几何光学光学系统_成像与分析(2).

合集下载

几何光学成像原理

几何光学成像原理

几何光学成像原理1.反射成像反射成像是指光线从物体上的点通过反射,经光学系统中的反射面以一定的规律进行成像。

根据反射定律,光线的入射角等于反射角,通过将光线延长反射,可以确定成像位置。

反射成像可以分为平面镜成像和球面镜成像两种情况。

对于平面镜成像,即光线垂直入射的情况,入射光线经镜面反射后仍然是垂直于镜面的,因此成像位置与物体位置相等,成像大小与物体大小相等。

对于球面镜成像,即光线不垂直入射的情况,根据反射定律,入射光线与法线的夹角等于反射光线与法线的夹角。

成像位置与物体位置的关系由球面镜的焦距决定,成像大小由物体到球心的距离与成像位置到球心的距离比值确定。

2.折射成像折射成像是指光线从物体上的点通过折射,经光学系统中的折射面以一定的规律进行成像。

根据折射定律,光线从一种介质进入另一种介质时,入射角、折射角和两种介质的折射率之间有一定的关系,通过这一关系可以确定光线的传播方向。

折射成像可以分为平面折射成像和球面折射成像两种情况。

对于平面折射成像,折射前的光线沿直线传播,折射后的光线也沿直线传播,因此成像位置与物体位置相等,成像大小也与物体大小相等。

对于球面折射成像,折射面是球面的情况,折射定律以及球面成像公式可以确定成像位置和成像大小。

3.像差像差是指成像过程中由于光线的反射、折射以及光学系统中的非理想性等因素导致的成像位置和成像质量的偏差。

常见的像差包括球差、色差、像散等。

球差是由于非理想球面反射或折射面引起的,会导致不同位置的光线成像位置和焦点位置不一致,使得成像模糊。

色差是由于光线的折射率与波长有关造成的,不同波长的光线折射率不同,导致不同波长的光线成像位置不一致,使得成像模糊和色差。

像散是由于物体点发出的光线经光学系统后在成像面上形成一定的范围而不是点状成像,使得成像位置模糊。

几何光学成像原理是根据光线沿直线传播以及反射、折射规律来描述物体在光学系统中的成像过程。

它为光学系统的设计提供了理论依据,并且通过研究像差可以指导我们优化光学系统,提高成像质量。

1几何光学(2)

1几何光学(2)

n′ ′ s0 = − r ; s0 = n QC n′ = r r= MC n MC n =r r= n′ Q′C
n r n′ n′
M
i′
i
′ Q
′ n
• O
n n′ n

′ u •u
Q

C
n
⇒ ∠QMC ≈ ∠MQ′C
显微镜就是工作于齐明点 调节镜头与样品的工作距 显微镜就是工作于齐明点----调节镜头与样品的工作距 就是工作于齐明点 离,以使样品台上的小物处于齐明点上。 以使样品台上的小物处于齐明点上 小物处于齐明点
色像差及其矫正
1 1 f =( − ) − n 1 r r 1 2
− 1
单球面折射系统近轴成像 折射系统 单球面折射系统近轴成像
1. 单球面折射系统的近轴成像公式
2. 单球面折射系统的焦点 3. 高斯公式 4. 单球面折射系统的放大率
对单球面折射 一般而言只能实现傍轴成像, 折射, 对单球面 折射 , 一般而言只能实现傍轴成像 , 但是 齐明点(一对特殊共轭点)可以宽光束严格成像。 齐明点(一对特殊共轭点)可以宽光束严格成像。
这对共轭点,有若干特殊的性质:从Q发出一入射光线,倾角为u, 折射角为i′,则u = i′;此时出射光线倾角u′ = i;当u = π 2 → i′ = π 2 , 折射光线恰好沿球面在该点的切线方向
理想光学系统: 理想光学系统:从物点到像点的各光线的光程相 等,物像之间的等光程性 F: MAX ? MIN ? CON. :
3. “物” “像”的定义 物
实物 虚物 实像 虚像 未经光学系统变换的发散同心光束的心,称为实物. 未经光学系统变换的发散同心光束的心,称为实物. 光学系统变换的发散同心光束的心 未经光学系统变换的会聚同心光束的心 称为虚物. 光学系统变换的会聚同心光束的心, 未经光学系统变换的会聚同心光束的心,称为虚物. 光学系统变换后的会聚同心光束的心,称为实像. 经光学系统变换后的会聚同心光束的心,称为实像. 光学系统变换后的发散同心光束的心,称为虚像. 经光学系统变换后的发散同心光束的心,称为虚像.

3-4共轴系统成像

3-4共轴系统成像
3-4 共轴系统成像
第3章 几何光学 共轴球面系统:由中心在同一直线上的两个或 更多球面构成的光学系统.
主光轴:诸球面中心所在同一直线.
成像:在近轴区域,只要物空间是单心光束, 则经共轴球面系统成像后仍为单心光束.即共轴球面 系统对近轴区域的物能成完善的像. 一 焦点 主平面 成像公式 1、焦点:物空间与主光轴平行的光线在像空间
i i 有 LN RN P R3 P2 R2 P R1 L1 A L1 3 1
其中;A—称为系统矩阵.(可用矩阵乘法计算)
a11 a12 11 12 11 12 aij i1 1 j i 2 2 j a a 21 22 21 22 21 22 i = 1 , 2 j = 1 , 2
S’k
-sk-1
nk 1
dk
S’k-1
sk
nk 1 nk 1 yk 1 ( ) yk 1 k 1 sk 1 sk 1
nk 1uk 1 nk 1uk 1 yk 1 k 1
yk 1 0 yk 1
1 0 k 1 1
因为两空间主平面是共扼的,所以系统的垂直 放大率 β = 1 .
3-4 共轴系统成像
证明:如图
M
第3章 几何光学
M’
h h h h F’ H H’ h s F h’ h’ h’ f tan -x -f f’ x’ x tan( ) -s s’ f (此系统的原点必需以两个主 x 若物点在主平面上, 平面为原点.)
从几何光学角度,共轴球面光学系统成像,不 过是光在光学系统的各面上折(反)射的结果.如果 能确定各面上折(反)射的光路,最终可得光学系 统的成像性质.光路计算方法很多,逐面计算加上相 邻面过渡条件的方法,思路简单,但在用计算机进 行光学系统设计中不甚方便.利用矩阵代数计算光路 为共轴球面光学系统计算机设计提供了途径. 设;共轴球面光学系统有 N 个折(反)射面, 如图. 计算在系统中任意两个相邻面上光线的折射.

理论力学中的光学系统与成像分析

理论力学中的光学系统与成像分析

理论力学中的光学系统与成像分析光学系统在理论力学中扮演着重要的角色。

它是研究光传播、成像和光学现象的重要工具。

本文将重点介绍理论力学中的光学系统及其成像分析。

一、光学系统的组成光学系统由多个基本元件构成,包括光源、透镜和物体。

光源是产生光线的物体,透镜是光线传播的介质,物体是光线所要成像的对象。

这些基本元件相互作用,形成一个完整的光学系统。

二、光学系统的成像原理光学系统中的成像原理主要有两种,分别是几何光学和波动光学。

几何光学基于射线光学的假设,将光线视为直线传播,通过几何形状和位置的关系来描述光的传播和成像。

而波动光学则是基于波动理论,将光视为波动现象,通过波动方程和干涉、衍射等现象来描述光的传播和成像。

三、光学系统的成像分析方法在理论力学中,我们可以使用不同的方法对光学系统的成像进行分析。

其中,光线追迹法是一种常用的方法,它基于几何光学原理,通过追踪入射光线和出射光线的路径,计算物体的像的位置和大小。

光线追踪法可以应用于各种光学系统,如单透镜系统、透镜组系统等。

另外,我们还可以使用矢量法来分析光学系统的成像。

矢量法是一种基于几何和矢量运算的分析方法,它通过将光的传播和成像过程转化为矢量运算的问题,从而得到物体的像的位置和大小。

矢量法在光学系统的定量分析中具有重要的意义。

四、光学系统中的畸变和校正光学系统在成像过程中,常常会出现畸变现象,包括畸形畸变和色差畸变。

畸形畸变是由光学系统的构造导致的,主要表现为物体的像形不规则,形状扭曲等。

而色差畸变是由光通过透镜或透镜组时,不同波长的光经过折射引起的,主要表现为物体边缘的色差。

为了校正这些畸变,我们可以采取一些方法,如使用非球面透镜、添加滤光片等。

五、光学系统中的像差和衍射现象除了畸变外,光学系统还会出现像差和衍射现象。

像差是光学系统在成像过程中引起的光线偏离理想成像位置的现象,主要包括球差、散光、像散等。

像差会影响物体的像质量,因此在实际应用中需要对其进行校正。

(完整版)几何光学基本定律和成像概念

(完整版)几何光学基本定律和成像概念
表述三:
物点及其像点之间任意两条光路的光程相等
n1 A1O n1OO1 n2O1O2
...
n
' k
Ok
O
'
n
' k
O
'
Ak'
n1 A1E n1EE1
n2 E1E2
... nk' Ek E '
nk' E ' Ak'
C
3. 物(像)的虚实
根据同心光束的汇聚和发散,像物有虚实之分 实像:
由实际光线相交所形成的点为实物点或实像点 虚像:
实物成实像 虚虚物物成成实实像像
实物成虚像 虚虚物物成成虚虚像像
1.3 光路计算与近轴光学系统
一、基本概念与符号规则!!!(图示)
光轴:通过球心C的直线。 顶点O:光轴与球面的交点。 子午面:通过物点和光轴的截面。 物方截距L:顶点O到光线与光轴交点A的距离。 物方孔径角U:入射光线与光轴的夹角。 像方截距L’:顶点O到出射光线与光轴的交点的距离。 像方孔径角U’:出射光线与光轴的夹角
物空间和像空间: 分别指的是物和像所在的空间。
共轴光学系统: 若光学系统中各个光学元件的表面曲率中心在一条直线上, 则该光学系统称为共轴光学系统。
光轴: 各光学元件表面曲率中心的连线为光轴。
2. 完善成像条件
表述一:
入射波面是球面波时,出射波面也是球面波
表述二:
入射光是同心光束时,出射光也是同心光束
平面光波与 平行光束
球面光波与 发散光束
球面光波与 会聚光束
二、 几何光学的基本定律
1 光的直线传播定律
描述光在同一介质中的传播规律
在各向同性的均匀介质中光沿直线进行传播。

初中物理竞赛教程 光学中的成像问题

初中物理竞赛教程 光学中的成像问题

物理竞赛教程浅谈光学中的成像问题光在同一种均匀介质中传播时遵循光的直线传播规律,若从一种介质进入另一种介质,在其介面上要同时发生反射与折射现象,其光线分别遵循光的反射定律与光的折射定律,这就是几何光学的三大传播规律.在高中物理竞赛辅导的过程中,经常会遇到有关物体成像问题.光学中的成像问题可归结为两类:一类是反射成像,也就是反射光直接相交成像(实像),或反射光延长线相交成像(虚像 );另一类是折射成像,也就是折射光直接相交成像(实像),或折射光延长线相交成像(虚像 ). 现将光学竞赛中涉及的成像问题作一归类分析.一、 反射镜与反射成像反射镜遵循光的反射定律,如果反射面是平的我们就称是平面镜,如果反射面是球面的一部分,这种镜叫球面镜.反射面如果是凹面的叫凹面镜,简称凹镜;反射面是凸面的叫凸面镜,简称凸镜.它们有共同的成像规律: 成像公式:f v u 111=+=R2(R 为球面镜的曲率半径) 像的长度放大率:uv f u f AB B A m =-==11 这些公式只适用于近轴光线成像.u 、v 的符号法则与透镜类似,即实物u 为正值,虚物u 为负值;实像v 为正值,虚像v 为负值;凹镜的焦距f>0,凸镜的焦距f<0.而对于平面镜可看作是球面镜的一个特例,即曲率半径R=∞.这样,我们可得到平面镜成像的简单公式:1,=-=m u v二、 折射镜与折射成像棱镜与透镜的成像规律遵循光的折射定律,属于折射镜.这里只谈薄透镜成像的规律.薄透镜是一种理想化的物理模型,它们两表面的曲率中心之间的距离大于它两个顶点之间的距离.对近轴光线,其成像规律与球面镜相似. 成像公式:fv u 111=+ 其中透镜的焦距)11)(1(121r r n f +-= (1r 、2r 是二球面的半径,n 是透镜的折射率) 像的长度放大率:uv f u f AB B A m =-==11 u 、v 的符号法则:实物u 为正值,虚物u 为负值;实像v 为正值,虚像v 为负值;凸透镜的焦距f>0,凹透镜的焦距f<0.三、 光具组成像各个光学元件组成的光光系统称为光具组.解物体通过光具组成像这类问题的总原则是:物体通过前一光学元件所成的像就是后一光学元件的物,遇到平面镜、球面镜等反射镜,就考虑光线折回后再成像这一点.具体地说,可有以下几个结论:1、后一次成像的物距(有正负)等于前后两光具的距离(总为正)与前一次成像的像距(有正负)之差,即n n n v d u -=+12、最终成像位置由最后一个光具所成像的位置决定.0>n v 表示最终成像在最后光具沿主轴的正向侧,0<n v 表示最终成像在最后光具的反向侧.3、最终成像的虚实,由最后一次成像决定,0>n v 为实像,0<n v 为虚像.4、总放大系数等于各次放大系数的乘积,即 321m m m m =5、最后成像正倒的确定:先根据单次成像时,实物成实像与虚物成虚像为倒立,实物成虚像与虚物成实像为正立的原则确定正、倒立的总次数,再根据倒立了偶数次则最终成像正立、倒立了奇数次则最终成像倒立确定最终成像的正倒情况.如果各光学元件之间的距离0=d ,那么整个光具组的总焦距f 与各个光学元件的焦距f 1、f 2、f 3之间存在如下的关系: +++=3211111f f f f .我们就可应用整个光具组成像法解决成像问题.四、 应用举例例1:一平行光沿薄平凸透镜的主光轴入射,经透镜折射会聚于透镜后f=48cm 处,透镜的折射率为n=1.5.若将此透镜的凸面镀银,物置于平面前12cm 处,求最后所成像的位置. 分析与求解:根据透镜的焦距公式)11)(1(121r r n f +-=, 而r 1=∞,21)1(1r n f -= 解得凸球面的半径r 2=24cm. 凸面镀银后,相当于有三个光学元件组合成像,即先通过透镜折射成像,再经球面镜反射成像,最后再经透镜折射成像. 先经透镜成像111111v u f +=,得cm v 161-= 再经凹面镜成像cm u 162=,22222111r f v u ==+ 得cm v 482=最后又经透镜成像cm u 483-= ,331111v u f +=,cm v 243=. 即最后成像在透镜前24cm 处.此题还有另外一种解法.由于三个光学元件之间的间距为0,设整个光学系统的总焦距为f,则有3211111f f f f ++=,得光具的总焦距为f=8cm.再由成像公式f v u 111=+,811121=+v ,得cm v 24= 例2:在焦距为15cm 的会聚透镜左方30cm 处放一物体,在透镜右侧放一垂直于主轴的平面镜,试求平面镜在什么位置,才能使物体通过此系统所成的像距离透镜30cm?分析与求解:设平面镜与透镜的距离为d,物距cm u 301=,焦距cm f 151=111111v u f +=, 得cm v 301=. 由平面镜成像时cm d u )30(2-=,cm d v )30(2-=最后又经透镜成像,cm d v d u )302(23-=-=331111v u f += 解得452)302(153--=d d v 若成实像cm v 303=, 此时d=30cm若成虚像cm v 303-=, 此时d=20cm例3:设有两个薄凸透镜o 1和o 2,其焦距分别为f 1=20cm,f 2=30cm,两者共轴,相距d=35cm,在主光轴上透镜o 1左方100cm 处垂直于主轴放一长为4cm 的物体,求最终成像的位置、大小和虚实情况.分析与求解:物体先经透镜o 1成像,物距cm u 1001=,焦距cm f 201= 由111111v u f +=, 得cm v 251=.放大率25.0211==u v m再经透镜O 2成像,cm cm d u 10)25(2=-=,焦距cm f 302= 由222111v u f +=,得cm v 152-=.放大率5.1222==u v m 最终成像的总放大率375.021==m m m ,像长为1.5cm 倒立的虚像,像在透镜O 2左方15cm 处.例4、一平凸透镜焦距为f,其平面上镀了银,现在其凸面一侧距它2f 处,垂直于主轴放置一高为H的物,其下端在透镜的主轴上.1、用作图法画出物经镀银透镜所成的像,并标明该像是虚、是实.2、用计算法求出此像的位置和大小.分析与求解:1. 用作图法求得物AP ,的像''A P 及所用各条光线的光路如图预解16-5所示.说明:平凸薄透镜平面上镀银后构成一个由会聚透镜L 和与它密接的平面镜M 的组合LM ,如图所示.图中O 为L 的光心,'AOF 为主轴,F 和'F 为L 的两个焦点,AP 为物,作图时利用了下列三条特征光线:(1)由P 射向O 的入射光线,它通过O 后方向不变,沿原方向射向平面镜M ,然后被M 反射,反射光线与主轴的夹角等于入射角,均为α.反射线射入透镜时通过光心O ,故由透镜射出时方向与上述反射线相同,即图中的'OP .(2)由P 发出已通过L 左方焦点F 的入射光线PFR ,它经过L 折射后的出射线与主轴平行,垂直射向平面镜M ,然后被M 反射,反射光线平行于L 的主轴,并向左射入L ,经L 折射后的出射线通过焦点F ,即为图中的RFP .(3)由P 发出的平行于主轴的入射光线PQ ,它经过L 折射后的出射线将射向L 的焦点'F ,即沿图中的'QF 方向射向平面镜,然后被M 反射,反射线指向与'F 对称的F 点,即沿QF 方向.此反射线经L 折射后的出射线可用下法画出:通过O 作平行于QF 的辅助线'S OS ,'S OS 通过光心,其方向保持不变,与焦面相交于T 点,由于入射平行光线经透镜后相交于焦面上的同一点,故QF 经L 折射后的出射线也通过T 点,图中的QT 即为QF 经L 折射后的出射光线.上列三条出射光线的交点'P 即为LM 组合所成的P 点的像,对应的'A 即A 的像点.由图可判明,像''A P 是倒立实像,只要采取此三条光线中任意两条即可得''A P ,即为正确的解答.2.计算物AP 经LM 组合所成像的位置、大小.解法一:按光具组整个系统成像计算像的位置和大小.由于三个光学元件之间的间距为0,设整个光学系统的总焦距为总f .这三个光学元件分别是两个透镜和一个平面镜. 根据3211111f f f f ++=总,其中f f f ==31,=2f ∞ 解得光具组的总焦距2f f =总 再由成像公式总f v u 111=+,得 f v 32= 总的放大率31==u v m ,像高为物高的13. 解法二:按陆续成像计算物AP 经LM 组合所成像的位置、大小.物AP 经透镜L 成的像为第一像,取12u f =,由成像公式可得像距12v f =,即像在平向镜后距离2f 处,像的大小'H 与原物相同,'H H =.第一像作为物经反射镜M 成的像为第二像.第一像在反射镜M 后2f 处,对M 来说是虚物,成实像于M 前2f 处.像的大小H ''也与原物相同,H H H '''==.第二像作为物,而经透镜L 而成的像为第三像,这时因为光线由L 右方入射,且物(第二像)位于L 左方,故为虚物,取物32u f =-,由透镜公式33111u v f+=可得像距 333203fu v f u f ==>- 上述结果表明,第三像,即本题所求的像的位置在透镜左方距离23f 处,像的大小H '''可由3313v H H u '''==''求得,即 1133H H H '''''==,像高为物高的13. 例5、两个薄透镜L 1和L 2共轴放置,如图所示.已知L 1的焦距f 1=f,L 2的焦距f 2=-f,两透镜间距离也是f.小物体位于物面P 上,物距u 1=3f.(1)小物体经这两个透镜所成的像在L 2的____边,到L 2的距离为____,是____像(虚或实)、____像(正或倒),放大率为____.(2)现在把两透镜位置调换,若还要给定的原物体在原像处成像,两透镜作为整体应沿光轴向____边移动距离____.这个新的像是____像(虚或实)、____像(正或倒),放大率为____.分析与求解:(1)由题意知:f u 31=,f 1=f11111v u f += 得f v 5.11= 而ff f v d u 5.05.112-=-=-=22111v u f +=-,得f v =2 放大率15.035.121=⨯==ff f f m m m 所以像成在L 2的右边,到L 2的距离为f,像的放大率为1,是倒立的实像.(2)根据光路可逆原理及共轭成像的规律,物距1u 应为f,最终的像距为3f.整个光具组应向左移动2f,成倒立等大的实像.一道光学竞赛试题的解法探析2004年第21届全国中学生物理竞赛预赛题试卷第6题,此题涉及有关单球面折射成像问题.而原试卷评分标准中的分析与解答显得非常繁琐,计算任务艰巨,学生在应试时很难解答完整.笔者参加了这次预赛试题的评卷工作,发现很多学生对该题没有解答,有的同学只是乱画了一些光路图,没有形成正确的解题的思维程序.本文就从不同的角度谈谈该题的一些解法.原题(2004年第21届全国中学生物理竞赛预赛题试卷第6题)一种高脚酒杯,如图1所示.杯内底面为一凸起的球面,球心在顶点O 下方玻璃中的C 点,球面的半径R = 1.50cm,O 到杯口平面的距离为8.0cm .在杯脚底中心处P 点紧贴一张画片,P 点距O 点6.3cm .这种酒杯未斟酒时,若在杯口处向杯底方向观看,看不出画片上的景物,但如果斟了酒,再在杯口处向杯底方向观看,将看到画片上的景物.已知玻璃的折射率56.11=n ,酒的折射率34.12=n .试通过分析计算与论证解释这一现象.一、利用单球面折射成像公式直接求解.光在单球面上从一种介质折射进入另一种介质时,其成像公式可表示为: r n n L n L n -=-```.式中L 和`L 分别为物距和像距,n 和`n 分别是物方和像方的介质的折射率,r 为球面的半径,其中L 、`L 和r 都含有符号.如图2所示,并且我们这样来规定它的符号法则:①以球面顶点(O )为参考点②都以实际光线进行方向做为参考方向,如果该距离与实际光线方向一致,那么该距离为“+”,反之为“负”.在图2中,C 为球面的球心,根据符号法则以球面顶点O 为参考原点,因为S 点在球面的左方,故实际光线方向应该是由左到右为距离的正方向.物距L 为OS 与实际光线参考方向相反,取负号;像距`L 为OS `与实际光线参考方向相同,取正号;而球面半径r 为OC 方向与实际光线参考方向相反,取负号.1.未斟酒时的成像规律杯底凸球面的两侧介质分别为玻璃和空气,其折射率分别为:56.1=n 1`=n 物距cm L 3.6-= cm r 50.1-=.由单球面成像公式r n n L n Ln -=-```得: 50.156.113.656.11`--=--L 解得cm L 9.7`=,像距为“正”的7.9说明像在符号法则的正方向.如图3所示,由此可见,未斟酒时,画片上景物所成实像在杯口距O 点7.9cm 处.已知 O 到杯口平面的距离为8.0cm,当人眼在杯口处向杯底方向观看时,该实像离人 眼太近,所以看不出画片上的景物.2.斟酒后的成像规律杯底凸球面两侧介质分别为玻璃和酒,其折射率分别为:56.1=n 34.1`=n 物距cm L 3.6-= cm r 50.1-= 由单球面成像公式r n n L n L n -=-```得: 50.156.134.13.656.134.1`--=--L解得cm L 13`-=像距为“负”的13cm 说明像在符号法则的负方向.如图4所示.由此可见,斟酒后画片上景物成虚像于S '处,距O 点13cm .即距杯口21cm.虽然该虚像还要因酒液平表面的折射而向杯口处拉近一定距离,但仍然离杯口处足够远,所以人眼在杯口处向杯底方向观看时,可以看到画片上景物的虚像.二、利用近轴光线成像规律求解1.未斟酒时的成像规律杯底凸球面的两侧介质的折射率分别为n 1和n 0=1.在图5中,P 为画片中心,由P 发出经过球心C 的光线PO 经过顶点不变方向进入空气中;由P 发出的与PO 成角的另一光线PA 在A 处折射.设A 处入射角为i ,折射角为r ,半径CA 与PO 的夹角为,由折射定律和几何关系可得: rn i n sin sin 01=αθ+=i在△PAC 中,由正弦定理,有iPC R sin sin =α 考虑近轴光线成像,、i 、r 都是小角度,则有i n n r 01= i PCR =α 由以上各式中的n 0、n 1、R 的数值及cm CO PO PC 8.4=-=,可得i 31.1=θ i r 56.1=因此有θ>r由上式及图5可知,折射线将与PO 延长线相交于P ',P '即为P 点的实像.画面将成实像于P '处.在△CA P '中,由正弦定理有 r P C R sin sin '=β 又有βθ+=r 考虑到是近轴光线,可得:R r r P C θ-=' 又有R P C P O -'='由以上各式并代入数据,可得cm P O 9.7='由此可见,未斟酒时,画片上景物所成实像在杯口距O 点7.9cm 处.已知O 到杯口平面的距离为8.0cm,当人眼在杯口处向杯底方向观看时,该实像离人眼太近,所以看不出画片上的景物.2.斟酒后的成像规律杯底凸球面两侧介质分别为玻璃和酒,折射率分别为n 1和n 2,如图6所示.考虑到近轴光线有:i n n r 21= 代入n 1和n 2的值,可得i r 16.1=由此我们知道 θ<r由上式及图6可知,折射线将与OP 延长线相交于P ',P '即为P 点的虚像.画面将成虚像于P '处.计算可得:R rr P C -='θ 又有R P C P O +'='由以上各式并代入数据得 P O '=13cm由此可见,斟酒后画片上景物成虚像于P'处,距O点13cm.即距杯口21cm.虽然该虚像还要因酒液平表面的折射而向杯口处拉近一定距离,但仍然离杯口处足够远,所以人眼在杯口处向杯底方向观看时,可以看到画片上景物的虚像.。

几何光学成像

几何光学成像

1 1 2 由球面反射成像公式 ' s s r 得 : s ' 0.1 m
最后像是处于镜后0.1米处的虚像。
一个折射率为1.6的玻璃哑铃,长20cm,两端的曲率半径 为 2cm。若在离哑铃左端5cm处的轴上有一物点,试求像的位 置和性质。 n n [解]:两次折射成像问题。
2
2

2
n 2 (s r ) 2
n 2 ( s r ) 2
1 1 s2 s2 2 ] 4r sin [ 2 2 2 2 2 2 2 2 n ( s r ) n (s r ) n ( s r ) 2 n (s r )
Φ不同,s’不同,即从Q点发出的同心光束不能保持同心性
s1
-s2’
s2
代入数据 16cm
2、P1’为物,对球面O2折射成像
已知: s2 20 16 4cm, r2 2cm,
有: s
' 2
n'
n' n n s2 r2
n 1.6, n ' 1
' s2 10cm
§3 薄透镜
3.1薄透镜
其中:P、P’称为共轭点。
1.3 物像之间的等光程性 物点与像点之间的光程总是平稳的, 即不管光线经何路径,凡是由物点通过 同样的光学系统到达像点的光线,都是 等光程的。
§2.共轴球面组傍轴成像
理想光具组



精确成像的必要条件是物上一点与像上一点对应。 使同心光束保持其同心性不变的光具组为理想光具 组 理想光具组是成像的必要条件
1、P为物,对球面O1折射成像P1’
已知 : s1 5cm , r1 2cm , n 1, n' 1.6 n' n n' n 由折射成像公式 ' s1 s1 r1

第一章几何光学基本定律与成像概念

第一章几何光学基本定律与成像概念
❖ ② 垂直于光轴的平面物所成的共轭平面像的几何形状完 全与物相似。即在整个物平面上无论哪一部分,物与像的 大小比例等于常数,即垂直于光轴的同一平面上的各部分 具有相同的放大率。
❖ ③ 一个共轴理想光学系统,如果已知两对共轭面的位置 和放大率,或者一对共轭面的位置和放大率,以及轴上的 两对共轭点的位置,则其它一切物点的像点都可以根据这 些已知的共轭面和共轭点来表示。
仪器科学与光电工程学院
基本概念
波面(波阵面):光波向周围传播,在某一瞬时, 其振动相位相同的点所构成的曲面称为波面。光 的传播即为光波波面的传播,即沿着波面法线方 向传播。
平面波(在距发光点无限远处),对应平行光束 波面分: 球面波(以发光点为中心的同心球面),对应同心光束
任意曲面波(像差作用实际光学系统使同心光束不同心)
仪器科学与光电工程学院
几何光学基本定律
❖ 实验证明: (1) 反射光线和折射光线都在入射面内, 它们与入射光分别在法线两侧。
(2)反射角等于入射角。 II
II
(3)折射角的正弦与入射角的正弦比与
入射角无关,仅由两种介质的性质决定。
即 nsiIn nsiIn
当n’=-n时,折射定律就转化为反射定律

L2 B’
A1
A
A’
B1
对于L1而言,A1B1是AB的像;
对L2而言,A1B1是物,A’B’是像,则A1B1称为中 间像
仪器科学与光电工程学院
※物所在的空间为物空间,像所在的空间为 像空间,两者的范围都是(-∞,+∞)
※ 通常对于某一光学系统来说,某一位置 上的物会在一个相应的位置成一个清晰的像, 物与像是一一对应的,这种关系称为物与像 的共轭。
仪器科学与光电工程学院
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何光学光的折射与反射O435.12006031858对运动镜面上的光反射行为的研究=Study o n the actio n of light r eflectio n o n the mov ement mirr or[刊,中]/朱孟正(淮北煤炭师范学院物理系.安徽,淮北(235000,赵春然淮北煤炭师范学院学报. 2006,27(1. 22 25利用四维波矢量的洛伦兹变换,对光在运动镜面上的反射行为作了详细的分析,推导出此情形下入射角与反射角、入射光频率与反射光频率之间的关系。

图5参4(严寒光学系统、成像与分析TH7032006031859离轴反射式光学系统设计=Desig n o f reflect ive off ax is sy stem[刊,中]/伍和云(安徽建筑工业学院数理系.安徽,合肥(230022,王培纲光电工程. 2006,33(1. 34 37提出通过光瞳和视场离轴,实现无中心遮拦的离轴反射式光学系统设计方法。

在同轴三反射光学系统基础上,将光瞳和视场适当离轴,实现镜间遮拦的消除。

分主镜或次镜为系统孔径光阑两种情况,导出同轴三反射光学系统初始像差公式和初始结构参数计算公式。

由三反射系统成像性质,进一步总结无焦光路条件。

根据设计理论计算离轴三反射系统初始结构,利用Zemax优化得到无中心遮拦的离轴三反射空间观测望远镜。

入瞳320nm,视场( 0.3 ( 0.6 ,焦距1800mm。

图7表4参5(于晓光TH7032006031860反射折射多分辨率全向相机设计=Desig n of multi r eso lut ion omni dir ect ional camera based on catadioptric pr inci ple[刊,中]/李青(西安交通大学人工智能与机器人研究所.陕西,西安(710049,郑南宁光电工程. 2006, 33(2. 115 118为了满足智能车辆自动驾驶的需要,提出了一种真正单视点、多分辨率的反射折射式系统,作为车载全向相机。

该系统由光学反射器件和折射器件组成,由于使用了椭圆锥镜面的光学反射器件,故其是真正单视点的,能够为车辆前方场景提供比侧方更高的分辨率,同时具有宽广的视场。

相机原型和仿真实验结果表明,它的水平分辨率和垂直视场随观察方位角的变化而变化,垂直分辨率不随方位角变化,可实现6倍的多分辨率和180 的大视场。

图4参8(杨妹清TH7032006031861大视角成像系统的快速精确校正=A simple method of ac curate aberr ation in a camera w ith lar ge field lens[刊,中]/张金利(南京大学电子科学与工程系.江苏,南京(210093,王元庆光电子激光. 2006,17(2. 158 161在成像系统中,非线性几何畸变的高精度数字校正仍然是一个未能很好解决的问题。

以径向几何畸变为主的非线性几何畸变模型为基础,通过对影响畸变参数测量精度的各种因素的分析,提出了一种不依赖于成像系统内部参数的迭代算法。

实验表明,该方法能够精确地推算出实现畸变校正所需的参数,校正精度与CCD的采样量化值相当。

图2表3参6(严寒T H7032006031862两种稀疏孔径系统的成像研究=Imaging r esear ch of two kinds o f sparse aper ture sy stems[刊,中]/吴泉英(苏州科技学院实验中心.江苏,苏州(215009,钱霖光学精密工程. 2006,14(1. 26 33介绍一种由九个子镜构成的复合三子镜稀疏孔径系统及其结构形式。

将复合三子镜和同样由九个子镜构成的典型G OL A Y9稀疏孔径系统进行比较来研究两种稀疏孔径系统的成像情况。

通过比较它们的结构特点与调制传递函数,并计算两种稀疏孔径系统的等效直径和实际等效直径,对不同填充因子的两种稀疏孔径模拟成像和维纳滤波,用图像的标准差和对比度指标对两种系统的成像像质进行评价,给出了评价结果。

图13表2参10(严寒T H7032006031863光学自由曲面误差评定中匹配方法的研究=Study o f matching methods for er ror eva luation o f o pt ical free for m surface[刊,中]/杜建军(哈尔滨工业大学深圳研究生院.广东,深圳(518055,高栋光学精密工程. 2006, 14(1. 133 138研究了光学自由曲面轮廓误差评定中被测曲面和设计曲面的匹配方法。

在曲面中心重合和近似法矢重合的基础上,提出了五点预定位法,即先定义曲面中心,然后利用搜索的方法得到相互间距离最大的4个角点,通过这5个点的匹配实现曲面的预定位。

在精调整中,提出了二次优化方法,即综合运用最小二乘法和最小条件原则进行曲面的高精度匹配,并进行了仿真实验。

实验结果表明,匹配精度可达纳米级。

图6参10(严寒T H7032006031864含衍射光学元件的薄透镜系统初级像差的P W C表示= P W C pr imar y aber ration ex pression of thin lens sy stem in cluding diffr active optical elements[刊,中]/曾吉勇(清华大学精密仪器系.北京(100084,金国藩光学学报. 2006,26(1. 96 100为了形成与中国传统光学设计体系相衔接的折衍混合光学设计的理论和方法,研究了P W C表示的折衍混合薄透镜系统初级像差理论,建立了赛德尔像差和数与P、W、C的函数关系,以及P 、W 、C 与衍射透镜结构的函数关系。

采用P W C表示的初级像差理论和高斯折射率设计方法,获得了折衍混合消色差李斯特型中倍显微物镜的初始结构,结果表明其赛德尔像差和数的理论值与计算值相吻合,从而验证了折衍混合光学系统P W C表示的初级像差理论和高折射率设计方法。

图1表4参12(于晓光T H7032006031865复合三子镜稀疏孔径光瞳结构的研究=R esear ch on pupil config uratio n of dual t hr ee sub apertur es spar se aper tur e system[刊,中]/吴泉英(苏州大学江苏省现代光学技术重点实验室.江苏,苏州(215006,钱霖光学学报. 2006,26(2. 187 192给出了基于实际空间截止频率 R和子孔径直径的稀疏孔径结构优化准则,对复合三子镜稀疏孔径结构进行优化,分析了优化前后的调制传递函数变化,并对优化结构的复合三子镜稀疏孔径系统模拟成像和维纳滤波,比较优7化前和优化后稀疏孔径结构的成像情况。

结果表明结构优化是稀疏孔径光学系统设计的一个关键部分,应用的优化准则对稀疏孔径结构优化是合理的,通过结构优化可以使复合三子镜稀疏孔径系统的成像质量得到改善。

图9表1参12(于晓光TH7032006031866空间光学系统的杂散光分析=A nalysis of str ay light in space optical sy st em[刊,中]/黄强(中科院上海技物所.上海(200083 红外. 2006,27(1. 26 33介绍了空间光学系统的杂散光的来源,以及对红外光学系统成像质量的影响。

利用已有的光学系统模型讨论了杂散光的计算和分析方法。

主要介绍了蒙特卡罗法和光线追迹法在解决问题方面的作用,用具体的系统模型说明了杂散光计算和分析的假设条件、模型建立和计算过程等。

图9参9(严寒TH7032006031867宽视场有增益光学系统设计=Desig n of w ide F O V o pt ical sy stem wit h o pt ical g ain[刊,中]/何武光(电子科技大学物理电子学院.四川,成都(610054,吴健激光杂志. 2006,27(1. 27 28从激光探测告警光学系统的视场和光学增益出发,分析了浸没透镜的光学增益和像差特性。

针对激光告警设备设计了宽视场有增益光学系统视场角30 ,光学增益可达20倍以上,结构简单,对降低激光辐射源功率、增强探测距离有一定的意义,经分析该方案可行。

图3表2参8(严寒TH7032006031868离轴多程放大系统中光学设计的初步研究=P ilo t study of optical design in off ax is and multi pass amplificat ion sy s tems[刊,中]/王方(中物院激光聚焦研究中心,高温高密度等离子体物理国家级重点实验室.四川,绵阳(621900,朱启华强激光与粒子束. 2007,17 (12. 1843 1846通过对离轴多程放大系统的光学设计的分析,结合三大高功率固体激光装置的实际应用情况,指出在此类系统的光学设计中应重视抑制鬼点破坏和控制系统像差。

设计的关键在于确定合适的透镜F数,并通过控制透镜的曲率半径和倾斜角度,在保证无鬼点破坏的情况下使得系统像差较小。

图6表1参9(严寒像差、像质评价O435.22006031869双贴合无光焦度校正板在主反射镜前的两镜系统的像差特性=A berr ation character istics of a two mir ror system with a tw o lens zero pow er co rrecto r placed befor e t he pri mar y mirr or[刊,中]/何宗平(合肥运涛光电科技有限公司.安徽,合肥(230031,胡明勇量子电子学报. 2006,23(1. 31 36讨论了双贴合无光焦度校正板放在主镜前的双反射球面系统,根据像差理论分析了消像差的条件,研究了系统中各种参数的变化对系统高级残余像差的影响。

结果表明主镜的相对孔径越大,系统的残余像差增加;正透镜在前的校正板结构优于负透镜在前的结构;选择合适的校正板单透镜的光焦度,可使系统的高级残余像差最小。

图7表1参10(王淑平光学镜头、光学零部件T H7032006031870 Coons曲面在汽车前照灯多曲面反射镜设计中的应用= Desig n o f multi sur face reflecto r headlamp using Coons surface[刊,中]/刘海晨(东南大学机械工程系.江苏,南京(210096,汤文成东南大学学报(自然科学版. 2006,36(1. 63 66为使Co ons曲面的形状容易调整,采用Bernstein基函数来构造跨界导矢,这样曲面4条边界上的跨界导矢可以分别通过4个矢量,只需给定4个矢量就可以控制Coo ns曲面的形状,并采用3个标量作为控制量,分别控制曲面凹陷的深浅和偏向。

相关文档
最新文档