2019版高中全程复习方略数学(文)课时作业:第九章 概率 54 Word版含答案
最新-2021版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布96 精品

2.如图,在长方体 ABCD-A1B1C1D1 中,E,H 分别是棱 A1B1,D1C1 上的点(点 E 与 B1 不重合),且 EH∥A1D1,过 EH 的 平面与棱 BB1,CC1 相交,交点分别为 F,G.设 AB=2AA1=2a, EF=a,B1E=2B1F.在长方体 ABCD-A1B1C1D1 内随机选取一点, 则该点取自于几何体 A1ABFE-D1DCGH 内的概率为________.
5.(2017·重庆卷)某校早上
开始上课,假设该校学生
小张与小王在早上
~
之间到校,且每人在该时间段
的任何时刻到校是等可能的,则小张比小王至少早 5 分钟到校的
概率为________(用数字作答).
解析:设小张与小王的到校时间分别为
后第 x 分钟、
第 y 分钟,根据题意可画出图形,如图所示,则总事件所占的面
解 析 : 点 Q 取 自 △AED 或 △BEC 内 部 的 概 率 P = S△ASE矩D形+ABSC△DBEC=12.故选 A.
答案:A
3.已知函数 f(x)=x2-2x-3,x∈[-1,4],则 f(x)为增函数 的概率为( )
1234 A.5 B.5 C.5 D.5
解析:∵f(x)=x2-2x-3=(x-1)2-4,x∈[-1,4]. ∴f(x)在[1,4]上是增函数. ∴f(x)为增函数的概率为 P=4-4--11=35. 答案:C
因为2-2a22da=16a3-22 =83,所以阴影部分的面积为 4×2+83 32
=332,所以所求概率 P=4×3 4=23,故选 D. 答案:D
谢谢观看
下课
由圆中的黑色部分和白色部分关于正方形的中心成中心对
称,得 S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率 P=SS正黑 方形 π
【三维设计】2022届(新课标)高考数学(文)大一轮复习精品讲义:第九章 概率 Word版含答案

第九章 概 率第一节随机大事的概率对应同学用书P141基础盘查一 随机大事及概率 (一)循纲忆知1.了解随机大事发生的不确定性和频率的稳定性. 2.了解概率的意义及频率与概率的区分. (二)小题查验 1.推断正误(1)“物体在只受重力的作用下会自由下落”是必定大事( ) (2)“方程x 2+2x +8=0有两个实根”是不行能大事( ) (3)在大量重复试验中,概率是频率的稳定值( ) (4)不行能大事就是确定不能发生的大事( ) 答案:(1)√ (2)√ (3)√ (4)√2.(人教B 版教材习题改编)某射手在同一条件下进行射击,结果如下:射击次数 10 20 50 100 200 500 击中靶心次数8194492178455这个射手射击一次,击中靶心的概率约是________. 答案:0.903.(2021·温州十校联考)记一个两位数的个位数字与十位数字的和为A .若A 是不超过5的奇数,从这些两位数中任取一个,其个位数为1的概率为________.解析:依据题意,个位数字与十位数字之和为奇数且不超过5的两位数有:10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率为29.答案:29基础盘查二 大事关系与运算 (一)循纲忆知了解两个互斥大事的概率加法公式:当大事A 与B 互斥时,P (A ∪B )=P (A )+P (B ). (二)小题查验1.推断正误(1)对立大事确定是互斥大事,互斥大事不愿定是对立大事(2)一个人打靶时连续射击出两次,大事“至少有一次中靶”的互斥大事是“至多有一次中靶”( ) (3)大事A ,B 为互斥大事,则P (A )+P (B )<1( )(4)大事A ,B 同时发生的概率确定比A ,B 中恰有一个发生的概率小( ) 答案:(1)√ (2)× (3)× (4)×2.(人教A 版教材例题改编)假如从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心的概率是14,取到方块的概率是14,则取到黑色牌的概率是________. 答案:12.3.(2021·赤峰模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是________. 答案:78对应同学用书P141考点一 随机大事的关系(基础送分型考点——自主练透) [必备学问] 1.互斥大事若A ∩B 为不行能大事(记作:A ∩B =∅),则称大事A 与大事B 互斥,其含义是:大事A 与大事B 在任何一次试验中不会同时发生.2.对立大事若A ∩B 为不行能大事,而A ∪B 为必定大事,则大事A 与大事B 互为对立大事,其含义是:大事A 与大事B 在任何一次试验中有且仅有一个发生.[提示] “互斥大事”与“对立大事”的区分:对立大事是互斥大事,是互斥中的特殊状况,但互斥大事不愿定是对立大事,“互斥”是“对立”的必要不充分条件.[题组练透]1.从1,2,3,…,7这7个数中任取两个数,其中: (1)恰有一个是偶数和恰有一个是奇数;(2)至少有一个是奇数和两个都是奇数;(3)至少有一个是奇数和两个都是偶数;(4)至少有一个是奇数和至少有一个是偶数.上述大事中,是对立大事的是()A.(1)B.(2)(4)C.(3) D.(1)(3)解析:选C(3)中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数依据取到数的奇偶性可认为共有三个大事:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立大事.易知其余都不是对立大事.2.设条件甲:“大事A与大事B是对立大事”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A若大事A与大事B是对立大事,则A∪B为必定大事,再由概率的加法公式得P(A)+P(B)=1.设掷一枚硬币3次,大事A:“至少毁灭一次正面”,大事B:“3次毁灭正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A,B不是对立大事.3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若大事“2张全是移动卡”的概率是310,那么概率是710的大事是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析:选A至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个大事,它是“2张全是移动卡”的对立大事,故选A.[类题通法]利用集合方法推断互斥大事与对立大事1.由各个大事所含的结果组成的集合彼此的交集为空集,则大事互斥.2.大事A的对立大事A所含的结果组成的集合,是全集中由大事A所含的结果组成的集合的补集.考点二随机大事的概率(重点保分型考点——师生共研)[必备学问]概率与频率(1)在相同的条件S下重复n次试验,观看某一大事A是否毁灭,称n次试验中大事A毁灭的次数n A为大事A毁灭的频数,称大事A毁灭的比例f n(A)=n An为大事A毁灭的频率.(2)对于给定的随机大事A,由于大事A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估量概率P(A).[典题例析](2022·陕西高考)某保险公司利用简洁随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估量赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估量在已投保车辆中,新司机获赔金额为4 000元的概率.解析:(1)设A表示大事“赔付金额为3 000元”,B表示大事“赔付金额为4 000元”,以频率估量概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示大事“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估量概率得P(C)=0.24.[类题通法]求解随机大事的概率关键是精确计算基本大事数,计算的方法有:(1)列举法;(2)列表法;(3)利用树状图法.[演练冲关]假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图:(1)估量甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估量该产品是甲品牌的概率.解:(1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估量概率,可得甲品牌产品寿命小于200小时的概率为14.(2)依据频数分布图可得寿命大于200小时的两种品牌产品共有75+70=145(个),其中甲品牌产品有75个,所以在样本中,寿命大于 200小时的产品是甲品牌的频率是75145=1529.据此估量已使用了200小时的该产品是甲品牌的概率为1529.考点三 互斥大事与对立大事的概率(重点保分型考点——师生共研) [必备学问]1.互斥大事的概率加法公式假如大事A 与大事B 互斥,那么P (A ∪B )=P (A )+P (B ); 2.对立大事概率公式若大事B 与大事A 互为对立大事,则P (A )+P (B )=1,即P (A )=1-P (B ).A 的对立大事记为A ,当计算大事A 的概率P (A )比较困难时,可通过P (A )=1-P (A )计算.[典题例析]依据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3. (1)求该地1位车主至少购买甲、乙两种保险中的1种的概率; (2)求该地1位车主甲、乙两种保险都不购买的概率.解:记A 表示大事:该车主购买甲种保险;B 表示大事:该车主购买乙种保险但不购买甲种保险;C 表示大事:该车主至少购买甲、乙两种保险中的1种;D 表示大事:该车主甲、乙两种保险都不购买.(1)由题意得P (A )=0.5,P (B )=0.3, 又C =A ∪B ,所以P (C )=P (A ∪B )=P (A )+P (B )=0.5+0.3=0.8. (2)由于D 与C 是对立大事, 所以P (D )=1-P (C )=1-0.8=0.2. [类题通法]求概率的关键是分清所求大事是由哪些大事组成的,求解时通常有两种方法: (1)将所求大事转化成几个彼此互斥的大事的和大事,利用概率加法公式求解概率;(2)若将一个较简洁的大事转化为几个互斥大事的和大事时,需要分类太多,而其对立面的分类较少,可考虑利用对立大事的概率公式,即“正难则反”.它常用来求“至少”或“至多”型大事的概率.[演练冲关]现有7名数理化成果优秀者,其中A 1,A 2,A 3的数学成果优秀,B 1,B 2的物理成果优秀,C 1,C 2的化学成果优秀,从中选出数学、物理、化学成果优秀者各1名,组成一个小组代表学校参与竞赛.(1)求C 1被选中的概率;(2)求A 1和B 1不全被选中的概率.解:(1)用M 表示“C 1恰被选中”这一大事.从7人中选出数学、物理、化学成果优秀者各1名,其一切可能的结果组成的12个基本大事为: (A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).C 1恰被选中有6个基本大事:(A 1,B 1,C 1),(A 1,B 2,C 1),(A 2,B 1,C 1),(A 2,B 2,C 1),(A 3,B 1,C 1),(A 3,B 2,C 1), 因而P (M )=612=12.(2)用N 表示“A 1,B 1不全被选中”这一大事,则其对立大事N 表示“A 1,B 1全被选中”这一大事,由于N ={}(A 1,B 1,C 1),(A 1,B 1,C 2),所以大事N 由两个基本大事组成,所以P (N )=212=16, 由对立大事的概率公式得P (N )=1-P (N )=1-16=56.对应A 本课时跟踪检测(五十五)一、选择题1.在一次随机试验中,彼此互斥的大事A ,B ,C ,D 的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是( )A .A ∪B 与C 是互斥大事,也是对立大事 B .B ∪C 与D 是互斥大事,也是对立大事 C .A ∪C 与B ∪D 是互斥大事,但不是对立大事 D .A 与B ∪C ∪D 是互斥大事,也是对立大事解析:选D 由于A ,B ,C ,D 彼此互斥,且A ∪B ∪C ∪D 是一个必定大事,故其大事的关系可由如图所示的韦恩图表示,由图可知,任何一个大事与其余3个大事的和大事必定是对立大事,任何两个大事的和大事与其余两个大事的和大事也是对立大事.2.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A.17 B.1235 C.1735D .1解析:选C 设“从中取出2粒都是黑子”为大事A ,“从中取出2粒都是白子”为大事B ,“任意取出2粒恰好是同一色”为大事C ,则C =A ∪B ,且大事A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.3.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并登记号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10 取到次数138576131810119则取到号码为奇数的卡片的频率是( ) A .0.53 B .0.5 C .0.47D .0.37解析:选A 取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53100=0.53.故选A.4.从某校高二班级的全部同学中,随机抽取20人,测得他们的身高(单位:cm)分别为: 162,153,148,154,165,168,172,171,173,150, 151,152,160,165,164,179,149,158,159,175.依据样本频率分布估量总体分布的原理,在该校高二班级的全部同学中任抽一人,估量该生的身高在155.5 cm ~170.5 cm 之间的概率约为( )A.25B.12C.23D.13解析:选A 从已知数据可以看出,在随机抽取的这20位同学中,身高在155.5 cm ~170.5 cm 之间的同学有8人,频率为25,故可估量在该校高二班级的全部同学中任抽一人,其身高在155.5 cm ~170.5 cm 之间的概率约为25.5.已知甲、乙两人下棋,和棋的概率为12,乙胜的概率为13,则甲胜的概率和甲不输的概率分别为( )A.16,16 B.12,23 C.16,23D.23,12解析:选C “甲胜”是“和棋或乙胜”的对立大事,所以甲胜的概率为1-12-13=16.设“甲不输”为大事A ,则A 可看作是“甲胜”与“和棋”这两个互斥大事的和大事,所以P (A )=16+12=23.或设“甲不输”为大事A ,则A 可看作是“乙胜”的对立大事,所以P (A )=1-13=23. 6.若随机大事A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是( )A.⎝⎛⎭⎫54,2 B.⎝⎛⎭⎫54,32 C.⎣⎡⎦⎤54,32D.⎝⎛⎦⎤54,43解析:选D由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<1,3a -3≤1⇒⎩⎨⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 二、填空题7.据统计,某食品企业在一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1,则该企业在一个月内被消费者投诉不超过1次的概率为________.解析:法一:记“该食品企业在一个月内被消费者投诉的次数为0”为大事A ,“该食品企业在一个月内被消费者投诉的次数为1”为大事B ,“该食品企业在一个月内被消费者投诉的次数为2”为大事C ,“该食品企业在一个月内被消费者投诉不超过1次”为大事D ,由题意知大事A ,B ,C 彼此互斥,而大事D 包含大事A 与B ,所以P (D )=P (A )+P (B )=0.4+0.5=0.9.法二:记“该食品企业在一个月内被消费者投诉的次数为2”为大事C ,“该食品企业在一个月内被消费者投诉不超过一次”为大事D ,由题意知C 与D 是对立大事,所以P (D )=1-P (C )=1-0.1=0.9.答案:0.98.(2021·潍坊模拟)连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m ”为大事A ,则P (A )最大时,m =________.解析:m 可能取到的值有2,3,4,5,6,7,8,9,10,11,12,对应的基本大事个数依次为1,2,3,4,5,6,5,4,3,2,1,∴两次向上的数字之和等于7对应的大事发生的概率最大.答案:79.某城市2022年的空气质量状况如下表所示:污染指数T 30 60 100 110 130 140 概率P1101613730215130其中污染指数T ≤50时,空气质量为优;50<T ≤100时,空气质量为良;100<T ≤150时,空气质量为略微污染,则该城市2022年空气质量达到良或优的概率为________.解析:由题意可知2022年空气质量达到良或优的概率为P =110+16+13=35.答案:3510.若A ,B 互为对立大事,其概率分别为P (A )=4x ,P (B )=1y ,且x >0,y >0,则x +y 的最小值为________.解析:由题意可知4x +1y =1,则x +y =(x +y )⎝⎛⎭⎫4x +1y =5+⎝⎛⎭⎫4y x +x y ≥9,当且仅当4y x =xy ,即x =2y 时等号成立.答案:9 三、解答题11.有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取得的两个球颜色相同的概率; (2)求取得的两个球颜色不相同的概率. 解:从六个球中取出两个球的基本大事是:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共计15个.(1)记大事A 为“取出的两个球都是白球”,则这个大事包含的基本大事是(1,2),(1,3),(2,3),共计3个,故P (A )=315=15;记“取出的两个球都是黑球”为大事B ,同理可得P (B )=15.记大事C 为“取出的两个球的颜色相同”,A ,B 互斥,依据互斥大事的概率加法公式,得P (C )=P (A ∪B )=P (A )+P (B )=25.(2)记大事D 为“取出的两个球的颜色不相同”,则大事C ,D 对立,依据对立大事概率之间的关系,得P (D )=1-P (C )=1-25=35.12.黄种人人群中各种血型的人数所占的比例见下表:血型A B AB O 该血型的人数所占的比例28%29%8%35%已知同种血型的人可以相互输血,O 型血的人可以给任一种血型的人输血,任何人的血都可以输给AB 型血的人,其他不同血型的人不能相互输血.小明是B 型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少? (2)任找一个人,其血不能输给小明的概率是多少?解:(1)任找一人,其血型为A ,B ,AB ,O 型血分别记为大事A ′,B ′,C ′,D ′,它们是互斥的.由已知,有P (A ′)=0.28,P (B ′)=0.29,P (C ′)=0.08,P (D ′)=0.35.由于B ,O 型血可以输给B 型血的人,故“任找一个人,其血可以输给小明”为大事B ′∪D ′,依据概率加法公式,得P (B ′∪D ′)=P (B ′)+P (D ′)=0.29+0.35=0.64.(2)由于A ,AB 型血不能输给B 型血的人,故“任找一个人,其血不能输给小明”为大事A ′∪C ′,且P (A ′∪C ′)=P (A ′)+P (C ′)=0.28+0.08=0.36.其次节古典概型对应同学用书P143基础盘查一 古典概型 (一)循纲忆知1.理解古典概型及其概率计算公式.2.会计算一些随机大事所包含的基本大事数及大事发生的概率. (二)小题查验 1.推断正误(1)“在适宜条件下,种下一粒种子观看它是否发芽”属于古典概型,其基本大事是“发芽与不发芽”( )(2)掷一枚硬币两次,毁灭“两个正面”“一正一反”“两个反面”,这三个结果是等可能大事( ) (3)在古典概型中,假如大事A 中基本大事构成集合A ,全部的基本大事构成集合I ,则大事A 的概率为card (A )card (I )( )答案:(1)× (2)× (3)√2.(北师大版教材例题改编)小明的自行车用的是密码锁,密码锁的四位数码由4个数字2,4,6,8按确定挨次构成,小明不当心遗忘了密码中4个数字的挨次,随机地输入由2,4,6,8组成的一个四位数,不能打开锁的概率是________.答案:23243.(2021·南京模拟)现从甲、乙、丙3人中随机选派2人参与某项活动,则甲被选中的概率为________. 解析:从甲、乙、丙3人中随机选派2人参与某项活动,有甲、乙,甲、丙,乙、丙三种可能,则甲被选中的概率为23.答案:234.(2021·昆明模拟)投掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1,2,3,4,5,6)一次,则两颗骰子向上点数之积等于12的概率为________.解析:抛掷两颗相同的正方体骰子共有36种等可能的结果:(1,1),(1,2),(1,3),…,(6,6).点数积等于12的结果有:(2,6),(3,4),(4,3),(6,2),共4种,故所求大事的概率为436=19.答案:19对应同学用书P144考点一 古典概型(基础送分型考点——自主练透) [必备学问] 1.基本大事的特点(1)任何两个基本大事是互斥的.(2)任何大事(除不行能大事)都可以表示成基本大事的和. 2.古典概型 (1)特点:①试验中全部可能毁灭的基本大事只有有限个,即有限性. ②每个基本大事发生的可能性相等,即等可能性. (2)概率公式:P (A )=A 包含的基本大事的个数基本大事的总数.[提示](1)一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性; (2)古典概型的概率计算结果与模型的选择无关. [题组练透]1.(2021·浙江模拟)从1,2,3,4这四个数字中依次取(不放回)两个数a ,b ,使得a 2≥4b 的概率是( ) A.13 B.512 C.12D.712解析:选C 基本大事为(1,2),(1,3),(1,4),(2,1)(2,3),(2,4),…,(4,3),共12个,符合条件的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),共6个,因此使得a 2≥4b 的概率是12.2.(2021·广州二模)有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是( )A.16B.13C.12D.38解析:选C 能组成的两位数有12,13,20,30,21,31,共6个,其中的奇数有13,21,31,共3个,因此所组。
2019版高中全程复习方略数学(文)课时作业:第二章 函数、导数及其应用 4 Word版含答案- (8)

所以∁R M={x|-2≤x≤2},所以N∩(∁R M)={x|1<x≤2},故选C.熟记集合的补集和并集运算法则是解题的关键.答案:C6.已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3)B.(0,1)∪(1,3)C.(0,1)D.(-∞,1)∪(3,+∞)解析:∵A∩B有4个子集,∴A∩B中有2个不同的元素,∴a∈A,∴a2-3a<0,解得0<a<3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.答案:B7.(2018·湖北武昌一模)设A,B是两个非空集合,定义集合A -B={x|x∈A,且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=()A.{0,1} B.{1,2}C.{0,1,2} D.{0,1,2,5}解析:∵A={x∈N|0≤x≤5}={0,1,2,3,4,5},B={x|x2-7x+10<0}={x|2<x<5},A-B={x|x∈A且x∉B},∴A-B={0,1,2,5}.故选D.答案:D8.(2018·河北衡水中学七调)已知集合A={x|log2x<1},B={x|0<x<c},若A∪B=B,则c的取值范围是()A.(0,1] B.[1,+∞)C.(0,2] D.[2,+∞)解析:A={x|log2x<1}={x|0<x<2},因为A∪B=B,所以A⊆B,所以c≥2,所以c∈[2,+∞),故选D.答案:D9.(2018·湖北省七市(州)协作体联考)已知集合P={n|n=2k-1,k∈N*,k≤50},Q={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为()A.147 B.140C.130 D.117解析:由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,不与y=3,y=5有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.答案:B17.设常数a∈R,集合A={x|(x-1)·(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为________.解析:若a>1,则集合A={x|x≥a或x≤1},利用数轴可知,要使A∪B=R,需要a-1≤1,则1<a≤2;若a=1,则集合A=R,满足A∪B=R,故a=1符合题意;若a<1,则集合A={x|x≤a或x≥1},显然满足A∪B=R,故a<1符合题意.综上所述,a的取值范围为(-∞,2].答案:(-∞,2]。
2019优化方案高考数学(文)总复习(人教A版)第9章第2课时-精选文档

山东水浒书业有限公司·
优化方案系列丛书
第9章 概率
温 故 夯 基 • 面 对 高 考 考 点 探 究 • 挑 战 高 考 考 向 瞭 望 • 把 脉 高 考
互动探究在本题条件下求事件B: “am∥(am+bn)”发生的概率.
解:由 am ∥(am +bn),得 mn= 2,故 B 包含 1 (1,2)(2,1)共 2 个,∴P= . 8
A包含的基本事件的个数 基本事件的总数 P(A)=_______________________
山东水浒书业有限公司·
优化方案系列丛书
第9章 概率
考点探究•挑战高考
考点突破
考点一
简单的古典概型问题
温 故 夯 基 • 面 对 高 考 考 点 探 究 • 挑 战 高 考 考 向 瞭 望 • 把 脉 高 考
山东水浒书业有限公司·
优化方案系列丛书
第9章 概率
温 故 夯 基 • 面 对 高 考 考 点 探 究 • 挑 战 高 考 考 向 瞭 望 • 把 脉 高 考
考点二
复杂的古典概型问题
求复杂事件的概率问题,关键是理解题目的实
际含义,必要时将所求事件转化为彼此互斥事
件的和,或者是先去求对立事件的概率,进而
山东水浒书业有限公司·
优化方案系列丛书
第9章 概率
温 故 夯 基 • 面 对 高 考 考 点 探 究 • 挑 战 高 考 考 向 瞭 望 • 把 脉 高 考
【规律方法】在古典概型条件下,当基本事件 1 总数为 n 时, 每一个基本事件发生的概率均为 . n 要求事件 A 的概率,关键是求出基本事件总数 n 和事件 A 中所含基本事件数 m,再由古典概 m 型概率公式 P(A)= 求出事件 A 的概率. n
2019版高中全程复习方略数学(文)课时作业:第二章函数、导数及其应用9

故由|f(x)|≥ax得x2-2x≥ax.
当x=0时,不等式为0≥0成立.
当x<0时,不等式等价于x-2≤a.
∵x-2<-2,∴a≥-2.
综上可知,a∈[-2,0].
方法二:分离参数法
∵|f(x)|=
∴由|f(x)|≥ax,分两种情况:
(1) 恒成立,可得a≥x-2恒成立,
A.(-∞,4) B.(-4,4]
C.(-∞,4)∪[2,+∞) D.[-4,4)
解析:由题意得x2-ax-3a>0在区间(-∞,-2]上恒成立且函数y=x2-ax-3a在(-∞,-2]上递减,则 ≥-2且(-2)2-(-2)a-3a>0,解得实数a的取值范围是[-4,4),选D.
答案:D
10.若实数a,b,c满足loga2<logb2<logc2,则下列关系中不可能成立的是()
B.(-3,0]
C.(-∞,-3)∪(0,+∞)
D.(-∞,-3)∪(-3,0)
解析:∵f(x)= ,
∴要使函数f(x)有意义,
需使 ,即-3<x<0.
答案:A
3.(2018·河南新乡二模,4)设a=60.4,b=log0.40.5,c=log80.4,则a,b,c的大小关系是()
A.a<b<cB.c<b<a
答案:3
13.若f(x)=lgx,g(x)=f(|x|),则g(lgx)>g(1)时,x的取值范围是________.
解析:当g(lgx)>g(1)时,f(|lgx|)>f(1),
由f(x)为增函数得|lgx|>1,
从而lgx>1或lgx<-1,
2019版高中全程复习方略数学(文)课时作业:第二章 函数、导数及其应用 9 Word版含答案

8.(2018·河北正定质检)设函数f(x)= 则f(-98)+f(lg 30)=()AΒιβλιοθήκη 5 B.6C.9 D.22
解析:f(-98)+f(lg 30)=1+lg[2-(-98)]+10lg 30-1=1+lg 100+ =1+2+3=6,故选B.
答案:B
9.(2018·江西九江七校联考,7)若函数f(x)=log2(x2-ax-3a)在区间(-∞,-2]上是减函数,则实数a的取值范围是()
解析:函数f(x)=loga(2x2+x)(a>0,a≠1)在区间 上恒有f(x)>0,由x∈ ,得2x2+x∈(0,1).又在区间 上恒有f(x)>0,故a∈(0,1),易得f(x)的定义域为 ∪(0,+∞),结合复合函数的单调性的判断规则知,函数的单调递增区间为 .
答案:
[能力挑战]
15.当0<x≤ 时,4x<logax,则a的取值范围是()
A.(-∞,4) B.(-4,4]
C.(-∞,4)∪[2,+∞) D.[-4,4)
解析:由题意得x2-ax-3a>0在区间(-∞,-2]上恒成立且函数y=x2-ax-3a在(-∞,-2]上递减,则 ≥-2且(-2)2-(-2)a-3a>0,解得实数a的取值范围是[-4,4),选D.
答案:D
10.若实数a,b,c满足loga2<logb2<logc2,则下列关系中不可能成立的是()
解析: ⇒ ⇒ ⇒10<x<100,故函数的定义域为{x|10<x<100}.
答案:{x|10<x<100}
12.已知2x=3,log4 =y,则x+2y的值为________.
解析:由2x=3,log4 =y得x=log23,y=log4 = log2 ,所以x+2y=log23+log2 =log28=3.
2019版高中全程复习方略数学(文)课时作业: 4 Word版含答案
C. D.-
解析:令t= x-1,则x=2t+2,f(t)=2(2t+2)-5=4t-1,则4a-1=6,解得a= .
答案:B
7.(2018·河北“五名校”质检)函数f(x)= 则不等式f(x)>2的解集为()
A.(-2,4) B.(-4,-2)∪(-1,2)
C.(1,2)∪( ,+∞) D.( ,+∞)
答案:(-∞,1)
12.对任意x都满足2f(x)-f(-x)=x2+x,求f(x)=________.
解析:∵2f(x)-f(-x)=x2+x,①
∴2f(-x)-f(x)=x2-x,②
①×2+②得
3f(x)=3x2+x,
∴f(x)=x2+ x.
答案:x2+ x
13.已知函数y=f(x2-1)的定义域为[- , ],则函数y=f(x)的定义域为________.
A.-log37 B.-
C.- D.-
解析:当a≤0时,2a-2=-2无解;当a>0时,由-log3a=-2,解得a=9,所以f(7-a)=f(-2)=2-2-2=- .
答案:D
二、填空题
11.(2018·南京二模)函数f(x)=ln 的定义域为________.
解析:本题考查对数函数的定义域.要使函数f(x)=ln 有意义,则 >0,解得x<1,故函数f(x)的定义域为(-∞,1).
解析:要使函数有意义,则需
∴ ∴1≤x≤3,故选B.
答案:B
4.(2018·黄山质检)已知f(x)是一次函数,且f(f(x))=x+2,则f(x)=()
A.x+1 B.2x-1
C.-x+1 D.x+1或-x-1
解析:f(x)是一次函数,设f(x)=kx+b,f(f(x))=x+2,可得k(kx+b)+b=x+2,即k2x+kb+b=x+2,∴k2=1,kb+b=2.解得k=1,b=1.即f(x)=x+1.故选A.
2019版高中全程复习方略数学(文)课时作业:第二章 函数、导数及其应用 9 含答案
C.(-∞,,0)
解析:∵f(x)= ,
∴要使函数f(x)有意义,
需使 ,即-3<x<0.
答案:A
3.(2018·河南新乡二模,4)设a=60.4,b=log0.40.5,c=log80.4,则a,b,c的大小关系是()
A.a<b<cB.c<b<a
一、选择题
1.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()
A.log2xB.
C.log xD.2x-2
解析:f(x)=logax,∴f(2)=1,∴loga2=1.∴a=2.∴f(x)=log2x.
答案:A
2.函数f(x)= 的定义域是()
A.(-3,0)
A.f(x)在(-∞,0)上是减函数
B.f(x)在(-∞,-1)上是减函数
C.f(x)在(0,+∞)上是增函数
D.f(x)在(-∞,-1)上是增函数
解析:由题意,函数f(x)=loga|x+1|(a>0且a≠1),则说明函数f(x)关于直线x=-1对称,当x∈(-1,0)时,恒有f(x)>0,即|x+1|∈(0,1),f(x)>0,则0<a<1.又u=|x+1|在(-∞,-1)上是减函数,(-1,+∞)上是增函数,结合复合函数的单调性可知,f(x)在(-∞,-1)上是增函数.
∴f(-x)=lg =-lg =-f(x),
∴f(x)为奇函数,∴f(-a)=-f(a)=- .
答案:D
5.如果log x<log y<0,那么()
A.y<x<1 B.x<y<1
C.1<x<yD.1<y<x
2019届高三数学文一轮复习:第十章 概率 课时跟踪训练54含解析
课时跟踪训练(五十四)
[基础巩固]
一、选择题
1.在一次随机试验中,彼此互斥的事件A ,
B ,
C ,
D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是()
A .A +
B 与
C 是互斥事件,也是对立事件
B .B +
C 与
D 是互斥事件,也是对立事件
C .A +C 与B +
D 是互斥事件,但不是对立事件
D .A 与B +C +D 是互斥事件,也是对立事件
[解析]由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件,其事件的关系可由如图所示的Venn 图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.故选D.
[答案]D
2.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为()
A.15
B.25
C.35
D.45
[解析]记取到语文、数学、英语、物理、化学书分别为事件A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 是彼此互斥的,取到理科书的概率为事件B 、D 、E 的概率的并
集.P (B ∪D ∪E )=P (B )+P (D )+P (E )=15+15+15=35
.[答案]C。
2019版高中全程复习方略数学(文)课时作业:第二章 函数、导数及其应用 4 Word版含答案- (39)
解析:∵-=>0,
∴bc-ad与ab同号,
∴用任意两个作为条件,另一个作为结论都是正确的.
答案:3
8.(2018·南昌一模)已知△ABC的三边长a,b,c满足b+c≤2a,c+a≤2b,则的取值范围是________.
②若a>b,c>d,则a+c>b+d;
③若a>b,c>d,则ac>bd;
④若a>b,则>.
其中正确的有()
A.1个B.2个
C.3个D.4个
解析:①ac2>bc2,则c≠0,则a>b,①正确;
②由不等式的同向可加性可知②正确;
③需满足a、b、c、d均为正数才成立;
④错误,比如:令a=-1,b=-2,满足-1>-2,
其中正确的是()
A.①与③ B.①与④
C.②与③ D.②与④
解析:由于0<a<1,所以函数f(x)=logax和g(x)=ax在定义域上都是单调递减函数,而且1+a<1+,所以②与④是正确的.
答案:D
4.(2018·赣中南五校联考)对于任意实数a,b,c,d,有以下四个命题:
①若ac2>bc2,则a>b;
解析:∵ab2>a>ab,∴a≠0.
当a>0时,b2>1>b,
即解得b<-1;
当a<0时,b2<1<b,
即无解.
综上可得b<-1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业 54 几何概型 一、选择题 1.(2018·武汉调研)在长为16 cm的线段MN上任取一点P,以MP、NP为邻边作一矩形,则该矩形的面积大于60 cm2的概率为( )
A.14 B.12
C.13 D.34 解析:本题考查几何概型.设MP=x,则NP=16-x,由x(16-x)>60,解得6<x<10,所以所求概率P=10-616=14,故选A. 答案:A 2.(2018·贵阳一模)已知函数f(x)=kx+1,其中实数k的值随机选自区间[-2,1],则对任意的x∈[0,1],f(x)≥0的概率是( )
A.13 B.12
C.23 D.34 解析:当x=0时,k∈[-2,1];当x∈(0,1]时,k≥-1x,而x∈(0,1]⇒-1x∈(-∞,-1],故k≥-1,从而k∈[-1,1].因此所求概率为1--1--=23.故选C. 答案:C
3.(2018·湖南省五市十校高三联考)在矩形ABCD中,AB=2AD,在CD上任取一点P,△ABP的最大边是AB的概率是( )
A.22 B.32 C.2-1 D.3-1 解析:分别以A,B为圆心,AB的长为半径画弧,交CD于P1,P2,则当P在线段P1P2
间运动时,能使得△ABP的最大边是AB,易得P1P2CD=3-1,即△ABP的最大边是AB的概率
是3-1. 答案:D 4.(2018·武汉市武昌区调研)在区间[0,1]上随机取一个数x,则事件“log0.5(4x-3)≥0”发生的概率为( )
A.34 B.23
C.13 D.14
解析:因为log0.5(4x-3)≥0,所以0<4x-3≤1,即34答案:D 5.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )
A.18 B.116
C.127 D.2764 解析:根据几何概型知识,概率为体积之比,即P=-343=18. 答案:A 6.(2018·洛阳市第一次统一考试)若θ∈[0,π],则sin(θ+π3)>12成立的概率为( ) A.13 B.12
C.23 D.1 解析:依题意,当θ∈[0,π]时,θ+π3∈[π3,4π3],由sinθ+π3>12得π3≤θ+π3<5π6,0≤θ2,选B.
答案:B 7.(2018·深圳调研)设实数a∈(0,1),则函数f(x)=x2-(2a+1)x+a2+1有零点的概率为( ) A.34 B.23 C.13 D.14 解析:本题考查几何概型.由函数f(x)=x2-(2a+1)x+a2+1有零点,可得Δ=(2a+1)2-4(a2+1)=4a-3≥0,解得a≥34,即有34≤a<1,结合几何概型的概率计算公式可得
所求的概率为P=1-341-0=14,故选D. 答案:D 8.在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为( )
A.π12 B.1-π12
C.π6 D.1-π6 解析:点P到点O的距离大于1的点位于以O为球心,以1为半径的半球外.记“点P
到点O的距离大于1”为事件M,则P(M)=23-12×4π3×1323=1-π12. 答案:B 9.(2018·安徽淮南一模)《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内投豆子,则豆子落在其内切圆内的概率是( )
A.3π20 B.π20
C.3π10 D.π10 解析:依题意,直角三角形的斜边长为17.设内切圆半径为r,则由等面积法,可得12
×8×15=112×(8+15+17r),解得r=3,∴向此三角形内投豆子,豆子落在其内切圆内的
概率是P=π×3212×8×15=3π20.
答案:A 10.(2018·太原模拟)如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在
小正方形的概率为15,则图中直角三角形中较大锐角的正弦值为( )
A.55 B.255 C.15 D.33 解析:本题考查几何概型.设大正方形边长为a,直角三角形中较大锐角为θ,θ∈π4,π2,则小正方形的面积为a2-4×12×acosθ×asinθ=a2-a2sin2θ,则由题意,
得a2-a2sin2θa2=15,解得sin2θ=45.因为θ∈π4,π2,所以sinθ+cosθ=1+sin2θ=35 ①,sinθ-cosθ=1-sin2θ=15 ②.由①+②解得sinθ=255,故选B. 答案:B 二、填空题
11.(2018·黄山一模)向面积为S的△ABC内任意投掷一点P,则△PBC的面积小于S2的概率为________.
解析:∵S△PBC<12S△ABC,∴h′上的高. 设DE为△ABC的中位线(如图所示),则梯形BCED(阴影部分)中的点满足要求,
∴所求概率P=S梯形BCEDS△ABC=34.
答案:34 12.在体积为V的三棱锥S-ABC的棱AB上任取一点P,则三棱锥S-APC的体积大于V3
的概率是________.
解析:由题意可知VS-APCVS-ABC>13,三棱锥S-ABC的高与三棱锥S-APC的高相同.作PM⊥AC于M,BN⊥AC于N,则PM,BN分别为ΔAPC与△ABC的高,所以VS-APCVS-ABC=S△APCS△ABC=PMBN>13,又PMBN=APAB,所以APAB>13.
故所求的概率为23(即为长度之比). 答案:23 13.(2018·甘肃省张掖市第一次考试)在区间[0,π]上随机取一个数θ,则使2≤2sinθ+2cosθ≤2成立的概率为________.
解析:由2≤2sinθ+2cosθ≤2,得22≤sinθ+π4≤1,结合θ∈[0,π],
得θ∈0,π2,∴使2≤2sinθ+2cosθ≤2成立的概率为π2π=12. 答案:12 14.
(2018·山东青岛一模)如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角θ=π6.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是________. 解析:易知小正方形的边长为3-1,故小正方形的面积为S1=(3-1)2=4-23,
大正方形的面积为S=2×2=4,故飞镖落在小正方形内的概率P=S1S=4-234=2-32. 答案:2-32 [能力挑战] 15.(2018·江西赣州十四县联考)已知定义在区间[-3,3]上的单调函数f(x)满足:对任意的x∈[-3,3],都有f(f(x)-2x)=6,则在[-3,3]上随机取一个实数x,使得f(x)的值不小于4的概率为( )
A.16 B.56
C.13 D.12 解析:由题意设对任意的x∈[-3,3],都有f(x)-2x=a,其中a为常数,且a∈[-3,3],则f(a)=6,f(a)-2a=a,∴6-2a=a,得a=2,故f(x)=2x+2,由f(x)≥4得x≥1,因
此所求概率为3-13+3=13. 答案:C
16.(2018·云南省第一次统一检测)在平面区域 x+y-4≤0x>0y>0内随机取一点(a,b),则函数f(x)=ax2-4bx+1在区间[1,+∞)上是增函数的概率为( ) A.14 B.13
C.12 D.23
解析:不等式组表示的平面区域为如图所示的△AOB的内部及边界AB(不包括边界OA,OB),则S△AOB=12×4×4=8.函数f(x)=ax2-4bx+1在区间[1,+∞)上是增函数,则应满
足a>0且x=4b2a≤1,即 a>0a≥2b,可得对应的平面区域如图中阴影部分(包括边界OC,BC,不包括边界OB),由 a=2ba+b-4=0,解得a=83,b=43,所以S△COB=12×4×43=83,根据几何概型的概率计算公式,可知所求的概率为838=13,故选B. 答案:B 17.(2018·湖北省七市协作体联考)平面区域A1={(x,y)|x2+y2<4,x,y∈R},A2
={(x,y)||x|+|y|≤3,x,y∈R}.在A2内随机取一点,则该点不在A1内的概率为________.
解析:分别画出区域A1,A2,如图圆内部分和正方形及其内部所示,根据几何概型可知,
所求概率为18-4π18=1-2π9.
答案:1-2π9