窄脉冲高功率微波外场功率测量方法
微波实验-123

第一部分微波技术与天线实验实验一微波功率与频率的测量一、实验目的1.了解微波测量系统的组成、测试仪器的工作原理及测试方法。
2.学会用波长计谐振吸收法测频率,掌握吸收式波长计测取频率值的原理和方法。
3.学会用微瓦功率计测功率。
二、实验要求1.充分作好实验前的预习和准备工作,写出预习报告。
2.实验应严格按照仪器使用说明、测量方法和实验步骤进行操作。
三、预习报告要求1.画出实验仪器和器件连接框图。
2.简述实验目的、实验原理和方法。
3.写出实验步骤,画出数据表格。
四、实验注意事项1.开机前必须将信号源的衰减器置于较大衰减量,否则易烧坏器件。
(注意:面板标注“功率”,则向左旋,衰减增大;面板标注“衰减”,则向右旋,衰减增大。
)2.拆接器件时,将信号源工作方式置“外调制”,不要随意关电源。
3.连接器件时,注意波导口方向。
五、实验原理微波信号发生器是由高频部分、调制部分、功率指示器部分、频率显示及衰减显示部分组成。
高频部分是由体效应振荡器、截止式衰减器二个单元组成。
体效应振荡器采用砷化镓体效应二极管作为振荡管,在外加直流偏压的瞬时,所产生的尖峰脉冲电流能量,被不断用来激发谐振腔。
当高频电源送来高频电压加到体效应管上,在谐振腔产生相应射频电压,腔体的输出耦合孔直接耦合输出,经过环流器送到调制器与脉冲形成电路进行调制,从而完成对微波信号的脉冲调幅,工作状态选择电路控制输出状态。
当工作状态选择按键置“等幅”时,信号源输出微波信号,输出功率可直接用微瓦功率计测得,输出信号频率可用外接的波长计测得,也可校对信号源频率显示是否准确。
当工作状态选择按键置“方波”或“脉冲”时,则输出微波调幅信号。
仪器采用PIN调制器来实现微波信号的脉冲幅度调制,整个调制部分是由一套脉冲形成电路及一个PIN调制器构成,由脉冲形成电路产生一系列的脉冲信号,驱动PIN 调制器,从而完成对微波信号的脉冲调制。
图1-1 简单的微波测量系统框图六、实验系统简介一般常用的微波测量系统如图1-1所示。
微波测量的原理与应用

3.3 微波大、中功率测量随着科学技术的发展,是的微波大功率信号在服务于人类的各个方面发挥着越来越大的作用,特别是在国防建设中,所使用的微波功率越来越大,比如飞机和地面上的雷达功率,已经要求达到上百瓦,甚至上千瓦,这给测量提出了更高的要求。
微波大、中功率测量方法是直接采用大、中功率计。
常用的大、中功率计有量热式功率计(包括干式和流体负载)、二极管式功率计、热偶式功率计等。
另外,可用小功率计作为标准,采用小功率计—定向耦合器组合,小功率计—高功率衰减器组合,以及多级级联耦合器的测量方法。
目前,测量很小的功率和测量很大的功率都是非常困难,这也是正在研究的课题。
3.3.1 扩展小功率计量程法1. 衰减器法衰减器法是利用小功率计作标准与高功率衰减器组合扩展量程来测量中,大功率。
微波功率计配上合适的大功率衰减器,普遍使用于大功率微波信号测量,对特殊波形信号测量准确,使它具有其他测量手段无法比拟的优点。
该方法测量的原理如图3.23所示。
图3.23 小功率计—高功率衰减器组合测量大、中功率方框图图中P S 为小功率座吸收的净功率;P L 为大功率衰减器输入端吸收的净功率;P G 为被测信号源连接无反射负载时的输出功率;ΓS 为小功率座输入端的反射系数;ΓL 为衰减器输入端的反射系数;ΓG 为被测信号源输出端的反射系数。
(1) 理想情况假定系统处于匹配状态,即ΓS =ΓL =ΓG =0 。
衰减量A 准确已知。
根据衰减的定义可知A(dB)=10 log 10PL P S(3-30)所以 P L =P S 10A (dB )10(3-31)设P bS 为小功率计的直流(或音频)替代功率,K 为小功率座的校准因子。
则净功率P S可用下式表示P S=P bSK(3-32)由式(3—31)和式(3—32)可得P L=P bsK 10A(dB)10(3-33)可见,已知衰减器的衰减量A和小功率座的校准因子K,就可由替代功率求得被测功率P。
微波基本参数测量

微波基本参数测量物理081摘要:本实验中,我们要利用微波产生的电磁场的研究和分析以及相关的仪器对微波的频率、功率、驻波比进行测量,以掌握微波技术的基本知识和实验方法。
关键字:微波参数测量正文:微波的基本特征:1、微波的波长极短,具有“似光性”直线传播的特点。
2、微波的频率极高。
3、微波可以毫无阻碍地穿过电离层,具有穿透性。
4、在微波波段,电磁波每个量子的能量范围为10-6—10-3eV。
5、研究方法和测量技术上,微波电路与低频电路中采用“路”的概念和方法有很大的不同。
常用波导元件:1、衰减器,衰减器是一段波导,在垂直波导宽边并沿纵向向插入吸收片,使通过波的损耗达到衰减,可调节吸收片进入波导的深度以改变衰减量。
2、匹配负载,匹配负载一般做成波导段的形式,终端短路,并包含有一些安置在电场平面内的吸收片,吸收片做成特殊的劈形以实现与波导间的缓变过度匹配。
3、隔离器,是一种氧气非互易元件,具有单向衰减特性,即波从正面通过,衰减极小,而反面通过时衰减很大,常用于振荡器与负载之间,起隔离作用,使振荡器工作稳定。
4、可变短路器,可变短路器由短路活塞与传动读书装置构成,是一个可变电抗。
5、环行器,环形器是一种具有非互易特征的分支传输系统。
固态信号源:固态信号源产生微波信号输出,实现内方波周制,由体效应管振荡器,可变衰减器,PIN调制器组成。
选频放大器:主要用于放大微弱低频交流信号。
驻波测量线:它是一段开有长槽的波导与一个可沿线移动的带有晶体检波器的探针和调谐机构组成。
功率计:由功率探头和指示器两部分组成。
实验步骤初步设计:1、测试前的准备工作:根据讲义中介绍的常用微波器件和实验室提供的仪器使用说明书,掌握它们的工作原理及使用方法。
开启反射速调管微波源电源开关。
将微安表接在测量线输出端,适当选择微安表量程和可变衰减器位置,使测量线调在驻波波腹时,微安表能指示到表盘中以上的读数。
2、驻波比的测量:先接通电源使用测量线测试驻波比,可直接由测量线探针分别处于驻波波腹及波节位置时的电流表读数及,求出驻波比。
脉冲功率电源辐射电磁场测量与分析

第21卷第9期强激光与粒子束Vol.21,No.9 2009年9月HIGH POWER L ASER AND PAR TICL E B EAMS Sep.,2009 文章编号: 100124322(2009)0921426205脉冲功率电源辐射电磁场测量与分析3曹荣刚, 邹 军, 袁建生(清华大学电机工程与应用电子技术系电力系统国家重点实验室,北京100084) 摘 要: 对采用三电极气体间隙放电开关的脉冲功率电源和采用可控硅开关的脉冲功率电源进行了辐射电磁场测量与分析。
所研究的脉冲功率电源的脉冲持续时间为ms量级,电流峰值为几十到几百kA。
使用多组微分式磁场探头和高采样率、高存储深度的数字示波器进行了磁场测量;通过探头校对实验,对探头系数进行了校验。
通过对微分测量结果的校正与积分运算,得到了磁场的时域波形。
分析了低频段按照探头系数的计算方法和积分处理方法的关系,总结了时域波形重构的一些方法。
得到了两种电源的电磁场特性:三电极气体间隙放电开关产生的磁场频谱范围可达10M Hz,而可控硅开关产生的磁场在1M Hz以内;其辐射电场微弱。
关键词: 脉冲功率电源; 气体间隙开关; 可控硅开关; 电磁场测量; 电磁干扰 中图分类号: TM8 文献标志码: A 脉冲功率电源周围通常有测量和控制等电子设备,多模块组合电源本身也有许多触发控制电路与设备,它们很可能会受到脉冲功率电源产生的强电磁干扰影响而不能正常工作甚至损坏。
因此,需要测量脉冲功率电源周围的电磁场,分析其是否超过相应的电磁限定标准。
对于不符合电磁环境要求的情况,必须实施抑制电磁干扰的措施,以确保脉冲功率电源及其它系统安全可靠运行,使整个工作平台实现电磁兼容[1]。
文献[2]通过实验与测量分析了Marx脉冲发生器中气体间隙开关导通时产生的电磁干扰。
其电压等级为80kV,开关间隙是25mm,辐射磁场的主频段在20~30M Hz之间。
本文主要研究了采用气体放电开关和可控硅开关的脉冲功率电源,通过实验测量得到两种电源周围辐射电磁场。
三种射频功率测量方法

三种射频功率测量方法自从第一台无线电发射机诞生之日起,工程师们就开始关心射频功率测量问题,直到今天依然是个热门话题。
无论是在实验室、产线,还是教学中,功率测量都是必不可少的。
在无线电发展初期,测试工程师所面对的大多数是连续波、调幅、调频、调相或脉冲信号,这些信号都是有规律可循的。
例如,连续波(如图1)调频或调相信号的功率测量都是很简单,只需要测量其平均功率;调幅信号(如图2)的功率与其调制深度有关,而脉冲信号的特性是以脉冲宽度和占空比来表达。
对于以上这些模拟或模拟调制信号,射频功率测量所关心的基本上都是平均功率和峰值功率。
而现在,特别是20世纪90年代以后,数字通信开始快速发展,射频功率测量的重点也开始有些变化。
因为数字调制信号(如图3)的包络无规律可循,其最大和最小电平会随机变化,而且变化量很大。
为了描述这类信号的特征,引入了一些新的描述方法,如领道功率、突发功率、通道功率等。
很多传统的功率计已经无法满足数字信号功率的测量要求,一部分功率测量的任务已经开始由频谱分析仪来完成。
下面我们介绍常见的几种射频功率测量方法,在此之前我们还需要明确一件事——在频域测试测量中,为什么习惯以功率来描述信号强度,而不是像时域测试测量中常用的电压和电流?那是因为在射频电路中,由于传输线上存在驻波,电压和电流失去了唯一性,所以射频信号的大小一般用功率来表示,国际通用的功率单位为W、mW、dBm。
频谱分析仪和功率计都是可以测量射频功率的,其中功率计又分为吸收式功率计与通过式功率计两种。
同样是功率测量,不同的测试仪器和测试方法所关注的重点是不同的。
射频功率的测量方法有三种:频谱分析仪测量;吸收式功率测量;通过式功率测量。
1. 频谱分析仪测量频谱分析仪(以下简称频谱仪)是一种基础的频域测试测量仪器,图4为采用数字中频技术频谱仪的基本工作原理。
被测信号经过低通滤波器后进入混频器,与同时进入混频器的本地振荡器信号进行混频。
由于混频器是非线性器件,所以会产生互调信号,落入滤波器的信号经过ADC,再依次进入中频滤波器,包络检波器,视频滤波器,视频检波器,最后将轨迹显示在屏幕上。
微波基本参数的测量

微波基本参数的测量引言一 实验目的1 熟悉和掌握微波测试系统中各种常用设备的结构原理及使用方法;2 掌握微波系统中频率、驻波比、功率等基本参数的测量方法;3 按要求测出测量线中的驻波分布;二 实验原理微波系统中最基本的参数有频率、驻波比、功率等。
要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。
(1) 导行波的概念:由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。
导行波的电场E 或磁 场H 都是x 、y 、z 三个方向的函数。
导行波可分成以下三种类型: (A) 横电磁波(TEM 波):TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。
电场E 和磁场H ,都是纯横向的。
TEM 波沿传输方向的分量为零。
所以,这种波是无法在波导中传播的。
(B) 横电波(TE 波):TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。
亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。
(C) 横磁波(TM 波):TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。
亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。
TE 波和TM 波均为“色散波”。
矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。
(2) 色散波的特点:由于TE 波及TM 波与TEM 波的性质不同。
色散波就有其自身的特点: (a) 临界波长cλ :矩形波导中传播的色散波,都有一定的“临界波长”。
只有当自由空间的波长λ小于临界波长λc 时,电磁波才能在矩形波导中得到传播。
mm TE 波或mm TM 波的临界波长公式为:22)()(2bn a m c +=λ (1)(b)波导波长gλ和相速V 、群速Vc :色散波在波导中的波长用gλ表示。
功率计及高频微波功率的测量

功率计及高频微波功率的测量
王淑敏
【期刊名称】《电讯工程》
【年(卷),期】2009(000)002
【摘要】本文论述了功率计的主要指标、分类以及原理;中、大功率,脉冲功率的测量方法;及功率测试时需要注意的问题。
【总页数】5页(P29-33)
【作者】王淑敏
【作者单位】陕西黄河集团有限公司计量处,西安710043
【正文语种】中文
【中图分类】TM933.3
【相关文献】
1.相对测量不确定度在微波功率计量中的应用 [J], 张伟伟;杨绪军;陈云梅
2.AV2432微波功率计测量不确定度评定 [J], 王军
3.微波功率的测量及功率计校准 [J], 曹月芝
4.泰克推出紧凑型射频、微波功率传感器/功率计新产品系列提供业内最快的测量速度和先进的功能,同时无需归零和校准 [J],
5.微波功率计校准因子在提高测量精度上的作用 [J], 李林
因版权原因,仅展示原文概要,查看原文内容请购买。
完整微波基本参数测量实验报告

(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。
微波成为一门技术科学,开始于20世纪30年代。
微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。
在第二次世界大战中,微波技术得到飞跃发展。
因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。
至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。
【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。
2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。
3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
窄脉冲高功率微波外场功率测量方法
窄脉冲高功率微波外场功率测量方法是研究微波技术领域中的重要问题之一。
随着微波技术的不断发展,窄脉冲高功率微波的应用越来越广泛,因此对微波外场功率的测量要求也越来越高。
本文将介绍窄脉冲高功率微波外场功率测量方法的原理、技术和应用。
一、窄脉冲高功率微波外场功率测量方法的原理
窄脉冲高功率微波外场功率测量方法通常采用磁通测量法、电感测量法和电容测量法等。
其中,磁通测量法和电容测量法是最常用的方法。
1. 磁通测量法
磁通测量法是利用高斯磁通量和电磁波的相互作用,测量电磁波在空间中的传播路径和磁通量的变化。
在窄脉冲高功率微波外场功率测量中,高斯磁通量和电磁波的相互作用会导致电磁波在空间中的传播路径发生弯曲,从而改变电磁波的功率和频率。
因此,通过测量电磁波在空间中的传播路径和磁通量的变化,可以计算出窄脉冲高功率微波外场功率的大小。
2. 电容测量法
电容测量法是利用电磁波在空间中的传输对电容值的影响,测量电磁波在空间中的电容变化。
在窄脉冲高功率微波外场功率测量中,电磁波的传输会导致周围的电容值发生变化,从而改变周围的电磁场。
因此,通过测量周围的电容值的变化,可以计算出窄脉冲高功率微波外场功率的大小。
二、窄脉冲高功率微波外场功率测量技术的应用领域
1. 无线通信系统
窄脉冲高功率微波外场功率测量技术在无线通信系统中发挥着重要的作用。
它可以用来测量无线通信系统的功率、频率和信道参数,从而提高无线通信系统的性能。
2. 雷达系统
窄脉冲高功率微波外场功率测量技术在雷达系统中也发挥着重要的作用。
它可以用来测量雷达系统的功率、频率和方向参数,从而提高雷达系统的性能。
3. 电磁场仿真
窄脉冲高功率微波外场功率测量技术在电磁场仿真中也有着广泛的应用。
它可以用来测量不同条件下的电磁场参数,从而为电磁场仿真提供参考。
三、总结
窄脉冲高功率微波外场功率测量方法是研究微波技术领域中的重要问题之一。
它可以用来测量微波在空间中的功率和频率,从而提高微波技术的性能。
本文介绍了三种常用的窄脉冲高功率微波外场功率测量方法的原理和应用,为微波技术的发展提供了参考。