第一讲 基础理论-原子、晶体结构
固体物理学第一章 晶体的结构(1)

前言 1.1 一些晶格的实例 1.2 晶格的周期性 1.3 晶向、晶面和他们的标志 1.4 倒格子 1.5 晶体的宏观对称性 1.6 点群 1.7 晶格的对称性 *1.8 晶体表面的几何结构(不讲解内容) *1.9 非晶态材料的结构(不讲解内容) *1.10 准晶态(不讲解内容)
序
基矢 :原胞平行六面体的三个边矢量(三维)、原胞平行四边 形的两个边矢量。晶格原胞和基矢选取实例。 • SC (简单立方)
a1 a i a2 a j a 3 a k 原胞体积Ω
• fcc(面心立方) 顶点向三个近邻面心引基矢
a ( j k) 2 a a2 (k i ) 2 a a3 (i j ) 2 a1
1.2 晶格的周期性
周期性是晶格的基本特征。理想情况认晶体三维无 限延伸无限大(理想模型),表面效应可以忽略。 (1). 原胞、基矢 原胞:晶体中最小的重复单元,原胞中只有一个原 子或原子团( NaCl ),以二维晶格为例:
维个纳-赛兹原 胞(WS原 胞),对称性
一般原胞以一个格点为原点,与临近格点构成面积最小平行四边 形,为最小重复单元。原则上原胞选取任意,只要是最小周期单 元即可(最小,不唯一) ,但习惯上有固定取法。 三维晶格取顶点 在格点上的最小的平行六面体为原胞.
a2 a1
(4) 面心立方结构(fcc) • 排列方式: ABCABCABC….. • 层内原子密接触 • 自然界中:Cu, Ag, Au 一种六角密排结构 几种典型实际的结构: (5) NaCl 结构 特点: • Na离子、Cl离子分别 构成面心立方格子 • 两个格子分别沿对 角线位移1/2 • 碱卤化物,除Cs外 都是该结构。 实际上是两个面心结 构镶嵌而成的。 (称为复式格子)
第1讲:原子结构、分子结构和化学键解析

第一讲原子结构、分子结构和化学键一 . 原子结构1. 四个量子数的合理取值n = 1, 2, 3, 4,…… n n 个确定核外电子运动的能级。
l = 0, 1, 2, 3,…… n -1 n 个确定电子亚层的形状及其能级的高低。
m = -l , -(l -1, … , 0,… (l -1, l n 2个确定电子亚层在空间的伸展方向。
m s =±1/2, 2n 2个确定电子运动的自旋方向。
2. 波函数和原子轨道波函数ψn,l,m 是原子轨道的数学表达形式,又称原子轨函 ,它是量子力学中表征微观粒子运动状态的物理量,是薛定谔方程的合理解。
而原子轨道是波函数ψn,l,m 的图形化。
对氢原子和类氢原子, n 相同的原子轨道, 它们的能量相同, 称为简并轨道或等价轨道;对于非氢原子和类氢原子, n 、 l 相同, m 不同的轨道,能量相同,称为简并轨道或等价轨道。
3. 波函数和原子轨道、几率密度分布和电子云的联系和区别波函数ψn,l,m 是原子轨道的数学表达形式,而原子轨道是波函数的图形化。
例如ψ1s 表示 1s 原子轨道, ψ2px 是 2p x 原子轨道。
1s 原子轨道的科学含义是指电子处于 1s 的空间运动状态 ,它和物理学上的宏观物体的轨道是不同的,例如 1s 原子轨道的空间图形是球形的,其电子在空间出现的几率密度分布也是球形对称的,界面图是球面,平面图为圆。
而不应理解为电子绕核运动的轨迹是一个圆,这是因为电子有波粒二象性,它的运动轨迹是测不准的。
几率密度分布是用来描述电子云的数学表达式│ ψn,l,m │ 2; 几率是指电子在核外空间某处出现的机会的大小│ ψn,l,m │ 2d τ。
原子轨道是指电子在一定空间的运动状态,是ψn,l,m 的图形化;电子云是电子在空间出现的几率密度分布的形象化表示法,是│ ψn,l,m │ 2的图形化。
原子轨道和电子云的区别是原子轨道的图形中有正、负号之分,而电子云的图形中没有正、负号之分;电子云的图形比原子轨道的图形略瘦些。
原子结构讲义

高三化学第一章第1节原子结构1、原子——组成物质的一种微粒。
在化学反应中不可分。
原子是电中性的。
原子有大小、质量、间隔、运动。
原子半径一般在10-10m数量级范围内。
原子是由居于原子中心的原子核和核外电子构成。
原子核很小,但原子的质量主要集中在原子核上。
原子核由质子和中子构成。
质子(+)原子核原子中子(不带电)电子(—)在化学反应中原子核不发生变化,但在核反应中是原子核发生变化。
注意:质子数决定元素种类;中子数决定同位素;最外层电子决定元素的化学性质;中子数和质子数决定质量数。
原子中各微粒之间有如下关系:质子数+中子数=质量数质子数=核外电子数=核电荷数=原子序数简单离子中各微粒之间有如下关系:质子数+中子数=质量数A nX+阳离子:电子数= Z – nZA nX-阴离子:电子数= Z + nZ单原子单质如:He由原子直接构成的物质是原子晶体单质型原子晶体如:C、Si化合物型原子晶体如:SiO2SiC2、同位素(核素)元素——具有相同核电荷数(即质子数)的同一类原子的总称。
注:“同一类原子”就是指质子数相同,中子数不同的各同位素的原子或离子元素只讲种类不论个数同位素——质子数相同而中子数不同的同一元素的原子互称为同位素。
△同一元素的各种同位素的化学性质几乎完全相同。
△在自然界里,某元素不论是以游离态还是化合态存在,各种同位素原子所占的百分比(摩尔百分比)一般是不变的。
在自然界里,各种同位素原子所占的百分比(摩尔百分比)也叫丰度。
△原子构成的表示方法:A Z X△人们发现了109种元素,但原子的的种类远远不止109种。
注:虽然H2、D2是同种元素形成的不同单质,但不属于同素异形体,它们的关系也不是同位素。
△同种元素的同位素可组成不同的单质和化合物,如H2O与D2O是不同的分子;D2与T2也是不同的分子。
△23592U是制造原子弹和核反应堆的原料;D、T是制造氢弹的原料。
3、相对原子质量(原子量)原子的原子量(同位素的原子量)——以12C的一个原子的质量的十二分之一为标准,其它原子的质量与它相比较所得的数值,叫做该种原子的相对原子质量(原子量)原子量和一个原子的质量及原子的摩尔质量是三个完全不同的概念,原子量是相对数值;一个原子的质量是一个绝对数值。
材料科学基础第一章晶体结构(二决定离子晶体结构的基本因素)

图1-5 球体在平面上的最紧密堆积
面心立方最紧密堆积和六方最紧密堆积
球体在空间的堆积是按照ABAB……的层序来堆积。 这样的堆积中可以取出一个六方晶胞,称为六方最紧密堆 积,见图1-6 (a) 。
另一种堆积方式是按照ABCABC……的堆积方式。 这样的堆积中可以取出一个面心立方晶胞,称为面心立方 最紧密堆积。面心立方堆积中,ABCABC……重复层面 平行于(111)晶面,见图1-6(b)。
两种最紧密堆积中,每个球体周围同种球体的个数均 为12。
图1-6 (a)ABCABC…层序堆积 (b)ABAB……的层序堆积
—面心立方密堆积
—六方密堆积
两种三层堆叠方式
ABA: 第三层位于第一层 正上方
ABC: 第三层位于一二层间隙
(c) 2003 Brooks/Cole Publishing / Thomson Learning™
晶体结构中正、负离子的配位数的大小由结构中正、 负离子半径的比值来决定,根据几何关系可以计算出正 离子配位数与正、负离子半径比之间的关系,其值列于 表1-3。因此,如果知道了晶体结构是由何种离子构成的, 则从r+/r-比值就可以确定正离子的配位数及其配位多面 体的结构。
anion polyhedron
自身被极化和极化周围其它离子两个作用同时存在,一般只 考虑正离子对负离子的极化作用。
(1)正离子半径较小,电价较高,极化力表现明显,不易 被极化。
(2)负离子则相反,经常表现出被极化的现象,电价小而 半径较大的负离子(如I-,Br-等)尤为显著。
(3)当正离子为18电子构型时,如 Cu+、Ag+,必须考虑 负离子对正离子的极化作用,以及由此产生的诱导偶极矩所引起的 附加极化效应。
极化上升
第3章 晶体学基础 - 晶体结构、晶向、晶面

LOGO
21
LOGO
1.动画--晶面指数的确定方法
22
2.晶面指数特点与规律:
LOGO
(1)与原点位置无关;每一晶面符号对应一组相互平行的晶面。 晶面符号代表在原点同一侧的一组相互平行且无限大的 晶面,而不是某一晶面。 (2) 若晶面指数相同,但正负符号相反,则两晶面是以点为 对称中心,且相互平行的晶面。如(110)和(110)互 相平行。
2014-9-26 此处添加公司信息 3
3.1.1 晶体与非晶体
LOGO
准晶:是一种介于晶体和非晶体之间的固体。 准晶具有完全有序的结构,然而又不具有晶 体所应有的平移对称性,因而可以具有晶体所不允 许的宏观对称性。准晶是具有准周期平移格子构造 的固体,其中的原子常呈定向有序排列,但不作周 期性平移重复,其对称要素包含与晶体空间格子不 相容的对称(如5次对称轴) 瑞典皇家科学院将2011年诺贝尔化学奖授予 以色列科学家达尼埃尔· 谢赫特曼,以表彰他“发 现了准晶”这一突出贡献。准晶的发现从根本上改 变了以往化学家对物体的构想。
Total: 24
29
LOGO
{123} (123) ( 1 23) (123) (12 3) (132) ( 1 32) (1 3 2) (132) (231) ( 231) (2 3 1) (23 1 ) (213) ( 213) (2 1 3) (21 3) (312) ( 3 12) (3 1 2) (312) (321) ( 3 21) (321) (32 1 )
28
立方晶系: {111}=?
LOGO
Total:? 立方晶系:
{112} (112) ( 1 12) (1 1 2) (112) (121) ( 1 21) (121) (12 1 ) (211) ( 211) (2 1 1) (21 1 )
第三章晶体结构

三.其它晶体结构 1.金刚石结构
金刚石结构为面心立方格 子,碳原子位于面心立方的所 有结点位置和交替分布在立方 体内的四个小立方体的中心, 每个碳原子周围都有四个碳, 碳原子之间形成共价键。
一.面心立方紧密堆积结构
4. CaTiO3(钙钛矿)型结构 钙钛矿结构的通式为ABO3,其中,A2+ 、B4+或A1+ 、B5+金
属离子。CaTiO3在高温时为立方晶系,O2-和较大的Ca2+作面心 立方密堆,Ti4+填充于1/4的八面体空隙。Ca2+占据面心立方的 角顶位置。O2-居立方体六个面中心,Ti4+位于立方体中心。Z=1, CNCa2+=12 CNTi4+=6 ,O2-的配位数为6 (2个Ti4+和 4个Ca2+)。
一.面心立方紧密堆积结构 1. NaCl型结构
Cl-呈面心立方最紧密堆积,Na+则填充于全部的八面体空隙
中,(即阴离子位于立方体顶点和六个面的中心,阳离位于立
方 体 的 中 心 和 各 棱 的 中 央 ) 。 两 者 CN 均 为 6 , 单 位 晶 胞 中 含 NaCl的个数Z=4 ,四面体空隙未填充。
一.面心立方紧密堆积结构 2. β-ZnS(闪锌矿)型结构
S2-位于面心立方的结点位置,Zn2+交错地分布于立方体内 的1/8小立方体的中心,即S2-作面心立方密堆,Zn2+填充于1/2的 四面体空隙之中,CN均为4,Z=4。β -ZnS是由[ZnS4]四面体以 共顶的方式相连而成。