析数模混合设计干扰的基础。通常的电路中,模拟信号上由于存在随时间变化的连续变化的电压和电流有效成分,在设计和调试过程中,需要同时控制这两个变量,而且他们对于外部的干扰更敏感,因而通常作为被干扰对象做分析;数字信号上只有随时间变化的门限量化后的电压成分,相比模拟信号对干扰有较高的承受能力,但是这类信号变化快,特别是变化沿速度快,还有较高的高频谐波成分,对外释放能量,通常作为干扰源。 作为干扰源的数字电路部分多采用CMOS工艺,从而导致数字信号输入端极高的输入电阻,通常在几十k欧到上兆欧姆。这样高的内阻导致数字信号上的电流非常微弱,因而只有电压有效信号在起作用,在数模混合干扰分析中,这类信号可以作为电压型干扰源,如CLK信号,Reset等信号。除了快速交变的数字信号,数字信号的电源管脚上,由于引脚电感和互感引起的同步开关噪声(SSN),也是数模混合电路中存在的重要一类电压型干扰源。此外,电路中还存在一些电流信号,特别是直流电源到器件负载之间的电源信号上有较大的电流,根据右手螺旋定理,电流信号周围会感应出磁场,进而引起变化的电场,在分析时,直流电源作为电流型干扰源。

PSpice_AD基本仿真

PSpice A/D数模混合仿真 孙海峰OrCAD中的PSpice A/D可以对电路进行各种数模混合仿真,以验证电路的各个性能指标是否符合设计要求。PSpice A/D主要功能是将Capture CIS产生的电路或文本文件(*.cir)进行处理和仿真,同时附属波形观察程序Probe对仿真结果进行观察和分析。 PSpice A/D数模仿真技术主要包括以下几类仿真: 1、直流扫描分析(DC Sweep):电路的某一个参数在一定范围内变化时,电路直流输出特性的分析和计算。 2、交流扫描分析(AC Sweep):计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入输出阻抗。 3、噪声分析(Noise):在设定频率上,计算电路指定输出端的等效输出噪声和指定输入端的等效输入噪声电平。 4、直流偏置点分析(Bias Point):当电路中电感短路,电容断路时,电路静态工作点的计算。进行交流小信号和瞬态分析之前,系统会自动计算直流偏置点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。 5、时域/瞬态分析(Transient):在给定激励下,电路输出的瞬态时域响应的计算,其初始状态可由用户自定义,也可是直流偏置点。 6、蒙特卡洛分析(Monte-Carlo):根据实际情况确定元件参数分布规律,然后多次重复进行指定电路特性的分析,每次分析时的元件参数都采用随机抽样方式,完成多次分析后进行统计分析,就可以得到电路特性的分散变化规律。 7、最坏情况分析(Worst):电路中元件处于极限情况时,电路输入输出特性分析,是蒙特卡洛的极限情况。

8、参数扫描分析(Parametric Sweep )电路中指定元件参数暗规律变化时,电路特性的分析计算。 9、温度分析(Temperature ):在指定温度条件下,分析电路特性。 10灵敏度分析(Sensitivity ):计算电路中元件参数变化对电路性能的影响。 以上就是PSpice A/D 所能进行的电路数模混合仿真的内容,下面就介绍具体如何使用PSpice A/D 来对电路进行数模仿真。 运用PSpice 仿真的基本流程如下图: 一、绘制仿真原理图 调用软件自带的仿真模型库(Tools/Capture/Library/PSpice )中的元件,这里的元件模型都是具有电气特征的,可以直接进行PSpice A/D 仿真。原理图绘制方法和Capture 中一样,不再赘述,绘制以下RC 单通道放大器原理图如下: 绘制仿真原理图 仿真 观察分析仿真结果 调整电路 调整仿真参数 设置仿真参数

相关文档
最新文档