2010数模讲义
2010年高考数学数列专题复习38页PPT文档

第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 课本挖掘提升
第17讲 │ 课本挖掘提升
第17讲 │ 课本挖掘提升
第17讲 │ 课本挖掘提升
第17讲 │ 课本挖掘提升
第17讲 │ 课本挖掘提升
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 规律技巧提炼
规律技巧提炼
第17讲 │ 规律技巧提炼
第17讲 │ 课本挖掘提升
课本挖掘提升
第17讲 │ 课本挖掘提升
第17讲 │ 课本挖掘提升
第17讲 │数列建模、三角模型
第17讲 │ 主干知识整合
主干知识整合
第17讲 │ 主干知识整合
第17讲 │ 主干知识整合
第17讲 │ 要点热点探究
要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
第17讲 │ 要点热点探究
2010年数学建模竞赛答案

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):浙江工贸职业技术学院参赛队员(打印并签名) :1. 宋舒翔2. 戴慧娇3. 林伟伟指导教师或指导教师组负责人(打印并签名):刘维先日期: 2010年 9 月 13日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):输油管的布置摘要对于问题一,本文考虑了公用管线费用与非公用管线费用相同或不同情形的因素来设计建立管线建设费用最省。
由对于问题二,本文考虑了注册资金,技术人员,负责人工作年限以及专职专业技术经济职员四个因素来评价管线费用最优解的管线布置,并利用层次分析法确定了各因素的权重,并用matlab软件编程,求的各因素的权重系数,最终计算出管线费用的最优化解F 282.8197。
m in对于问题三,在问题一和问题二的情况下,根据题目的约束条件,建立线性规划模型,由LINGO求解,得最优解F=252.0913。
m in关键词:费尔马点层次分析法二次平均最优方案1.问题重述与分析随着社会的发展,石油管道输送的优势越来越明显,管道设计的任务也越来越繁重,制定出最优的石油管道输送线,具有十分重要的经济和战略意义。
2010年考研数学线代知识模块二

线代考前预测知识模块二:有关矩阵的概念与性质的问题考点1:矩阵的运算【参考题目1】设10102011A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,而2n ≥为正整数,则12n n A A --= .【题目出处】历年真题(99.3)【答案】00000000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦【解析】2101101202020020040210111202A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦故有122002(2)00000n n n A A A A A --⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦.【参考题目2】设213146A ab c-⎛⎫⎪= ⎪ ⎪⎝⎭,若存在秩大于1的三阶矩阵B ,使得A B O =,则=n A 【题目出处】第三次模考试题【答案】12139213426n --⎛⎫⎪-- ⎪ ⎪-⎝⎭【解析】由A B O =,有()()3A B +≤秩秩,又因为()2B ≥秩, 所以 秩(A)=1,于是213213,146a b c --====,2,3,2a b c =-=-=-, 则()213121312134262A -⎛⎫⎛⎫⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭。
而()1213192⎛⎫ ⎪--= ⎪ ⎪⎝⎭,因此1121399213426n n n A A ---⎛⎫⎪==-- ⎪ ⎪-⎝⎭。
【参考题目3】100100A λλλ⎛⎫⎪= ⎪ ⎪⎝⎭,求nA 。
【题目出处】10届白金卡A 模块讲义【答案】121(1)2000n n n n n nn n n n λλλλλλ----⎛⎫ ⎪⎪ ⎪ ⎪ ⎪⎝⎭ 【详解】100100100100000A E λλλλ⎛⎫⎛⎫⎪ ⎪==+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 记010001000B ⎛⎫⎪= ⎪ ⎪⎝⎭,201000000B ⎛⎫ ⎪= ⎪⎪⎝⎭,300000000B ⎛⎫⎪= ⎪ ⎪⎝⎭, 12212110(1)01()200(1)2000nnn n n n n n n n n nn n A E B E n B B n n n n λλλλλλλλλλλλλ-----⎛⎫- ⎪==+=++ ⎪ ⎪⎝⎭-⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭【参考题目4】设⎪⎪⎪⎭⎫⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵,则200422B A -= 【题目出处】历年真题(04.4)【答案】⎪⎪⎪⎭⎫⎝⎛-100030003【详解】因为2A 010010100100001001--⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭100010001-⎛⎫⎪=-⎪ ⎪⎝⎭为对角阵,故有 422100100()01001000101A A E --⎛⎫⎛⎫ ⎪ ⎪==--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以 211B P A P P A P --=11()P A P P A P --=12,,P A P -=200412004BPAP -=()50114PAP -=11PE P PP --==E =所以 200422BA -1002010001E -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭30003001⎛⎫⎪=⎪ ⎪-⎝⎭. 考点2:矩阵可逆的充分必要条件、伴随矩阵及逆矩阵的计算【参考题目5】设100220345A ⎛⎫⎪= ⎪ ⎪⎝⎭,A *是A 的伴随矩阵,则1()A *-= . 【题目出处】历年真题(95.3)【答案】100122010345⎛⎫⎪ ⎪ ⎪⎝⎭【详解】由A A A E *=,有A A E A*=,故()1A AA -*=.而10022010345A ==,所以()1100122010345A A A -*⎛⎫ ⎪== ⎪ ⎪⎝⎭. 【参考题目6】设A 为反对称矩阵()TA A=-,且0A ≠,B 可逆,A 、B 为同阶方阵,*A 为A 的伴随矩阵,则()1*1TT A A B --⎡⎤=⎢⎥⎣⎦( )A. B A-B.B AC. TBA-D.TBA【题目出处】单元测试题【答案】C【解析】由于0A ≠,所以A 可逆,因此1111()()A A A A E A A A A A A A**-*---=⇒=⇒==,()1*1TT A A B --⎡⎤=⎢⎥⎣⎦()()()()()111111*1TTTTA BB A A B A AA-------⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦.【参考题目7】设n 阶矩阵A 和B 满足条件A B A B +=. (1) 证明A E -为可逆矩阵(其中E 是n 阶单位矩阵);(2)已知13021002B ,-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦求矩阵A .【题目出处】历年真题(91.4)【解析】(1)由A B A B +=,加项后因式分解得有()()A B B A E A E B E E --+=--=, 所以A E -可逆,且()1A EB E --=-,()1B E A E --=-,()1B E A E --=-.(2) 由(1)小题得出()1A EB E -=+-.利用分块矩阵求逆的法则:111000AA B B ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,有 ()11103002000101A B E ----⎡⎤⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦1001A-⎡⎤=⎢⎥⎣⎦利用2阶矩阵快速求逆法得1102103A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦,故()1B E --10021003001⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 故 ()111021103002A E B E -⎡⎤⎢⎥⎢⎥⎢⎥=+-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 注:由A B A B +=要证A E -可逆时,因为满足关系式A B A B +=的矩阵A ,B 不唯一,故应当用定义法.【参考题目8】设n 阶矩阵A 非奇异(2n ≥),A *是矩阵A 的伴随矩阵,则 ( ) (A) 1()n A AA -**= (B) 1()n A AA +**= (C) 2()n A AA -**= (D) 2()n A AA +**=【题目出处】历年真题(96.3)【答案】C【解析】伴随矩阵的基本关系式为A A A A A E **==,现将A *视为关系式中的矩阵A ,则有()A A A E ****=. 方法一:由1n A A -*=及1()A A A*-=,可得121()().n n A A A A AAA A--****-===故应选(C).方法二:由()A A A E ****=,左乘A 得1()()n A A A AA -***=,即1()()n A E A AA -**=.故应选(C).考点3:分块矩阵及其运算【参考题目9】设121000000,00000n na a A a a -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦L LMM M M L L 其中0,1,2,,,i a i n ≠=L 则1A -=_______.【题目出处】历年真题(94.3)【答案】121100100010001000n n a aa a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由分块矩阵求逆的运算性质,有公式111000A BB A---⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 且 11122111n n a a a a a a -⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦所以,本题对A 分块后可得1121100100010001000n n a a A a a --⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 【参考题目10】设,A B 为n 阶矩阵, ,A B **分别为,A B 对应的伴随矩阵,分块矩阵00A C B ⎛⎫=⎪⎝⎭,则C 的伴随矩阵C *= ( ) (A) 00A A B B **⎛⎫⎪ ⎪⎝⎭ (B) 00B B A A **⎛⎫ ⎪ ⎪⎝⎭ (C) 00A BB A **⎛⎫ ⎪ ⎪⎝⎭ (D)00B AA B **⎛⎫⎪⎪⎝⎭ 【题目出处】历年真题(02.4)【答案】D【详解】方法1:直接算出C *。
2010数模试题与答案

华南农业大学期末考试试卷(A 卷)2010学年第二学期 考试科目: 数学建模考试类型:(闭卷) 考试时间: 120分钟学号 姓名 年级专业1、(满分10分)对下面这个众所周知的智力游戏,请按下列的要求写出该问题的状态转栘模型:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
将人、猫、鸡、米分别记为i = 1,2,3,4,当i 在此岸时记x i = 1,否则为0;故此岸的状态下用s =(x 1,x 2,x 3,x 4)表示。
该问题中决策为乘船方案,记为d = (u 1, u 2, u 3, u 4),当i 在船上时记u i = 1,否则记u i = 0。
(1) 写出该问题的所有允许状态集合;(3分)解:所有允许状态集合为:S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)}及他们的5个反状态。
(2) 写出该问题的所有允许决策集合;(3分)解:允许决策集合为:D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)}(3) 写出该问题的状态转移率。
(4分)解:该问题的状态转移率为: sk+1 = s k + (-1) k d k 2、 (满分16分)根据以下的不同假设,请写出相应人口问题的微分方程模型(不用求解)。
下设x (t )表示t 时刻的人口数。
(1)假设人口的相对增长率(指dxx dt)是常数;(4分) 解:模型为:dxkx dt=, 其中k 为常数。
(2)假定人口的相对增长率是关于当时人口数的线性减函数;(4分) 解:模型为: dxdt= (r – s x)x , 其中r 与s 为常数,且s>0。
(3)假设人口的增长率与x m – x (t )成正比,其中x m 表示人口的最大数量;(4分) 解:模型为:)(x x k dtdxm -=,其中k 为常数。
2010年数学建模A题论文

储油罐的变位识别与罐容表标定摘要本文主要运用了积分知识和几何知识分析解决储油罐的变位识别和罐容表标定问题。
模型一的对象是小椭圆形储油罐(两端平头的椭圆柱体)。
我们首先运用几何知识对变位罐体进行分析,得到垂直于罐体的液高1h 和储油罐水平状态下的液高2h 之间的关系,2h =1h +1L ×tan()α(倾斜角α,1L =0.4m ,为罐体长的一部分)。
然后以椭圆中心为中心,以椭圆的长轴和短轴分别为x 轴y 轴,建立空间直角坐标系,再对x 求定积分可得椭圆面上的储油面积为S =(2)f h dx ⎰,继而求得储油的体积V =S ×L (L 为罐体的水平总长度)。
并且在不同的情况下,运用分段函数的思想将罐容分为四段,解得各部分罐容表达式。
并且,以附件一中给出的油位高度为自变量,运用matlab 求得对应的罐容。
将求的的罐容与附件一中加上初始油量后的罐容相比较,分析数据得到其平均误差率为0.038371<0.05,较为合理。
因此,便可根据上述函数关系编定小椭圆罐体罐体变位后的油位高度1h 间隔为1cm 的罐容表标定。
模型二对于图4所示的实际储油罐,可由题中所给数据算出球冠形封头的半径为1.625m,所对应的圆心角为134.76度,弧长为 3.822m考虑到所对圆心角较大及弧长相对于油罐的高度D = 3m 相差不是很大,利用问题一中的模型可近似的认为 当液面由倾斜状态转化为水平状态时,两球冠形内的液面高度与卧式圆柱体内的液面高度近似相等,都等于圆柱体内的油在水平状态下的高度2h ,此时罐内液体的体积为两球冠形封头内液体的体积与圆柱体内液体的体积之和。
当油罐同时在倾斜和偏转的状态下时,利用油浮子测得的液面高度为3h ,3h 可化为仅在倾斜状态下的液面高度1h ,进而转化为水平状态下的液面高度2h ,从而h2可油位高度及纵向倾斜角α和横向偏转角β 表示出来,即()()()()()()13cos ,212tan 3cos tan h R h R h h R h R βαβα=+-=+=+-+cos(β)在已建立的较合理的模型一的基础上建立问题二的模型,将h2带入即可求得罐体变位后储油量与油位高度和变位参数α,β的关系。
南理工2010数学模型(培优)model

第 1 页
四、某导师选拨研究生要根据学生入学成绩(主要参考标准) 、面试的笔试成绩、口试成绩和 第一印象分来决定录取一名同学,现有 A、B、C、D 四名学生报考该导师,他们的各项得分 如下表: 入学成绩 A B C D 308 318 348 325 笔试成绩 130 120 100 120 口试成绩 30 35 30 45
(在五道题中任意选做四题,每题 20 分)
一、甲乙丙三人合作经商,若甲乙合作获利 9 元,甲丙合作获利 7 元,乙丙合作获利 5 元, 三人合作获利 20 元。问三人合作时如何分配获利? 又知甲、乙、丙每人单干分别获利 3、2、1 元,问三人合作时如何分配获利? 给出计算理由! 二、给出 Logistic 模型的连续和离散形式,画出连续的 Logistic 模型的图示解,并求出连续的 Logistic 模型的平衡点,并讨论它的稳定性。说明离散的 Logistic 模型为什么会出现混沌 现象,具体解释出现 4 倍周期的原因。
课程名称: 试卷编号: 组卷日期: 学生班级:
南 京 理 工 大 学 课 程 考 试 试 卷 (学生考试用) 学分: 大纲编号 考试方式: 满分分值: 考试时间: 审定人(签字) : 学生姓名: 分钟
组卷教师(签字) : 学生学号:
考生注意:所有答案(包括填空题)按试题序号写在答题纸上,写在试卷上不给分
三、
dx1 x 1 (4 3 x1 x2 ) x 1 ( t ) 、种群乙的数量为 x 2 ( t ) ,建立方程为 dt 设种群甲的数量为 , dx2 x (2 x x ) 2 1 2 dt
求出平衡点,并进行讨论。一个自然环境中有两个种群生存,它们之间的关系:相互竞争; 相互依存;弱肉强食,建立它们的一般模型,并请给出每种关系的最基本特征。
2010年数模A题
基于微积分思想的卧式储油罐变位识别与罐容表标定研究摘 要本文针对卧式储油罐变位识别与罐容表标定问题,运用微积分知识建立了卧式平端椭圆体和卧式双球冠圆筒储油罐变位前后罐容表标定的数学模型,并运用AutoCAD 软件对模型建立过程中的部分图像进行绘制,达到图文并茂的效果。
在模型的求解中运用了Excel 软件进行误差分析,保证了结论的真实可靠。
问题一,针对卧式平端面椭圆体储油变位与罐容表标定的关系,将问题分为变位前后利用微积分思想建立模型,并运用Excel 软件进行求解得到未变位前结果结果误差为%3左右,引入修正参数96835.0=u 修正后的到最大误差%188.0;变位后运用Matlab 软件求解得到答案。
问题二,针对卧式圆形加球冠储油罐变位与罐容表标定研究,在变位前后都将其分为中间圆柱体和两端球冠型进行微积分,针对不同水平截面几何形状建立与液面高度分段函数关系式,运用Matlab 软件求解,最终得到07.1=α,03.3=β。
此模型在现实工业生产中推广运用将会有很大的利用价值。
关键词:卧式储油罐的变位识别 罐容表标定 微积分 CAD 制图 Excel 软件一、问题的提出1.1问题提出背景石油作为一种不可再生能源在今天的社会生活中处于不可替代的地位。
随着社会经济的发展,石油需求量越来越大,生活中有很多时候都是和石油直接或间接相关。
就这样,石油储运中的储油罐变位识别与罐容表标定问题进入了本文的研究范围。
通过相关的了解储油罐的类型有很多,相同的类型也大致有卧式和竖式等不同形式的安放,甚至一些特殊地形下的特殊安放。
本文就卧式储油罐进行建模,针对卧式储油罐外部形状和变位后的储油体积进行了研究。
1.2问题的提出通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
2010年全国数学建模论文
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):福建师范大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):马昌凤日期: 2010 年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):2010年上海世博对旅游影响力的定量评估摘要针对上海世博会影响力的定量评估问题,我们选择研究世博会对上海市旅游业的影响,具体是从旅游业的客流量与旅游业投资两个方面入手搜集数据,进行定量分析. 对于旅游业客流量方面,我们从世博官网获取了5月1日到9月9日的每天参观人数,建立每天参观人数的时间序列分析模型,考虑到参观人数变动性,我们使用时间序列分解法求解,运用趋势外推法加权拟合出长期趋势直线,综合考虑影响参观人数的随机因素,借助Matlab,Excel等软件预测出了9月10日到10月31日的每日参观人数,具体数据见附录1,并且预测得整个世博会期间的参观总人数为7064.52万.并且与历年同月份的旅游客流量相比较,得出上海世博会大大增加了上海市旅游客流量,提升了上海市的影响力.此外,对于旅游业投资的问题,我们采用上海市统计年鉴表中的数据,以凯恩斯经济学原理中乘数原理为理论基础,从旅游投资着手,采用时间序列预测法,建立自回归滑动平均ARMA(2,1)模型,借助Matlab,SPSS等软件,定量预测在无2010年世博会预期条件下上海市在2003-2010年期间的旅游投资情况,根据世博会相关投资率估算世博会的间接旅游投资,测算出世博会诱发的旅游总投资为309亿元,以及上海世博会的举办,增加了上海市旅游投资额约278.9亿元.并且利用回归分析方法,拟合出旅游投资产业增加值的投资乘数为0.73,核算出因世博会所带来旅游业产业增加值增量为241.02亿元.综合上述分析,我们得出结论:上海世博会对上海旅游业具有具大的影响,促进了上海旅游业的发展,提升上海市的城市旅游形象,增强上海旅游吸引力关键字:上海世博会,时间序列分析模型;趋势外推法加权拟合;凯恩斯乘数理论;自回归滑动平均模型(ARMA)§1 问题重述2010年上海世博会是首次在中国举办的世界博览会.从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台.要求选择某个侧面,从互联网上搜集数据,通过对数据的分析与处理,建立适当的数学模型,定量地评估2010上海世博会的所带来的影响力.§2 问题分析要评估2010年上海世博会所带来的影响力,可以从历史文化,科技,经济,未来发展等方面进行.我们选择从旅游业这个方面入手.因为世博会与旅游业之间存在一定的共同性与关联性,世博会的成功举办需要旅游业的旅游客源市场,旅游基础设施、旅游人才等的支撑,同时,世博会释放出巨大的旅游效益,推动上海旅游业跨越式发展,两者相互依存,相互促进.世博会的举办注入新的经济变量(投资、消费),对旅游业的发展带来直接的影响,可以直接从财务账面上反映出来,增加旅游收入和旅游产业增加值.同时世博会必然为旅游业带来大量的游客.旅游活动的广大客源,是世博会的潜在参观者,为世博会的成功举办提供客源保证.因此,我们从旅游的投资与游客的数量方面搜集资料,定量评估2010年上海世博会对旅游业的影响力.根据我们的思路,要求我们寻找上海市旅游业投资与游客量的相关数据,运用统计学的知识,分析数据间的关系,建立数学模型,然后分析比较上海世博会前后上海市旅游业投资与游客量的变化,进而得出上海世博会对上海旅游业的影响力!§3 基本假设(1)所搜集的数据都是真实可信的;(2)旅游业内部因素之间的影响是相互独立的;(3)假设世博会每天不限定入园的人数;§4符号说明(1):乘数;K (2):国民收入增加量;Y ∆(3):最初的注入增量;X ∆(4):增加的投资量;I ∆(5):增加的消费量;C ∆(6):边际消费倾向;MPC (7):历史参观人数,;i x 123...2,1=i(8):季节指数;i S (9):循环指数;i C (10):利差平方和权值;α(11):随机值;i I (12):整个世博会总参观人数; S (13):长期趋势因素;T (14):移动平均值序列;{})1(iM (15):时间变量;t (16):虚拟变量;t ε(17):自回归项;p (18):移动平均项.q §5模型的建立和求解5.1 理论基础5.1.1 相关概念5.1.1.1世博会世界博览会是经国际展览局批准,由主办国政府组织或政府委托相关部门承办的非贸易性的博览会,世界各国借以展示本国政治、经济、社会、文化和科技等方面成就与发展前景,简称“世博会”.5.1.1.2 旅游业联合国贸易与负责会议对旅游业的定义:旅游部门或旅游业,从广义上表达为全部或主要由外国游客或国内旅游者消费的产品或服务的工业和商业活动的综合体现.5.1.2 世博会与旅游业的关系5.1.2.1 共同性世博会以参展企业、参展国家、国际组织和世博场馆为核心,紧扣世博主题举办展览和会议以吸引参展国家、组织和参观者.旅游业以旅行社为核心,一旅游资源为基础,吸引旅游者,因此世博会与旅游业之间存在一定的共同性.一方面,从特征上来看,世博会和旅游业的服务对象均具有异地流动性,旅游者从客源地前往旅游地参展商和参观者从居住地前往展览举办地.另一方面,从功能上来看,世博会与旅游业均具有展示功能,展馆展列具有本国、本企业特色的展品,包括各种工艺品、艺术雕塑等,同时展馆本身也是一种具有欣赏性和展示性的旅游资源,因此为世博会和旅游业在具体运作上的合作提供了基础条件.5.1.2.2 关联性从旅游者统计口径来看,游客指“任何为休闲、娱乐、观光、度假、探亲、访友、就医疗养、参加会议和从事经济、文化、体育、宗教活动,离开常住国(或常住地)到其他地方,其连续停留时间不超过12个月,并且在其他国家(或)地方的主要目的不是通过所从事的活动取得报酬的人”.按照上述定义来看,出席世博会的人员大多数都属于旅游者的范畴,世博会必然为旅游业带来大量的旅客.同时旅游活动的广大客源,是世博会的潜在参观者,为世博会的成功举办提供客源保证.另外,世博会的旅游属性促使旅游业步入一个新的发展通道,为旅游业的提升搭平台、创机会,两者之间相互联系、相互依存、相互渗透.5.1.3 乘数理论乘数概念是英国经济学家R.F.卡恩在1931年首先提出来的,乘数是指国民收入的变动量与引起这种变动的最初注入变动量的比例关系.可用下式表示:(1)YK X∆=∆其中为乘数,为国民收入增加量,为最初的注入增量.K Y ∆X ∆从式子中可以看出,在注入新的变量就会引起国民收入呈倍数(K )变化.后来,凯恩斯对卡恩的论述做出了补充和延伸,把乘数与边际消费倾向联系起来,将乘数作为国民收入决定理论的一个重要组成部分,对乘数理论进行了完善.凯恩斯认为国民收入增加量由投资增量和消费增量两部分组成,即(2),Y I C ∆=∆+∆由于被定义为边际消费倾向(MPC ),由此将边际消费倾向引入乘数理论./C Y ∆∆凯恩斯将引起国民收入变动的最初注入量具体化为投资、税收、税收乘数、政府购买支出乘数和外贸乘数等,投资乘数是收入的增量与带来这种变化的投资支出增量的比率.由于各经济部门、各产业之间互相关联,相互之间存在产业关联关系,当某一部门的投资变化不仅可以增加本部门的收入,而且会引起相关联经济部门的投资和收入增加,最终使国民收入成倍增长.(3),i YK X∆=∆ , (4)1111i Y I C K C X I MPC Y∆∆+∆====∆∆∆--∆其中:为国民收入增加量,为增加的投资量,代表增加的消费量,代表投Y ∆I ∆C ∆K 资乘数,代表边际消费倾向.MPC 从(4)中得出,当投资乘数一定时,投资越多,则国民收入增加量也越大.5.2 世博前上海市旅游业状况5.2.1 旅游业产业规模在实际操作中,我们一般采用旅游业产业增加值来衡量旅游业规模,旅游业增加值是指将所有旅游特征产品的生产者所创造的增加值进行累加,不论这些产品是提供给旅游者,或者非旅游者,这个增加值等于旅游产业的总产出减去中间投入,即为生产而购买原材料、人力的花费.为此我们搜集了上海市2004年到2009年上海旅游产业增加值构成情况,如表1所示:表1上海市旅游产业增加值构成情况(2004-2009)单位:亿元指标\年份200420052006200720082009增加值498.00 584.20 695.00 858.00 958.50 1007.08 旅行社服务业8.34 9.02 10.43 11.30 13.30 13.46 旅游宾馆业79.68 91.78 122.40 159.40 163.91 104.17 旅游运输业103.30 120.80 136.80 144.70 158.05 124.91 邮电通信业18.95 25.21 27.80 30.24 32.63 28.26 旅游商业73.63 96.17 107.10 156.70 190.75 263.53 餐饮业58.59 68.92 83.93 106.80 126.36 131.45 城市交通业39.43 45.96 59.39 75.90 84.13 74.54园林文化业76.54 92.42 103.80 118.00 129.43148.22 旅游产业增加值占生产总值比重 5.90% 6.40% 6.70%7.00% 6.80%6.80%40050060070080090010001100图1上海市旅游产业增加值图像(2004-2009)如表所示,从筹办世博会开始,旅游业就保持了15%以上的增长速度,而且增长速度逐年增加,发展势力强劲,因而上海市旅游产业增加值逐年增加.5.3 世博会对上海旅游业的影响5.3.1 上海世博会对旅游客流量的影响(1) 数据搜集与处理首先,我们从上海世博会官方网站获得每天参观人数,从5月1号开始,截止到9月9号, 如表2表2日期5月(万)6月(万)7月(万)8月(万)9月(万)1号20.69 31.11 36.98 31.60 18.17 2号22.00 36.96 38.80 33.67 22.65 3号13.17 41.75 39.76 33.60 26.25 4号14.86 43.70 35.88 33.57 36.93 5号8.89 52.49 42.85 35.21 29.08 6号12.02 41.74 45.71 38.81 23.05 7号14.77 48.78 40.34 44.24 23.71 8号20.98 51.09 41.15 39.07 25.01 9号14.40 41.34 43.05 39.84 24.90 10号15.83 39.13 49.36 42.27 11号18.04 40.30 43.38 37.38 12号18.01 42.46 44.47 36.97 13号21.55 41.73 47.61 38.32 14号24.03 50.32 47.73 42.58 15号33.53 55.20 48.12 33.45 16号24.15 37.60 47.18 42.71 17号23.62 39.41 55.72 39.76 18号26.19 41.44 47.40 41.53 19号29.06 42.98 44.84 41.71 20号29.64 36.12 43.74 46.54 21号32.85 41.51 43.53 56.83 22号36.12 40.98 42.58 48.86 23号31.17 40.41 45.72 43.63 24号31.45 44.71 51.20 41.78 25号34.58 48.09 45.31 43.24 26号35.35 55.35 46.38 49.26 27号37.70 48.68 47.54 50.78 28号38.22 45.83 45.38 52.75 29号50.50 45.26 42.01 39.72 30号36.63 42.79 41.05 27.08 31号32.75 ------44.09 20.07 然后,选取前4个月的数据,用MATLAB软件画出这四个月的数据图(图2)(程序见附录2)同时也用Excel作出直方图(图见附录)图2(2)模型的建立根据对图标中数据的观察和资料的查询,于是用时间序列分析方法分析,发现参观人数呈现周期性变化(特别是在每星期的周六的人数相对最多)等,我们用时间序列分解法求解.时间序列因素包括长期趋势因素,季节变动因素,循环变动因素,不规则变T S C 动因素;我们用乘法模式进行求解:I tt t t t I C S T x ⨯⨯⨯=其中,与有相同量纲,为季节指数,为循环指数,二者皆为比例数,为t x t T t S t C t I 独立随机变量序列.经图标和数据发现,该观测值有明显的长期趋势与季节变动.第一步,因为一周中周六的参观人数最大,因此我们定季节周期,所以,求7=N 的一次平均序列,表示1-7期的这一周平均每天的参观7=N )...(71721)1(7x x x M +++=人数,因为是连续7天的平均,所以中消除了季节因素.同理有:)1(7M ), (71278)1(8x x x M +++=)....(71389)1(9x x x M +++=将,,记作;由于随机影响总是围绕某一中间值上下波动,所)1(7M )1(8M ,...)1(9M {})1(t M 以进过算数平均后,也可认为,随机性的因素也被消除了,而长期趋势和周期波动则仍存在于移动平均值序列的中.则{})1(t M ,t t t C T x MA ⨯=))(7(季节性:.I S CT I S C T MA x t ⨯=⨯⨯⨯⨯=然而当原始序列不呈现水平模式,若以递增的形式模式时,移动平均值序列与原始序列会出现滞后现象,的值比的值要小,为了消除这种差距,需要移动的)1(t M t x )1(t M 位置.将向前移动=3期,这样就消除了序列对序列长期趋势的偏离.)1(t M 21-N )1(t M t x 将观察值除以移动平均数得到的比值只包含季节性和随机性.如果某个比值,意味着实际值比移动平均数要大.下面表格为部分数据(表3)%100>x 表3星期季节序号观测值()i x 一次移动平均值(N=7)居中平均值(T C )⨯S I (%)⨯120.69222313.17414.8615.297.7658.8915.2458.33612.0214.1684.911714.7715.214.54101.61120.9815.2414.99139.96214.414.1616.2988.38315.8314.5417.6589.67418.0414.9918.9895.06518.0116.2920.7786.71621.5517.6522.1697.23…724.0318.9823.28103.24152.7547.1940.41130.52239.7245.88327.0843.51420.0740.4156n7下面为包含了季节性和随机性的数据图(S I )(图3)⨯图3 季节性和随机性的数据图如果将中的消除掉,也就得出了季节性指数.因为随机性是偶然的(比如说I S ⨯I 受到天气等的影响)、没有一定的模式、围绕中间值上下波动,因此通过平均就能消除随机性影响.将“比率”中各年同一季度的数据放在同一列之中,求出各个季度的平均值,I S ⨯,其中上面的横线表示季节平均. S I S =⨯表4星期一二三四五六七1--------97.7658.3384.91101.61139.96288.38289.66795.0686.7197.24103.24137.19392.81886.9292.11100.8999.44106.22112.44...........................1598.797100.108106.494.6695.5698.01109.921685.046106.75296.5596.0991.83102.17123.9817106.02392.50987.4691.64107.37116.69130.52合计1510.251551.651696.571576.341631.791722.051991.05平均94.3996.9899.892.7295.99101.3117.12季节指数(%)94.6297.21100.0492.9596.22101.54117.41表示一组循环变动—长期趋势数值.在多数情况下亦能满足要求.C T MA ⨯=发现世博会的每日参观人数在后期趋势,因此我们用趋势外推法拟合参观人数曲线.C TC T T MA =⨯=)(即为循环变动因子.利用MA (7)得到的包含了长期趋势和循环变动两部分的数据图(图4)C T⨯图4 长期趋势和循环变动两部分的数据图C T ⨯(3) 模型的求解在考虑到5月份的人数变动较大时,本着重今轻远的原则,我们采用加权拟合直线方程法来求解.对离差平方和进行加权,然后利用最小二乘法,使离差平方和达到最小,求出加权直线拟合方程.由近及远的离差平方和的权重分别为;其中121,...,,,-n αααα,说明对最近数据赋权值为1,而后由近及远按比例递减.综合考虑直1,100=<<ααα线拟合情况,在这里赋,设加权直线拟合方程为,则离差平方和:97.0=αi i bx a y +=ˆ.)(12∑=---=ni i i i n bx a y Q α对进行求导,求得:b a ,0][2111=---=∂∂∑∑∑==-=--n i ni i i n n i in i i n x b a y a Q ααα0][21121=---=∂∂∑∑∑==-=--n i ni i i n i n i in i i i n x b x a y x b Q ααα用MATLAB 编程(程序见附录3)解得:,即:0266.390263.0ˆ+=i i x yii x T 0263.00266.39+=如下图所示(程序见附录4)(图5):图5由C TC T T MA =⨯=)(可求得循环因子.如下图所示(图6):图6循环因子的值大于100的表明该季度参观人数高于所有季度的平均值,而小于100则相反.循环因子比较复杂,且其变动周期较长,在此我们也用平均值代替.用分解法确定了季节指数、趋势值和循环指数之后,就可以进行预测.对9月10日—14日的参观人数进行预测.现在,已知每一季度的季节指数,循环因子,由可得趋S C t t x T 0263.00266.39+=势值,由T ii i i i I C S T x ⨯⨯⨯=可以对后期的进行预测.由于随机性无法直接进行预测,在这里我们假设由于8月低到9月初上海市受台风等恶劣天气影响,直接影响到参观人数的多少.我们以9月1号的人数假设天气影响的随即因素程度以恢复性回升.另外,7、8月份为暑假期,学生参观人数较多,而到九月份后学生参观人数减少;由于节假日(国庆节等)、闭幕前时期的人流量会较多.在这,我们假设随机性的值(假设各个随机性的值相互不影响),下表(表5)所示:I 表5随机性天气影响节假日影响假期影响I (%)0.5—0.91.050.95于是,计算9月10号的预测值,已知,则133=t 5245.420266.391330263.0133=+⨯=T ,,,%04.100133=S %62.97133=C 9.0133=I 则9月10号的预测值为(万).93.37133133133133133=⨯⨯⨯=I S C T x 同理:(万)89.43134134134134134=⨯⨯⨯=I S C T x (万)4.35135135135135135=⨯⨯⨯=I S C T x (万)39.36136136136136136=⨯⨯⨯=I S C T x (万)47.37137137137137137=⨯⨯⨯=I S C T x 利用上述模型预测得到9月10号到10月31号期间每天的入园人数如表6.表6 预测9月10日至10月31日每天的入园人数日期星期预测值(万)日期星期预测值(万)9月1日星期三10月1日星期五44.839月2日星期四10月2日星期六51.879月3日星期五10月3日星期日41.839月4日星期六10月4日星期一43.009月5日星期日10月5日星期二44.289月6日星期一10月6日星期三41.179月7日星期二10月7日星期四42.649月8日星期三10月8日星期五40.749月9日星期四10月9日星期六47.139月10日星期五37.9310月10日星期日38.019月11日星期六43.8910月11日星期一39.079月12日星期日35.4010月12日星期二40.239月13日星期一36.3910月13日星期三37.419月14日星期二37.4710月14日星期四38.749月15日星期三36.7710月15日星期五40.919月16日星期四38.0910月16日星期六47.339月17日星期五40.2210月17日星期日38.179月18日星期六46.5310月18日星期一39.249月19日星期日37.5210月19日星期二40.409月20日星期一38.5810月20日星期三37.569月21日星期二39.7210月21日星期四38.919月22日星期三40.8210月22日星期五41.089月23日星期四38.2510月23日星期六47.539月24日星期五34.0110月24日星期日38.339月25日星期六39.3510月25日星期一43.559月26日星期日31.7310月26日星期二44.859月27日星期一32.6210月27日星期三41.699月28日星期二33.5910月28日星期四43.199月29日星期三31.2310月29日星期五45.609月30日星期四32.3510月30日星期六52.7610月31日星期日42.54据官方统计5月1日到9月9日总数为4967.45 万人次,预测9月10号到10月31号的总数为2097.07万人次,则整个世博会期间的总参观人数为:(万)S7064.525.3.2上海世博会对旅游投资的影响世博会通过投资和消费直接影响旅游业的收益.在前世博阶段,世博会将投入大量资金修建世博园区和完善基础设施,在旅游业中注入新的投资变量,刺激旅游业的发展,以增加旅游业产业增加值;世博阶段,有大量游客聚集上海,呈现出消费需求充足局面,拉动旅游收入.世博会带来的投资包括直接投资和间接投资两个部分.其中,直接投资包括运营费、参展费、展馆与相关设施建设费、新增城市基础设施费;间接投资时指即使不举办世博会也需要增加的城市基础设施投资,只是因为举办世博会而提前或进一步扩大的投资,其中,世博会的直接旅游投资即是前世博阶段在世博园区内建设旅游设施所花费的投资,是世博直接投资的一部分;世博会的间接旅游投资是指由世博会拉动的旅行社、旅游交通设施、宾馆业三部分的投资.5.3.2.1世博会的直接旅游业投资上海世博会的财政预算分为两大部分,第一部分是场馆基础设施建设和永久性场馆建设,总投资180亿元.第二部分是上海世博会的营运资金为106亿元.在前世博阶段,世博会的投资主要用于场馆基础建设和永久性场馆建设.世博村的投资,根据世博村面积占世博园区规划总面积的比例来计算世博村的动迁总会用,世博村总动费用约为7.05亿元,同时世博园区工程建设中一部分资金用于世博村整体建设,世博村总投资合计30.1亿元(如表6)表6世博会的旅游业直接投资单位:亿元世博村动迁总费用 7.05世博村建设投资 23.05合计 30.1数据来源:《中国2010年上海世界博览会注册报告》5.3.2.2世博会的间接旅游业投资世博会间接旅游业投资是指即使不举办世博会也需要进行的旅游业投资,因举办世博会而提前或进一步增加的投资,世博会间接投资是指除园区展馆投资以外的相关配套设施投资,其计算公式如下:世博会的间接旅游业关投资=旅游设施投资(旅行社投资、旅馆业投资)等+旅游交通运输投资.在具体计算中则利用无世博预期下放的旅游业投资与世博预期下旅游业投资额的差值来衡量世博会的间接旅游业投资额.(I)无世博会预期下的旅游业投资为满足上海市旅游业自身发展的需要,假设上海不举办世博会,即在无世博会预期下仍然会对上海旅游业注入投资,以保持旅游业增长势头,维持较快的发展速度.以1980-2002年期间上海市旅游投资额统计数据为基础,进行平稳时间序列分析,预测即使没有世博会预期,2003-2010年期间上海市旅游业投资情况.时间序列预测概念时间序列,指变量数据按照时间顺序变动排列而成的一种数列,反映变量随时间的变化的发展过程,揭示未来变化规律,并对未来状态进行预测,这里以上海市旅游投资为变量,预测2003-2010年上海市旅游投资的发展状况.时间序列预测模型时间序列分析,常用平滑法,趋势线法、季节性指数法和自回归法进行预测分析,自回归滑动平均模型(简称模型)是研究时间序列的重要方法,以自回归模型ARMA (简称模型)与平均滑动模型(简称模型)为基础“混合”而成,其中时间顺序AR MA 排列的观察值之间具有依赖关系或自相关时,就采用回归模型;模型中包含),(q p ARMA 了自回归项和移动平均项,模型可以表示为:p q ),(q p ARMA .111∑∑==--++=pi qj t j t j i i t Y Y μεθϕ模型构建)1,2(ARMA (1)时间序列平稳化模型的处理对象必须是平稳的,即短期来看,分析的时间序列的统计特征不ARMA 随时间的变化而变化,从长期来看,时间序列趋于常量或线性函数.在SPSS 统计分析软件中利用1980-2002年的旅游投资数据为基础到处上海市旅游投资线性分布图.如图8图8 上海市旅游投资线性分布图从图8可以看出上海市旅游投资变量随时间变化而变化,总体呈现上升趋势,具有不稳定性,说明时间序列并非平稳序列,因此要对上海市旅游投资变量按一定结构重新组合,形成新的时间序列变量.图9 上海市旅游投资二阶差分图在SPSS中对上海市投资旅游进行差分分析,并到处二阶差分图如图9,从图9可以看出,旅游投资二阶差分大部分落在置信区间内,且较为稳定,可以确定此事的旅游投资序列成为稳定的时间序列,可以对上海市旅游投资进行时间序列分析.ARMA(2)模型判定与阶数确定从图10中可以看出,自相关函数值落在置信区间内且自相关函数在K(旅游投资变量序号)大于2以后随着时间的增长以正弦振荡衰减,即体现出拖尾特征.图10 上海市旅游投资自相关分析图如图11,(二阶产分后样本数为23),偏自相关函数值()的417.02≈nn PACF 绝对值在后均小于1.417,切以正弦振荡衰减,因此认定该序列可以进行一个二2>K 阶自回归过程,适合构造模型.AMRA图11 上海市旅游投资二阶偏相关分析图由于和均是拖尾的,初步确定样本的范围,在样本数据不够大的情ACF PACF q p ,况下,适合采用准则确定的值.AIC q p ,表7ARMA 模型AIC 数值表MA 阶数 0120 64.3154865.54981164.420564.7457165.0492326402916164.1474764.52708AR 阶数364.2736564.624464.52649从表7可以看出时值最小,数值为64.14747,由此确定预测模型为1,2==q p AIC .)1,2(ARMA图图12 残差散点图将模型所产生的残差和拟合的预测值做散点图12,从图中可以看出残差)1,2(ARMA 与预测值之间无相关性,无预测性,无序列性,说明残差成独立性,证明所建立的模型合理,具有统计分析的意义.)1,2(ARMA (3) 参数估计:表 8ARMA (2,1)模型参数参数类型系数标准误差T 值概率P 值AR10.340.47-0.720.0005AR20.560.29 1.980.0002MA1-0.150.73-0.880.0003从表8可以看出概率,说明参数显著.采用模型进行平稳时间序,1.0<p )1,2(ARMA 列分析,结合表9导出上海市旅游投资的未来投资的变动模型如下:tt t t Y Y Y ε++=--2156.019.0其中,为时间变量,为虚拟变量.t t ε应用以上模型对上海无世博会预期下的旅游投资进行预测,预测结果为表9无世博会影响下旅游设施投资时间序列预测单位:亿元年份旅游设施投资200319.41200419.84200520.04200620.41200720.66200820.79200920.90201021.02合计163.07从表9可以看出,即使没有世博会上海市2003-2010年期间旅游设施的投资也仍然有所增长,投资总额约为163亿元.从表10可以看出交通运输费投资高达673.5亿元,为确立国际航运中心地位提供基本投资保障,为上海世博会的成功举办提供保障.表10无世博会影响下的交通运输投资单位:亿元交通运输投资投资规模(亿元)市内高速道路15.00城际高速道路131.50轨道交通280.00机场建设197.00浦西增加的停车库和停车场50.00从表9和表10可以计算出无世博会预期下2003到2010上海市旅游投资总额为836.6亿元.(II)世博会预期下间接的旅游业投资从取得上海世博会举办权以来,上海市积极改善旅游业发展环境,加快“十一五”旅游规划中投资项目的建设速度,增加爱旅游业间接投资额度.根据经验,世博会带来的相关投资率取0.25,根据相关投资率=(真实投资额-无预期投资额)、真实投资额的计算公式,结合无世博会预期下旅游业投资额,可以进一步计算出世博会预期情况下,2003~2010年上海市旅游业真实投资总额约为1115.5亿元,其中由世博会因素所带来的旅游业投资总额约为278.9亿元,即由上海世博会这一因素促成的间接旅游业投资278.9亿元.(III)世博会带来的旅游总投资上海在世博筹备期中,旅游业发展目标是旅游饭店从319家增加到750家,房客床。
2010年高社杯数学建模D题省级获奖论文
对学生宿舍设计方案的评价摘要学生宿舍事关学生在校期间的生活品质,直接或间接地影响学生生活、学习和健康成长。
为了提高学生的生活品质,不给学生增加经济负担为原则,本模型从经济性、舒适性、安全性三方面入手,结合已知数据,建立合理的评价指标体系,利用层次分析法对四种典型的学生宿舍设计方案进行了综合量化评价和比较。
关键词评价指标层次分析法问题重述学生宿舍事关学生在校期间的生活品质, 直接或间接地影响到学生的生活、学习和健康成长。
学生宿舍的使用面积、布局和设施配置等的设计既要让学生生活舒适,也要方便管理, 同时要考虑成本和收费的平衡, 这些还与所在城市的地域、区位、文化习俗和经济发展水平有关。
因此,学生宿舍的设计必须考虑经济性、舒适性和安全性等问题。
经济性:建设成本、运行成本和收费标准等。
舒适性:人均面积、使用方便、互不干扰、采光和通风等。
安全性:人员疏散和防盗等。
附件是四种比较典型的学生宿舍的设计方案。
请你们用数学建模的方法就它们的经济性、舒适性和安全性作出综合量化评价和比较。
模型假设1.忽略地域、区位、文化习俗和经济发展对评价指标的影响2.忽略楼层对评价指标的影响模型的建立与求解一、建立层次结构由题目的要求,我们给出综合评定体系指标如下:经济性B1C砖混剪力墙结构及整体框架结构;建设成本1C管理、维修维护耗费及日常消耗(如水、电等);运行成本2C根据国家规定及某高校实际实施方案;收费标准3B舒适性2C总面积(建筑面积)与学生人数之比;人均居住面积4C公共设施建设及分布;使用方便5C寝室人数;互不干扰6C建筑结构及门窗布局;采光通风7B安全性3C楼道位置及数量;人员疏散8防盗9C 宿舍人流量。
参数说明:1K 代表建筑面积为877.352m ,房间数为23间的宿舍;2K 代表建筑面积为26602m ,房间数为55间的宿舍;3K 代表建筑面积为22292m ,房间数为38间的宿舍; 4K 代表建筑面积为1886.642m ,房间数为22间的宿舍。
2010数模D题 宿舍方案优化设计
对学生宿舍设计方案的评价方红城杨科曹鹏摘要近些年来,高校宿舍的收费标准,以及结构成本、安全度、外观造型、采光通风、防盗措施等条件颇受大众所关注。
这些条件直接影响到高校学生寝室学习以及生活作息等方面,也会影响到学生的品质,直接或间接的影响学生身心的成长。
其次,学校管理层与在校或者将报考的学生来说都是相当的看重宿舍楼条件,因此对学生宿舍楼设计方案的综合评价是非常重要的。
它往往也影响到高校报考人数,不论学校或还是学生,宿舍楼的综合条件对于他们来说多是很重要的本文以经济性、舒适性、安全性为评价指标。
从建设成本、运行成本、收费标准、人均面积等因素来进行数据化处理,用整数规划进行量化数据,将量化后的数据进行极差规范化处理,并利用层次分析法确定了各因素的权重,将方案中规划后的数据进行加权求和,得到四种方案优劣的综合评价情况。
本评价模型中利用Matlab和Excel 进行了大量的数据处理,让数据更简洁,使模型更具推广性。
最终计算出各设计方案最优的数据指标值,计算结果为第四种方案更具优越性,即为最优方案。
关键词:综合评价统一量化整数规划层次分析指标权重。
问题重述学生宿舍事关学生在校期间的生活品质, 直接或间接地影响到学生的生活、学习和健康成长。
学生宿舍的使用面积、布局和设施配置等的设计既要让学生生活舒适,也要方便管理, 同时要考虑成本和收费的平衡, 这些还与所在城市的地域、区位、文化习俗和经济发展水平有关。
因此,学生宿舍的设计必须考虑经济性、舒适性和安全性等问题。
其中经济性因素方面包括建设成本、运行成本和收费标准等。
舒适性因素方面包括人均面积、使用方便、互不干扰、采光和通风等。
安全性因素方面包括人员疏散和防盗等。
附件2是四种比较典型的学生宿舍的设计方案。
本文的任务是根据所给的四种比较典型的学生宿舍的设计方案,用数学建模的方法定量的对这四种方案的经济性、舒适性和安全性作出综合的评价和比较。
问题分析根据学生宿舍设计的经济性、舒适性和安全性等方面对已有的4种典型方案作出综合量化评价和比较。