1:合情推理与演绎推理
高中数学 选修1-2 4.合情推理与演绎推理

4.合情推理与演绎推理教学目标 班级______姓名_________1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.理解演绎推理的意义,掌握演绎推理的基本模式,能进行简单推理.3.了解合情推理与演绎推理的区别和联系.教学过程一、合情推理.1.归纳推理:(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理;或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).【B A ⊆,且A 具有特征P ⇒B 具有特征P 】(2)特征:部分⇒整体;个别⇒一般.(3)举例:①铜、铁、铝等金属能导电⇒一切金属都能导电;②哥德巴赫猜想:336+=;538+=;5510+=;......8631391002+=......⇒任何一个不小于6的偶数都等于两个奇质数之和.2.类比推理:(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理(简称类比).【A 、B 具有相同性质P ,且A 具有特征Q ⇒B 具有特征Q 】(2)特征:相似⇒相似.(3)举例:①加法运算与乘法运算都满足交换律,且加法运算满足结合律⇒乘法运算满足结合律; ②平面内和空间内,平行于同一条直线的两条直线相互平行,且平面内,垂直于同一条直线的两条直线相互平行⇒空间内,垂直于同一条直线的两条直线相互平行.3.合情推理:根据已有事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.(1)归纳推理与类比推理都属于合情推理;(2)合情推理能帮我们猜测和发现结论,能为我们提供证明的思路和方向;(3)一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠.二、演绎推理.1.定义:从一般性的原理出发,推出某个特殊情况下的结论的推理,称为演绎推理.【B A ⊇,且A 具有特征P ⇒B 具有特征P 】2.特征:一般⇒特殊;整体⇒部分.3.举例:①所有的金属都能导电,铀是金属⇒铀能导电;②所有奇数都不能被2整除,101是奇数⇒101不能被2整除.4.结构:演绎推理三段论:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断.(应用三段论解决问题时,若大前提是显而易见的,则可省略)5.在演绎推理中,只要大前提和推理形式是正确的,结论必定是正确的。
合情推理与演绎推理

等比数列{bn}, 公比q ① ② ③
④ ⑤
例3.在Rt△ABC中,若∠C=90°,则 cos2A+cos2B=1,试在立体几何中,给 出四面体性质的猜想.
解:如下图,在 Rt△ABC 中,
cos2A+cos2B=bc2+ac2=a2+c2 b2=1.
于是把结论类比到四面体P-A’B’C’中, 我们猜想:三棱锥P-A’B’C’中,若三个 侧面PA’B’、PB’C’、PC’A’两两互相垂 直且分别与底面所成的角为α,β,γ,则 cos2α+cos2β+cos2γ=1.
1852年,英国人弗南西斯·格思里 (Francis Guthrie)为地图着色时,发 现了四色猜想.
1976年,美国数学家阿佩尔 (K.Appel)与哈肯(W.Haken)在两 台计算机上,用了1200个小时,完成 了四色猜想的证明.
归纳推理 基础 作用 风险
由部分到整体、 个别到一般的推理
观察、分析
例4.类比平面内直角三角形的勾股定 理,试给出空间中四面体性质的猜想.
A
B
a
c
O
C
b
A
B
C
C2=a2+b2
S2△ABC =S2△AOB+S2△AOC+S2△BOC
类比推理 基础 作用 风险
由特殊到特殊的推 理
旧的知识
获得新结论
类比推理得出的结 论不一定成立
东施效颦
西施心口痛,皱着眉头从街上走过。 同村的一个丑妇人东施看见西施这个样 子,觉得很美,回去时也捂着胸口,皱 眉蹙额,从街上走过。村里的富人看见 她这副模样,都紧闭着大门不愿出来; 穷人见了,带着妻子儿女,远远避开。 这个丑妇光知道(西施)皱着眉头美, 却不明白她皱眉的样子为什么美。
13.1合情推理与演绎推理

1.合情推理 (1)归纳推理 ①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳). ②特点:由部分到整体、由个别到一般的推理. (2)类比推理 ①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比). ②特点:由特殊到特殊的推理. (3)合情推理 归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理. 2.演绎推理 (1)演绎推理 从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况做出的判断. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( × ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √ ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × ) (4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ ) (5)一个数列的前三项是1,2,3,那么这个数列的通项公式是an=n(n∈N*).( × ) (6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )
1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于( ) A.28 B.76 C.123 D.199 答案 C 解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a10+b10=123. 2.下面几种推理过程是演绎推理的是( )
合情推理与演绎推理

复习:合情推理
• 归纳推理 • 类比推理
从具体问 题出发
观察、分析 比较、联想
归纳、 类比
提出猜想
复习:合情推理
归纳推理的一般步骤:
⑴ 对有限的资料进行观察、分析、归纳 整理;
⑵ 提出带有规律性的结论,即猜想;
⑶ 检验猜想。
类比推理的一般步骤:
⑴ 找出两类对象之间可以确切表述的相似
特征;
⑵ 用一类对象的已知特征去推测另一类对 象的特征,从而得出一个猜想;
三棱锥
4
4
6
四棱锥
5
5
8
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
正八面体
8
6
12
五棱柱
截角正方体
尖顶塔
猜想 F+V-E=2 欧拉公式
多面体 面数(F) 顶点数(V) 棱数(E)
三棱锥
4
4
6
四棱锥
5
5
8
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
正八面体
8
6
12
五棱柱
7
10
15
截角正方体 7
10
15
尖顶塔
如果三角形ABC与三角形A1B1C1全等, 那么三角形ABC与三角形A1B1C1面积相等.
从一般性的原理出发,推出某个特殊情况 下的结论,这种推理称为演绎推理.
注: 1.演绎推理是由一般到特殊的推理; 2.“三段论”是演绎推理的一般模式;包 括 ⑴大前提---已知的一般原理; ⑵小前提---所研究的特殊情况; ⑶结论-----据一般原理,对特殊情况做出 的判断.
合情推理与演绎推理

1.合情推理
(1)归纳推理:根据一类事物的部分对象具有某种性质,推出这类事
物的所有对象都具有这种性质的推理,叫做归纳推理.归纳是从 特殊到一般 的过程,它属于合情推理.
归纳推理的一般步骤:先总结部分对象具有的特征,再推广到所有对
象具有该特征. (2)类比推理:根据两类不同事物之间具有某些类似(或一致)性,推测 其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推 理.类比推理是从 特殊到特殊 的推理,属于合情推理. 类比推理的一般步骤:先找出两类事物之间的相似性或一致性,再用 一类事物的性质去推测另一类事物的性质,得出另一类事物具有的性质.
2.演绎推理
“三段论”是演绎推理的一般模式,包括:
(1)大前提——已知的 一般原理 ;
(2)小前提——所研究的 特殊情况 ; (3)结论——据一般原理,对 特殊情况 做出的判断.演绎 推理是由一般到特殊的推理.
演绎推理的一般步骤:大前提——小前提——结论.
题型一 归纳推理
•
将全体正整数排成一个三角形数阵:
1 x-y -(x-y) e +e = (2e +2e )= 4 2
x-y
-x- y
=ch(x-y),
故知ch(x+y)=chx chy+shx shy,
或sh(x-y)=shx chy-chx shy,
或sh(x+y)=shx chy+chx shy.
答案 ch(x-y)=chx chy-shx shy
将 以 上 各 式 相 加 得 an - a3 = 3 + 4 + 5 + „ + (n - 1) = n+2n-3 . 2 所以要求第 n 行 (n ≥3) 从左向右的第 3 个数为 an = n+2n-3 n2-n+6 +a3= . 2 2
合理推理与演绎推理

【思路分析】可通过画当直线条数n为3,4,5时,分别计算出它们将平面分成
的区域数
S n ,从中发现规律,再归纳出结论。
【解析】设平面被n条直线分成
S 1 =1+1=2; 当n=2时,
S n 部分,则 当n=1时,
S 2 =1+1+2=4; 当n=3时,
S 3 =1+1+2+3=7;当n=4时,
S 4 =1+1+2+3+4=11.据此猜想,得
在进行归纳、类比,然后提出猜想的推理称为合情推理。
合情推理又具体分为归纳推理和类比推理两类。
1.
归纳推理:由某类事物的部分对象具有某些特征,推出该类
事物的全部对象具有这些特征的推理,或者由个别事实概括出一
般结论的推理。简言之,归纳推理是由部分到整体、个别到一般
的推理,归纳推理简称归纳。
(2). 类比推理:由两类对象具有某些类似特征和其中 一类对象的某些已知特征,推出另一类对象也具有这 些特征的推理,简言之,类比推理是由特殊到特殊的 推理,类比推理简称类比。
完全归纳是指没有办法穷尽 全部被研究的对象,得出的
的特征进行归纳。归纳是指 通过对特例的分析来引出普
陈述,结论是从前提中通过 推理而获得的猜想,是普遍
结论只能算猜想结论的正确 与否有待于进一步证明或举
遍结论的一种推理形式,它 由推理的前提和结论两部分
性的陈述、判断。归纳分为 完全归纳与不完全归纳,不
单击添加副标题
2.1 合情 推理与演
绎推理
2023
01 一.推理的概念:根据一个或几个已知事实(或假设)得出一个判 断,这种思维方式叫做推理。从结构上说,推理一般由两部分 组成,一部分是已知的事实(或假设)叫做前提,一部分是由 已知推出的判断,叫做结论。
中学数学第十二章 第1节 合情推理与演绎推理

第1节 合情推理与演绎推理最新考纲 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知 识 梳 理1.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.[微点提醒]1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定其正确性,则需要证明.2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯机械类比的错误.3.应用三段论解决问题时,要明确什么是大前提、小前提,如果前提与推理形式是正确的,结论必定是正确的.若大前提或小前提错误,尽管推理形式是正确的,但所得结论是错误的.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()解析(1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确.答案(1)×(2)√(3)×(4)×2.(选修2-2P84A3改编)对于任意正整数n,2n与n2的大小关系为()A.当n≥2时,2n≥n2B.当n≥3时,2n≥n2C.当n≥4时,2n≥n2D.当n≥5时,2n≥n2解析当n=2时,2n=n2;当n=3时,2n<n2;当n=4时,2n=n2;当n=5时,2n>n2;归纳判断,当n≥4时,2n≥n2.故选C.答案 C3.(选修2-2P84A5改编)在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1(n<19,且n∈N*)成立.类比上述性质,在等比数列{b n}中,若b9+a2+…+a19-n=1,则存在的等式为________.解析根据类比推理的特点可知:等比数列和等差数列类比,在等差数列中是和,在等比数列中是积,故有b1b2…b n=b1b2…b17-n(n<17,且n∈N*).答案b1b2…b n=b1b2…b17-n(n<17,且n∈N*)4.(2019·淄博一模)有一段“三段论”推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点,因为f(x)=x3在x=0处的导数值为0,所以x=0是f(x)=x3的极值点,以上推理()A.大前提错误B.小前提错误C.推理形式错误D.结论正确解析大前提是“对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f′(x0)=0,且满足在x0附近左右两侧导函数值异号,那么x=x0才是函数f(x)的极值点,所以大前提错误.故选A.答案 A5.(2018·大连模拟)数列2,5,11,20,x,…中的x等于________.解析由5-2=3,11-5=6,20-11=9,推出x-20=12,故x=32.答案326.(2019·西安二模)将正整数1,2,3,4,…按如图所示的方式排成三角形数组,则第10行左数第10个数为________.解析由三角形数组可推断出,第n行共有2n-1个数,且最后一个数为n2,所以第10行共19个数,最后一个数为100,左数第10个数是91.答案91考点一归纳推理多维探究角度1与图形变化有关的推理【例1-1】(2018·石家庄模拟)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________.解析由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55.答案55角度2与数字或式子有关的推理【例1-2】(2019·安阳一模)如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,……,以此类推,则标2 0192的格点的坐标为()A.(1 010,1 009)B.(1 009,1 008)C.(2 019,2 018)D.(2 018,2 017)解析点(1,0)处标1,即12;点(2,1)处标9,即32;点(3,2)处标25,即52;……,由此推断点(n+1,n)处标(2n+1)2,当2n+1=2 019时,n=1 009,故标2 0192的格点的坐标为(1 010,1 009).故选A.答案 A规律方法归纳推理问题的常见类型及解题策略形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18根火柴,…,则第2 018个图形用的火柴根数为()A.2 014×2 017B.2 015×2 016C.3 024×2 018D.3 027×2 019(2)对大于或等于2的自然数m 的n 次方幂有如下分解方式:22=1+3;32=1+3+5;42=1+3+5+7;23=3+5;33=7+9+11;43=13+15+17+19.根据上述分解规律,则52=1+3+5+7+9,若m 3(m ∈N *)的分解中最小的数是73,则m 的值为________.解析 (1)由题意,第1个图形需要火柴的根数为3×1;第2个图形需要火柴的根数为3×(1+2);第3个图形需要火柴的根数为3×(1+2+3);…由此,可以推出第n 个图形需要火柴的根数为3×(1+2+3+…+n ).所以第 2 018个图形所需火柴的根数为3×(1+2+3+…+2 018)=3×2 018×(2 018+1)2=3 027×2 019. (2)根据23=3+5,33=7+9+11,43=13+15+17+19,从23起,m 3的分解规律恰为数列3,5,7,9…中若干连续项之和,23为前两项和,33为接下来三项和,故m 3的首个数为m 2-m +1.因为m 3(m ∈N *)的分解中最小的数是73,所以m 2-m +1=73,解得m =9.答案 (1)D (2)9考点二 类比推理【例2】 (1)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定出来x =2,类似地不难得到1+11+11+…=( ) A.-5-12 B.5-12 C.1+52 D.1-52(2)若点P0(x0,y0)在椭圆x2a2+y2b2=1(a>b>0)外,过点P0作该椭圆的两条切线,切点分别为P1,P2,则切点弦P1P2所在直线的方程为x0xa2+y0yb2=1.那么对于双曲线x2a2-y2b2=1(a>0,b>0),类似地,可以得到一个正确的切点弦方程为________.解析(1)令1+11+11+…=x(x>0),即1+1x=x,即x2-x-1=0,解得x=1+52(x=1-52舍),故1+11+11+…=1+52,故选C.(2)若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,过点P0作该双曲线的两条切线,切点分别为P1,P2,则切点弦P1P2所在直线的方程为x0xa2-y0yb2=1.答案(1)C(2)x0xa2-y0yb2=1规律方法 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】(1)(2018·孝感模拟)二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=43πr3,应用合情推理,若四维空间中,“超球”的三维测度V=8πr3,则其四维测度W=()A.2πr4B.3πr4C.4πr4D.6πr4(2)在平面上,设h a,h b,h c是△ABC三条边上的高,P为三角形内任一点,P到相应三边的距离分别为P a,P b,P c,我们可以得到结论:P ah a+P bh b+P ch c=1.把它类比到空间,则三棱锥中的类似结论为______________________________________. 解析(1)二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,(πr2)′=2πr,三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=43πr3,⎝ ⎛⎭⎪⎫43πr 3′=4πr 2,四维空间中,“超球”的三维测度V =8πr 3, ∵(2πr 4)′=8πr 3,∴“超球”的四维测度W =2πr 4,故选A.(2)设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a+P b h b +P c h c +P d h d=1. 答案 (1)A (2)P a h a +P b h b +P c h c +P d h d=1 考点三 演绎推理 多维探究角度1 与逻辑推理有关的问题【例3-1】 (1)(2018·石家庄一模)甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委大,甲与体委的年龄不同,体委比乙的年龄小.据此推断班长是________.(2)2019年夏季大美青海又迎来了旅游热,甲、乙、丙三位游客被询问是否去过陆心之海青海湖,海北百里油菜花海,茶卡天空之境三个地方时,甲说:我去过的地方比乙多,但没去过海北百里油菜花海;乙说:我没去过茶卡天空之境;丙说:我们三人去过同一个地方.由此可判断乙去过的地方为________.解析 (1)根据“甲与体委的年龄不同,体委比乙的年龄小”可得丙是体委; 根据“丙的年龄比学委大,体委比乙的年龄小”可得乙的年龄>丙的年龄>学习委员的年龄,由此可得,乙不是学习委员,那么乙是班长.(2)由乙说:我没去过茶卡天空之境,可知乙可能去过陆心之海青海湖和海北百里油菜花海两个地方,但甲说:我去过的地方比乙多,但没去过海北百里油菜花海,则甲去过陆心之海青海湖和茶卡天空之境两个地方,乙只去过陆心之海青海湖和海北百里油菜花海中的一个地方,再由丙说:我们三人去过同一地方,可推知乙去过的地方为陆心之海青海湖.答案 (1)乙 (2)陆心之海青海湖角度2 与证明有关的问题【例3-2】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提) 又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)规律方法 解决逻辑推理问题的两种方法:(1)假设反证法:先假设题中给出的某种情况是正确的,并以此为起点进行推理.如果推理导致矛盾,则证明此假设是错误的,再重新提出一个假设继续推理,直到得到符合要求的结论为止.(2)枚举筛选法:即不重复、不遗漏地将问题中的有限情况一一枚举,然后对各种情况逐个检验,排除一些不可能的情况,逐步归纳梳理,找到正确答案.【训练3】 (1)(2017·全国Ⅱ卷)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩(2)学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品的获奖情况预测如下:甲说:“C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品均未获得一等奖”;丁说:“C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是________.解析(1)由甲说不知道自己成绩且看过乙和丙的成绩,可推出乙和丙一优一良,又因为乙看过丙的成绩,所以乙可以推测出自己的成绩.因为已经推出乙和丙一优一良,所以甲和丁也是一优一良,并且条件已给出丁看过甲的成绩,所以丁也可以推出自己的成绩,故选D.(2)若A获得一等奖,则甲,乙,丙,丁的说法均错误,故不满足题意;若B获得一等奖,则乙,丙的说法正确,甲,丁的说法错误,故满足题意;若C获得一等奖,则甲,丙,丁的说法均正确,故不满足题意;若D获得一等奖,则只有甲的说法正确,故不满足题意.故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B.答案(1)D(2)B[思维升华]1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.[易错防范]1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.基础巩固题组(建议用时:35分钟)一、选择题1.已知数列{a n}中,a1=1,n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是()A.a n=3n-1B.a n=4n-3C.a n=n2D.a n=3n-1解析a1=1,a2=4,a3=9,a4=16,猜想a n=n2.答案 C2.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案 D3.按照图①~图③的规律,第10个图中圆点的个数为()A.36B.40C.44D.52解析因为根据图形,第一个图有4个点,第二个图有8个点,第三个图有12个点,…,所以第10个图有10×4=40个点.故选B.答案 B4.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论()①垂直于同一个平面的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行;④垂直于同一条直线的两个平面互相平行.A.①②B.②③C.③④D.①④解析①垂直于同一个平面的两条直线互相平行,正确;②垂直于同一条直线的两条直线不一定平行,也可能是相交直线、异面直线,故不正确;③垂直于同一个平面的两个平面不一定平行,也可能是相交平面,如墙角,故不正确;④垂直于同一条直线的两个平面互相平行,正确.故选D.答案 D5.下面四个推理,不属于演绎推理的是()A.因为函数y=sin x(x∈R)的值域为[-1,1],2x-1∈R,所以y=sin(2x-1)(x∈R)的值域也为[-1,1]B.昆虫都有6条腿,竹节虫是昆虫,所以竹节虫有6条腿C.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此D.如果一个人在墙上写字的位置与他的视线平行,那么,墙上字迹离地面的高度大约是他的身高,凶手在墙上写字的位置与他的视线平行,福尔摩斯量得墙壁上的字迹距地面六尺多,于是,他得出了凶手身高六尺多的结论解析C中的推理属于合情推理中的类比推理,A,B,D中的推理都是演绎推理. 答案 C6.(2019·长春质量监测)中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算的,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,以此类推.例如3 266用算筹表示就是,则8 771用算筹可表示为()解析由题意知8 771用算筹可表示为,故选A.答案 A7.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28B.76C.123D.199解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案 C8.(2019·武汉一模)某学校计划在周一至周四的艺术节上展演《雷雨》《茶馆》《天籁》《马蹄声碎》四部话剧,每天一部,受多种因素影响,话剧《雷雨》不能在周一和周四上演,《茶馆》不能在周一和周三上演,《天籁》不能在周三和周四上演,《马蹄声碎》不能在周一和周四上演,那么下列说法正确的是()A.《雷雨》只能在周二上演B.《茶馆》可能在周二或周四上演C.周三可能上演《雷雨》或《马蹄声碎》D.四部话剧都有可能在周二上演解析由题目可知,周一上演《天籁》,周四上演《茶馆》,周三可能上演《雷雨》或《马蹄声碎》,故选C.答案 C二、填空题9.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●…,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.解析进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|…,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14.答案 1410.(2018·重庆模拟)在等差数列{a n }中,若公差为d ,且a 1=d ,那么有a m +a n =a m +n ,类比上述性质,写出在等比数列{a n }中类似的性质:________________ ____________________________________.解析 等差数列中两项之和类比等比数列中两项之积,故在等比数列中,类似的性质是“在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n .”答案 在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n11.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.解析 观察所给等式左右两边的构成易得第n 个等式为13+23+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22=n 2(n +1)24. 答案 13+23+…+n 3=n 2(n +1)24 12.(2019·呼和浩特模拟)某煤气站对外输送煤气时,用1~5号5个阀门控制,且必须遵守以下操作规则:(1)若开启2号,则必须同时开启3号并且关闭1号;(2)若开启1号或3号,则关闭5号;(3)禁止同时关闭4号和5号.现要开启2号,则同时开启的另外2个阀门是________.解析 由题意,若开启2号,则关闭1号,开启3号,开启4号,关闭5号.故答案为3号和4号.答案 3号和4号能力提升题组(建议用时:15分钟)13.(2019·广东六校第三次联考)自主招生联盟成形于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.调查某高中学校学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟;②报考“华约”联盟的学生,也报考了“京派”联盟;③报考“卓越”联盟的学生,都没报考“京派”联盟;④不报考“卓越”联盟的学生,就报考“华约”联盟.根据上述调查结果,下列结论错误的是( )A.没有同时报考“华约”和“卓越”联盟的学生B.报考“华约”和“京派”联盟的考生一样多C.报考“北约”联盟的考生也报考了“卓越”联盟D.报考“京派”联盟的考生也报考了“北约”联盟解析 设该校报考“北约”联盟,“华约”联盟,“京派”联盟和“卓越”联盟的学生分别为集合A ,B ,C ,D ,报考自主招生的总学生为U ,则由题意,知A ∩B =∅,B ⊆C ,D ∩C =∅,∁U D =B ,∴A ⊆D ,B =C ,B ∩D =∅.选项A ,B ∩D =∅,正确;选项B ,B =C ,正确;选项C ,A ⊆D ,正确,故选D.答案 D14.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.解析 由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n , 又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sinA +B +C 3=3sin π3=332.答案 332 15.(2018·赣州联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原来持金多少?”若将“5关所收税金之和,恰好重1斤,问原来持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x 2×3;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =x 12=x 3×4;…第8关收税金:x 8×9=x 72. 答案 17216.(2019·成都诊断)正整数数列{a n }满足a n +1=⎩⎪⎨⎪⎧12a n ,a n 是偶数,3a n +1,a n 是奇数,已知a 7=2,{a n }的前7项和的最大值为S ,把a 1的所有可能取值按从小到大排成一个新数列{b n },{b n }所有项的和为T ,则S -T =________.解析 ∵正整数数列{a n }满足a n +1=⎩⎪⎨⎪⎧12a n ,a n 是偶数,3a n +1,a n 是奇数,故可采用逆推的方法求解,如图所示:则{a n }的前7项和的最大值S =2+4+8+16+32+64+128=254,{b n }所有项的和T =2+3+16+20+21+128=190,故S -T =254-190=64.答案 64古今中外有学问的人,有成就的人,总是十分注意积累的。
归纳与技巧:合情推理与演绎推理(含解析)

归纳与技巧:合情推理与演绎推理基础知识归纳一、合情推理二、演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由一般到特殊的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包括:基础题必做1.(教材习题改编)命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B .使用了类比推理C .使用了“三段论”,但推理形式错误D .使用了“三段论”,但小前提错误解析:选C 由条件知使用了三段论,但推理形式是错误的. 2.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33D .27解析:选B 由5-2=3,11-5=6,20-11=9. 则x -20=12,因此x =32.3.(教材习题改编)给出下列三个类比结论. ①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是( ) A .0 B .1 C .2D .3解析:选B 只有③正确.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18.答案:1∶8 5. 观察下列不等式 1+122<32, 1+122+132<53, 1+122+132+142<74 ……照此规律,第五个不等式为___________________________________________________. 解析:观察得出规律,左边为项数个连续自然数平方的倒数和,右边为项数的2倍减1的差除以项数,即1+122+132+142+152+…+1n 2<2n -1n(n ∈N *,n ≥2),所以第五个不等式为1+122+132+142+152+162<116.答案:1+122+132+142+152+162<116解题方法归纳1.合情推理主要包括归纳推理和类比推理,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提、小前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.归纳推理典题导入[例1]已知函数f(x)=xx+2(x>0).如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n-1(x)),…,n∈N*,那么由归纳推理可得函数f n(x)的解析式是f n(x)=________.[自主解答]依题意得,f1(x)=xx+2,f2(x)=xx+2xx+2+2=x3x+4=x(22-1)x+22,f3(x)=x3x+4x3x+4+2=x7x+8=x(23-1)x+23,…,由此归纳可得f n(x)=x(2n-1)x+2n(x>0).[答案]x(2n-1)x+2n(x>0)解题方法归纳1.归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.2.归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.[注意] 归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1. 将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893解析:选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.类 比 推 理典题导入[例2] 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c 内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体 ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________________”.[自主解答] 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V 四面体ABCD=13(S 1+S 2+S 3+S 4)r . [答案] V 四面体ABCD =13(S 1+S 2+S 3+S 4)r解题方法归纳1.类比推理是由特殊到特殊的推理,命题有其特点和求解规律,可以从以下几个方面考虑类比:类比定义、类比性质、类比方法、类比结构.2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).以题试法2.若{a n }是等差数列,m 、n 、p 是互不相等的正整数,则有:(m -n )a p +(n -p )a m +(p -m )a n =0,类比上述性质,相应地,对等比数列{b n },有__________________.解析:设{b n }的首项为b 1,公比为q ,则b m -n p·b n -p m ·b p -mn =(b 1q p -1)m -n ·(b 1q m -1)n -p ·(b 1q n -1)p-m=b 01·q 0=1. 答案:b m -n p·b n -p m ·b p -mn =1演 绎 推 理典题导入[例3] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[自主解答] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)解题方法归纳演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.以题试法3.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).证明:(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒四边形AFDE 是平行四边形⇒ED =AF .1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A .①B .②C .③D .①和②解析:选B 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B. 2. 正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.3. 在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18B.19C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4. 给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.5.观察如图所示的正方形图案,每条边(包括两个端点)有n (n ≥2,n ∈N *)个圆点,第n 个图案中圆点的总数是S n .按此规律推断出S n 与n 的关系式为( )A .S n =2nB .S n =4nC .S n =2nD .S n =4n -4解析:选D 由n =2,n =3,n =4的图案,推断第n 个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有n 个圆点,则圆点的个数为S n =4n -4.6. 下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀ x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.7. 设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:由前四个式子可得,第n 个不等式的左边应当为f (2n ),右边应当为n +22,即可得一般的结论为f (2n )≥n +22.答案:f (2n )≥n +228 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:每行最左侧数分别为1、2、3、…,所以第n 行最左侧的数为n ;每行数的个数分别为1、3、5、…,则第n 行的个数为2n -1.所以第n 行数依次是n 、n +1、n +2、…、3n -2.其和为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29. 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.答案:S 21+S 22+S 23=S 2410.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论. 解:由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.(1)求a 18的值;(2)求该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+2n 2个2+3+3+…+3n 2个3=52n ;当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述:S n=⎩⎨⎧52n ,n 为偶数,52n -12,n 为奇数.12.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由上式规律,所以得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n , 所以f (n +1)=f (n )+4n , f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n ), ∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1-1n=1+12⎝⎛⎭⎫1-1n =32-12n.1. 观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199解析:选C 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.2.对于命题:若O 是线段AB 上一点,则有|OB |·OA +|OA |·OB =0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA +S △OCA ·OB +S △OBA ·OC =0,将它类比到空间情形应该是:若O 是四面体ABCD 内一点,则有________.解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知若O 为四面体ABCD 内一点,则有V O -BCD ·OA +V O -ACD ·OB+V O -ABD ·OC +V O -ABC ·OD =0.答案:V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =03. 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α =34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.1. 观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92解析:选B 由特殊到一般,先分别计算|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数,再猜想|x |+|y |=n 时,对应的不同整数解的个数.通过观察可以发现|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数为4,8,12,可推出当|x |+|y |=n 时,对应的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80.2. 已知如下等式:3-4=17(32-42), 32-3×4+42=17(33+43), 33-32×4+3×42-43=17(34-44), 34-33×4+32×42-3×43+44=17(35+45), 则由上述等式可归纳得到3n -3n -1×4+3n -2×42-…+(-1)n 4n =________(n ∈N *). 解析:依题意及不完全归纳法得,3n -3n -1×4+3n -2×42-…+(-1)n 4n =17[3n +1-(-4)n +1].答案:17[3n +1-(-4)n +1]。