光电二极管及光电三极管教程
光电二极管常见接脚方法

光电二极管常见接脚方法
光电二极管(Photodiode)是一种将光信号转换为电流或电压信号的半导体器件。
它通常有不同的接脚方法,其中最常见的是两极(anode和cathode)接脚和三极(anode、cathode 和中间引脚,可能是cathode或anode)接脚。
以下是这两种常见的接脚方法:
1.两极接脚:
●Anode(阳极):光电二极管的一个引脚是阳极,即正极,通常用“A”或者“+”标识。
●Cathode(阴极):另一个引脚是阴极,即负极,通常用“K”或者“-”标识。
这种接脚方法适用于光电二极管直接产生电流输出的情况。
光照射到光电二极管上时,会产生电荷对,形成电流,流向阳极。
2.三极接脚:
●Anode(阳极):一个引脚是阳极,同样用“A”或者“+”标识。
●Cathode(阴极):另一个引脚是阴极,同样用“K”或者“-”标识。
●中间引脚(Output):第三个引脚通常是输出引脚,用于连接产生的电流或电压信号。
这种接脚方法适用于光电二极管产生的信号需要通过一个外部电路测量的情况。
中间引脚可以用作电流或电压输出的接口。
在实际应用中,具体的光电二极管型号和接脚方法可能会有所不同,因此使用时最好参考相关的数据手册或规格说明书以确保正确连接。
电工学教案-半导体二极管以及三极管

9
12
15.5.3 特性曲线
晶体管的输出特性曲线分为三个工作区:
(1)放大区(线性区)
(1)放大区
IC/mA
100
4
(输2出)特截性止曲区线的近似水平部分。
80
(3)饱和区_ 3
IC β IB
60
2
40
放大区
发射结处于正1向偏置;集电结处于反向偏2置0µA
IB=0 UCE/V
0
3
6
9
12
15.5.3 特性曲线
第15章 半导体二极管和三极管
哈尔滨工业大学
电工学教研室
返回
目录
15.1 半导体的导电特性 15.2 PN结 15.3 半导体二极管 15.4 稳压管 15.5 半导体三极管
15.1 半导体的导电特性
半导体:导电能力介乎于导体和绝缘体之 间的 物质。
半导体特性:热敏特性、光敏特性、掺杂特性
本征半导体就是完全纯净的半导体。
(2)截止区
IC/mA
100
4
IB=0曲线以下的区域为截止区
80
IB=0 时,IC=ICEO3〈0.001mA
60
2 对NPN型硅管而言,当UBE〈0.5V时,即已开40 始截止,为了截止可靠,常使UBE小于等于零。 截止区
1
20µA
IB=0
UCE/V
0
3
6
9
12
15.5.3 特性曲线
(3)饱和区 IC/mA
1 外加正向电压使PN结导通
变窄
P
N
I
内电场 方向
R
外电场方向
+–
PN结呈现低阻导通状态,通过PN结的电流 基本是多子的扩散电流——正向电流
光敏二极管与光敏三极管判别教案

授课日期
授课章节名称
项目教学:光敏二极管与光敏三极管判别
教学目标
知识目标:1、掌握光敏二极管、光敏三极管的性能与工作原理;
2、掌握光敏二极管与光敏三极管判别方法;
能力目标:1、会利用所学知识对应用实例进行分析;
2、能设计相应电路并进行电路分析。
情感目标:培养严谨的分析思维与合作学习的意识
教学重点
教学内容及程序设计
备注
教师活动
教学内容与步骤
学生活动
根据学生操作时间步骤9可增减
复习引入
新课讲解
引导思考
提出命题
引导分析归纳形成方案
巡视指导
组织探讨
巡视指导
提问
布置作业
1.对刚学过的光电元件进行复习引入所学知识;
2.对光敏二极管及光敏三极管的结构、原理和特性进行分析。
3.针对二脚光敏三极管与光敏二极管不易分辨引出探究项目:光敏二极管2CU2与光敏三极管3DU5判别。
1.掌握光敏二极管、光敏三极管的性能与工作原理;
2.探究光敏二极管与光敏三极管判别方法。
教学难点
1.电路进行分析;
更新补充
删节内容
1.判别方案研究
2.实际应用电路分析
教学手段
多媒体课件、实物训练、讨论法
教学方法
及
设计思路
针对高职学生的学习要求,以强化学生的逻辑分析与思维能力和实践操作技能为目的设计本项目。
4.提出测定需解决的问题。
5.根据控制变量法设计测定方案。(可同时复习万用表使用知识)
6.进行测定并纪录数据。
7.分析数据提出结论。
8.共同探讨得出最终结论。
9.每人根据结论进行验证
(可选择部分项目进行)
第六章2 光电二极管

I c Ib I p SE E
等效:光电二极管与普通晶体管的组合
二、特性参数 1、伏安特性: 1)电流大于二极管,mA量级,光放大作用; 2)零偏置时,输出电流微小; 3)要有合适的工作电压,工作线性范围与工作电压有 关。
Ic(mA)
E 增 大
Vce(V)
硅光电三极管的伏安特性曲线
三、工作模式 1、无基极引线:依靠光“注入”,把集电结光电二极管的 光电流加以放大 优点:暗电流小,适用于低速光电开关
2、有基极引线:能给其提供适当的基极偏流 优点: 1)可减小光敏三极管的发射电阻,改善弱光条件下的频率 特性; 2)使交流放大系数进入线性区,有利于调制光的探测。 四、应用:光电控制、光开关
基区空穴向 发射区的扩散可 忽略。
p
Vc
n
进入P 区的电 子少部分与基区的 空穴复合,多数扩 散到集电结。
发射结正偏, 发射区电子不断向 基区扩散,形成发 射极电流Ie。
光照下总的集电极电流为
I c Ib I cb 0
其中β为光电三极管的电流放大倍数,Ib为基极电流, Icb0 为无光照下集电结的反向饱和电流。 一般情况下, Ib>> Icb0
0.1-0.01 1000
大 小
二、光电二极管的特性参数 1、伏安特性: 光照下p-n结光电二极管的伏安特性可用下式表示
qV I L I 0 exp kT
ห้องสมุดไป่ตู้ 1 S E E
式中V为p-n结两端外加电压 1)光照后,光电二极管的伏安 特性曲线沿电流轴向下平移,平 移幅度与光照成正比。 2)在一定反向电压范围内,反 向电流的大小几乎与反向电压无 关,而在入射光照度一定条件下, 输出电流恒定。 IL(μA) V
二极管,三级管基础知识培训教材

PN结及其单向导电性
• PN结的形成 • PN结的单向导电性
PN结的形成
• 在一块晶凡两边分别形成P型和N型半导 体。 图中 代表得到一个电子的三价杂质(例如硼) 离子,带负电; 代表失去一个电子的五价杂 质(例如磷)离入带正电。由于P区有大量空穴 (浓度大),而N区的空穴极少(浓度小),因此空 穴要从浓度大的P区向浓度小的N区扩散。 P
在一定范围内,外电场愈强,正向电 流(由P区流向N区的电流)愈大,这时PN 结呈现的电阻很低。正向电流包括空穴电 流和电子电流两部分。空穴和电子虽然带 有不同极性的电荷,但由于它们的运动方 向相反,所以电流方向一致。外电源不断 地向半导体提供电荷,使电流得以维持。
PN结的单向导电性
• 若给PN结加反向电压,即外电源的正端接N区, 负端接P区,则外电场与内电场方向一致,也 破坏了扩散与漂移运动的平衡。 • 外电场驱使空间电荷区两侧的空穴和自由电子 移走,使得空间电荷增加,空间电荷区变宽, 内电场增强,使多数载流子的扩散运动难以进 行。但另一方面,内电场的增强也加强了少数 裁流于的漂移运动,在外电场的作用下,N区 中的空穴越过PN结进入P区, P区中的自由电 子越过PN结进入N区,在电路中形成了反向电 流(由N区访向P区的电流)。
半导体二极管
• • • • • 二极管的基本结构和类型 二极管的伏安特性 二极管的主要参数 二极管的应用 常用二极管类型
二极管的基本结构和类型
• 将PN结加上相应的电极引线和管壳,就成为半 导体二极管。 从P区引出的电极称为阳极(正 极),从N区引出的电极称为阴极(负极)。 • 按结构分二极管有点接触型和面接触型两类。
D
(c)符号
在使用二极管时,必须注意极性不能接错,否则 电路非但不能正常工作,还有毁坏管子和其他元件的 可能。
光电二极管的制作与应用

光电二极管的制作与应用随着科技的不断发展,现代社会中各种电子设备的应用越来越广泛,其中光电二极管是一种常见的电子元器件。
在无线通信、遥控器、光电测量等领域都有着广泛的应用。
本文将介绍光电二极管的制作与应用。
一、光电二极管的制作原理光电二极管是一种半导体元件,它被用来检测、转换和放大光信号。
与常用的半导体二极管相比,光电二极管还有着增强光感度的功能。
光电二极管通常由半导体材料制成,主要通过PN结实现光电效应。
以下是制作光电二极管的详细步骤:1. 半导体材料的选择:一般使用硅或者锗来制作光电二极管。
2. 用化学方法在半导体基片上形成n、p两种区域。
3. 焊接金属电极使形成n、p两种区域的半导体基片成为一个元器件。
4. 在元器件的正、负极间形成PN结,形成光电效应。
通过以上步骤,就成功制作出了光电二极管。
二、光电二极管的应用光电二极管具有灵敏度高、响应时间短、可靠性好等优点,因此广泛用于相关的电子设备,如:1. 遥控器:在家庭电器中,遥控器是一个常见的用途,它可以通过红外线与设备进行通信,从而控制电视、音响等设备的开关和音量。
2. 光电测量仪器:在光传感器行业中,光电二极管也有着广泛的应用。
光电二极管可以用来检测光的强度、光的频谱等。
3. 无线通信:光电二极管在光通信中可以用来接收或解调光信号,从而传输信号。
4. 路灯:由于光电二极管具备低功耗、长寿命、抗干扰等优点,因此它也被广泛应用于路灯传感器。
三、光电二极管的未来发展随着科技的不断进步,光电二极管的研究也在不断深入。
未来,它将在许多领域得到更为广泛的应用。
例如,光电二极管可以用于医学影像、卫星通讯、太阳能电池等领域。
未来,应该会有更多的光电二极管应用于智能照明、虚拟现实、自动驾驶等新兴领域。
总之,光电二极管是一种具有广泛应用的半导体器件,它可以在电子器件中充当控制和信号转换的角色。
随着科技的发展,它的应用领域将会越来越广泛,同时其制作技术也将会不断的完善和提升。
光敏二极管和光敏三极管
光敏二极管和光敏三极管光敏二极管和光敏三极管是光电改换半导体器材,与光敏电阻器比照具有活络度高、高频功用好,牢靠性好、体积小、运用便当等优。
一、光敏二极管1.构造特征与符号光敏二极管和一般二极管比照尽管都归于单导游电的非线性半导体器材,但在构造上有其分外的本地。
光敏二极管在电路中的符号如图Z0129所示。
光敏二极管运用时要反向接入电路中,即正极接电源负极,负极接电源正极。
2.光电改换原理依据PN结反向特性可知,在必定反向电压方案内,反向电流很小且处于饱满状况。
此刻,假定无光照耀PN结,则因本征激起发作的电子-空穴对数量有限,反向饱满电流坚持不变,在光敏二极管中称为暗电流。
当有光照耀PN结时,结内将发作附加的许多电子空穴对(称之为光生载流子),使流过PN结的电流跟着光照强度的添加而剧增,此刻的反向电流称为光电流。
纷歧样波长的光(兰光、红光、红外光)在光敏二极管的纷歧样区域被吸收构成光电流。
被外表P型涣散层所吸收的首要是波长较短的兰光,在这一区域,因光照发作的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,构成有些光电流;彼长较长的红光,将透过P型层在耗尽层激宣告电子一空穴对,这些重生的电子和空穴载流子也会在结电场作用下,别离抵达N区和P区,构成光电流。
波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。
在N区内因光照发作的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,构成光电流。
因而,光照耀时,流过PN结的光电流应是三有些光电流之和。
二、光敏三极管光敏三极管和一般三极管的构造相相似。
纷歧样的本地是光敏三极管有必要有一个对光活络的PN结作为感光面,一般用集电结作为受光结,因而,光敏二极管本质上是一种恰当于在基极和集电极之直接有光敏二极管的一般二极管。
其构造及符号如图Z0130所示。
当人射光子在基区及集电区被吸收而发作电子一空穴对时,便构成光生电压。
光电二极管测量技术的使用教程
光电二极管测量技术的使用教程光电二极管是一种将光能转化为电能的器件,广泛应用于光电转换、光测量、光通信和光电检测等领域。
在这篇文章中,我们将介绍光电二极管的基本原理、使用注意事项以及一些常见的测量技术。
1. 光电二极管的基本原理光电二极管是一种半导体器件,它由一对p型和n型半导体材料组成,中间夹杂有浓度较高的掺杂材料形成p-n结。
当光线照射到p-n结上时,光子的能量会将电子从价带激发到导带中,从而形成电流。
因此,光电二极管的输出信号与光的强度成正比。
2. 光电二极管的使用注意事项在使用光电二极管进行测量时,需要注意以下几点:2.1 光线的入射角度光线的入射角度会影响光电二极管的测量结果。
通常情况下,光线应垂直入射到光电二极管表面,以获得准确的测量结果。
如果光线入射角度偏离垂直方向,需要进行修正计算来消除误差。
2.2 光电二极管的响应频率光电二极管的响应频率是指它对光信号的能力。
不同类型的光电二极管有不同的响应频率范围,需要根据具体的应用需求选择合适的器件。
对于高速测量应用,需要选择具有较高响应频率的光电二极管。
2.3 光电二极管的线性范围光电二极管的输出信号与光的强度成正比,但在一定范围内存在线性关系。
超过光电二极管的线性范围,输出信号将不再准确。
因此,在进行测量时,需要确保光的强度不超过光电二极管的线性范围。
3. 光电二极管的测量技术3.1 光电二极管的电流测量光电二极管的输出信号是电流,常用的测量方法是使用电流计来测量光电二极管的输出电流。
在进行测量时,需要将电流计与光电二极管连接好,并注意设置合适的量程以获取准确的测量结果。
3.2 光电二极管的光强度测量光电二极管的输出信号与光的强度成正比,因此可以使用光强度测量器进行测量。
光强度测量器通常由一个光传感器和一个显示屏组成,可以直接显示光的强度值。
在进行测量时,需要将光电二极管与光强度测量器连接,并确保光线垂直入射到光电二极管表面。
3.3 光电二极管的光谱测量光电二极管还可以用于光谱测量,即测量光的波长分布。
光敏二极管和光敏三极管简介及应用
光敏二极管和光敏三极管简介及应用光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。
一、光敏二极管1.结构特点与符号光敏二极管和普通二极管相比虽然都属于单向导电的非线性半导体器件,但在结构上有其特殊的地方。
光敏二极管使用时要反向接入电路中,即正极接电源负极,负极接电源正极。
2. 光电转换原理根据PN结反向特性可知,在一定反向电压范围内,反向电流很小且处于饱和状态。
此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。
当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。
不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。
被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P区,形成光电流。
波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。
在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。
因此,光照射时,流过PN结的光电流应是三部分光电流之和。
二、光敏三极管光敏三极管和普通三极管的结构相类似。
不同之处是光敏三极管必须有一个对光敏感的PN 结作为感光面,一般用集电结作为受光结,因此,光敏二极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通二极管。
其结构及符号如图Z0130所示。
三、光敏二极管的两种工作状态光敏二极管又称光电二极管,它是一种光电转换器件,其基本原理是光照到P-N结上时,吸收光能并转变为电能。
光敏二极管和三极管结构与工作原理
光敏二极管和三极管结构与工作原理光敏二极管(Photodiode)和三极管(Phototransistor)是一种光电器件,可以将光信号转换为电信号,常用于光电传感器、光通信等领域。
它们的结构和工作原理在一定程度上相似,但也存在一些不同之处。
本文将对光敏二极管和三极管的结构和工作原理进行详细介绍。
一、光敏二极管的结构和工作原理1.结构:光敏二极管的结构与普通二极管类似,由一个P-N结构组成。
其中,P型半导体的掺杂浓度较大,N型半导体的掺杂浓度较小。
在P-N结的结界面附近存在感光区域,通过控制感光区域的宽度和掺杂浓度,可以调节光敏二极管的光敏度和响应速度。
2.工作原理:当光敏二极管受到光照时,光子会激发半导体内的电子-空穴对,其中电子会被推向N型区,空穴会被推向P型区。
这些载流子的移动会导致P-N结两侧产生电势差,从而使光敏二极管形成反向电压信号。
二、光敏三极管的结构和工作原理1.结构:光敏三极管在结构上与普通三极管相似,由一个P-N-P或者N-P-N结构组成。
此外,在基区域还包含了一个光电区域,用于接收光信号。
控制光电区域的掺杂浓度和面积,可以调节光敏三极管的灵敏度和响应速度。
2.工作原理:光敏三极管的工作原理与光敏二极管类似,只是在信号放大上有所不同。
当光敏三极管受到光照时,光子激发电子-空穴对,电子会被注入基区,形成电流。
这个电流会导致基区的电子-空穴对增加,从而控制集电极和发射极之间的电流。
光敏三极管在光照条件下,可以实现信号的放大,因此在传感器、光通信等领域得到广泛应用。
与光敏二极管相比,光敏三极管在高频范围内具有更高的响应速度和灵敏度。
三、光敏二极管和三极管的比较1.灵敏度:2.响应速度:3.成本:总的来说,光敏二极管和三极管在应用中有着各自的优势和适用范围。
选择合适的光电器件需要根据具体应用需求来进行评估和选择。
希望通过本文的介绍,读者对光敏二极管和三极管有更深入的理解。