华师大版七年级上册数学知识点
2.4.4整式的加减知识点讲解2024-2025学年华东师大版七年级数学上册

2.4.4整式的加减知识点讲解知识点 1整式的加减【举例讲解】(1)多项式3a³+5b³−8a²b加上一个多项式A,得2a³b³−8a²b,求这个多项式A.(2)已知A=a³−2a²+1,B=−3a³−4a²+2,求3A−B.(3)已知A=8x²y−6xy²−3xy,B=7xy²−2xy+5x²y,求3B−2A.(4)多项式x²−xy的3 倍与另一个整式的和是2x²+xy+3y²,,求这个整式.第(1)题,当已知加数与和时,求另一个加数,就是用和减去另一个加数,列算式为:2a³−b³−8a²b−(3a³+5b³−8a²b),去括号合并同类项,得A=−a³−6b³;第(2)题,可以看作第一个多项式的3 倍与第二个多项式的差,列算式为:3(a³−2a²+1)−(−3a³−4a²+ 2),去括号,合并同类项,得3A−B=6a³−2a²+1;第(3)题,列算式为:3(7xy²−2xy+5x²y)−2(8x²y−6xy²−3xy)=21xy²−6xy+15x²y−16x²y+12xy²+6xy=−x²y+33xy²;第(4)题,列算式为:2x²+xy+3y²−3(x²−xy)=−x²+4xy+3y².上述四个问题都是多项式的加减运算,我们称为整式的加减.整式的加减实质就是去括号,合并同类项.【归纳总结】知识归纳整式的加减实质就是合并同类项,若有括号,就要用去括号法则去掉括号,然后合并同类项.只要算式中没有同类项,就是运算的结果.方法归纳(1)直接整式加减问题若有括号,就要用去括号法则去掉括号,然后合并同类项.运算结果中不能有同类项.(2)间接整式加减问题求整式的和或差时,应先用括号将每一个整式括起来,再用加减运算符号连接.具体运算时,先去括号,再合并同类项.知识点2整式的化简与求值【举例讲解】有这样一道题:“当x=2011,y=2012时,计算(3x³−4x²y²−5 xy²+2y³)−(2x³−4x²y²−3xy²−5)−(x³−2xy²+2y)的值”.小林同学把x=-2011,y=-2012代入计算,他的计算过程没有错误,但是算的结果与答案相同,这是为什么?小林同学所代的数值与题目中的条件不同,这说明字母值对这个多项式没有影响.求多项式的值时,可以用直接代入的方法求,但这种方法比较麻烦,因为多项式含有字母,而且字母连续出现的次数又比较多,仔细观察多项式也存在同类项,如果直接代值就会出现大量的重复计算,所以采用先去括号,再合并同类项,最后如果结果中还有字母,就把字母的值代入,计算出多项式的值即可.【归纳总结】知识归纳求多项式的值时,一般情况下,先化简(去括号、合并同类项),再把字母的值代入化简后的式子中求值. 化简的过程就是整式加减运算的过程,因此,整式加减运算使多项式求值的过程变得简单.方法归纳求整式的值的方法:(1)先去括号,然后合并同类项;(2)把字母的值代入合并后的结果,求多项式的值.课后满分闯关1.化简m−n−(m+n)的结果是( )A.0B.2mC. -2nD.2m-2n2.减去3x等于5x²−3x−5的整式是( )A.5x²−5B.5x²−6x−5C.5+5x²D.−5x²−6x+53. 计算6a2−2ab−2(3a2+12ab)所得的结果是( ) A. -3ab B. - abC.3a²D.9a²4.如果m−n=15,那么−2(n−m))的值是( )A.25B.52C.−25D.1105.多项式与m²+m−2的和是m²−2m.6.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(−x2+3xy−12y2)−(−12x2+4xy−32y2)=−12x2¯+y2,空格的地方被墨水弄污了,请你帮他补上.7.小明在求一个多项式减去x²−3x+5时,误认为加上x²−3x+5,得到的答案是5x²−2x+4,则正确的答案是 .8.计算:(1)7xy+xy3+4+6x−25xy3−5xy−3;(2)2(2a−3b)+3(2b−3a);(3)2(x2−xy)−3(2x2−3xy)−2[x²−(2x²−xy+y²)].9.先化简,再求值:(1)−2x3+4x−13x2−(x+3x2−2x3),其中x=3;(2)12x−2(x−13y2)+(−32x+13y2),其中x=−2,y=−3.10.将连续的偶数2,4,6,8,…排列成如图6-4-2所示的数表.(1)“十”字框内5个数的和,与框内中间的数18有什么关系?(2)若将“十”字框上、下、左、右平移,框住另外5个数,这5个数还有这样的规律吗?(3)设中间的数为a,用代数式表示“十”字框内5个数之和.。
华师大七年级上数学知识点总结

一、数与代数
1.整数的加减乘除
2.数的倍数与因数
3.一元一次方程与解
4.一元一次方程的应用
5.二元一次方程组
二、分数与百分数
1.分数的加减乘除
2.分数的化简与比较大小
3.分数与小数的转化
4.百分数的基本概念和计算
三、图形与几何
1.平面图形的分类和性质
2.三角形的分类和性质
3.三角形的周长和面积
4.正方形、长方形和平行四边形的周长和面积
5.直角三角形的勾股定理
6.圆的性质和计算
四、数据与概率
1.数据的收集与整理
2.平均数与中位数
3.图表的制作与解读
4.概率的基本概念和计算
五、函数的初步认识
1.函数的基本概念和性质
2.函数的图像与性质
六、解方程和不等式
1.一元一次方程的解法
2.一元一次不等式的解法
七、线性方程组和二次函数
1.二元一次方程组的解法
2.二次函数的图像与性质
以上是华师大七年级上数学的主要知识点总结,每个知识点都需要深入理解和掌握,才能够在数学学习中取得好成绩。
希望同学们能够认真学习数学,提高自己的数学水平。
2024年新华师大版数学7年级上册 3.6.1 角 教学课件

知识点 方向角
3
东
西
北
南
O
正东:正南:正西:正北:
西北方向:西南方向:东北方向:东南方向:
射线 OA
A
B
C
D
45°
45°
八大方向
45°
45°
射线 OB
B
A B C D
新知探究
2. 图中有 个角,你能把它们表示出来吗?
3
∠AOE,∠COE,∠AOC.
新知探究
方法
表示
图形
注意
用三个大写英文字母表示
用顶点的一个英文字母表示
第3章 图形的初步认识
3.6 角
华师大版-数学-七年级上册
1.角
学习目标
1.理解角的两种定义和相关概念,掌握角的表示方法.2.理解角的单位,会用量角器测量角的大小,会进行度、分、秒之间的换算. 【重点、难点】3.了解方向角的概念,并能解决一些容易的实际问题.【难点】
新课导入
观察上边的实物,你发现这些实物能抽象出什么样的共同形象?
经纬仪
新知探究
我们常用量角器量角,度、分、秒是常用的角的度量单位. 把一个周角 360等分,每一份就是 1 度的角,记作1°;把 1 度的角 60 等分,每一份叫作1 分的角,记作 1′;把1分的角 60等分,每一份叫作1 秒的角,记作1″.
1周角= °;1平角= °.
360
北
东
西
南
C
A
B
D
北偏东 40°
北偏西 65°
南偏西 45°(西南)
南偏东 20°
40°
65°
70°
O
20°
新知探究
2024年新华师大版7年级上册数学课件第1章1.4 绝对值

(2)绝对值等于它的相反数的数有哪些?
负数和 0
任何一个有理数的绝对值总是正数或 0 (通常也称为非负数).
对于任意数 a 的绝对值:
| a |
a>0
a=0
a<0
正数
正数
0
a
0
-a
| a |≥0
结果
结果
结果
| -4.75 |=4.75,
例1 求下列各数的绝对值:
| 10.5 |=10.5.
解:根据题意可知
3. 已知 | x - 4 | + | y - 3 | = 0,求 x + y 的值.
分析:
| a |≥0
| x - 4 |≥0;| y - 3 |≥0
| x - 4 | = 0;| y - 3 | = 0
所以 x=4,y=3,故 x+y=7.
x-4=0,y-3=0.
如果 a>0,那么 |a| =___;如果 a=0, 那么 |a| =___;如果 a<0,那么 |a| =___
1.4 绝对值
第一章 有理数
华师版七年级(上)
1. 理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法.2. 通过应用绝对值解决实际问题.重点:正确理解绝对值的概念,会求一个数的绝对值.难点:利用绝对值比较两个负数的大小.
甲、乙两辆汽车从同一处 O 出发,分别向东西方向行驶 10 km,达到 A,B 两处,请在数轴上表示出来并回答问题(规定向东为正方向).
绝对值
一般地,数轴上表示数 a 的点与原点的____叫做数 a 的绝对值
距离
a
-a
0
1. 判断对错:(1) 一个数的绝对值等于本身,则该数一定是正数;( )(2) 一个数的绝对值等于它的相反数,这个数一定是 负数; ( )(3) 如果两个数的绝对值相等,那么这两个数一定 相等; ( )(4) 如果两个数不相等,那么这两个数的绝对值 一定不等; ( )(5) 有理数的绝对值一定是非负数. ( )
华师大版数学七年级上册全册知识点

华师大版七年级上册全册知识点总结第二章有理数1. (4)近似数的精确度有两种形式:1)精确到哪一位,2)保留几个有效数字。
相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2. 正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3. 有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类 正整数正整数整数 0 正有理数 有理数负整数有理数正分数正分数 0 负整数分数负有理数 负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
正分数负分数正整数0负整数4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5. 相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
华东师大版数学七年级上册知识点

华东师大版数学七年级上册知识点七年级上第二章有理数1. 相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2. 正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3. 有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数分数 负有理数负分数 负分数 【注】有限循环小数叫做分数。
(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的正分数负分数正整数0负整数数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5. 相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
2024年新华师大版数学七年级上册教学课件 1.1.1 正数和负数

新知探究 知识点 3 0的意义及用正负数表示相对基准量
情景:你能用语言表述吐鲁番盆地与海平面的高度关系吗?它的含义
是什么? 记为+8844.43米 8844.43米
珠
穆
朗
玛
峰
155米记为-155米
吐鲁番盆地
高度看作0
海平面
新知探究
思考: 0只表示没有吗? 0是正负数的分界点.它不再简简单单的只表示没有,它具有丰富的意
①必须是同类量,而且是成对出现的; ②只要求意义相反,不要求数量一定相等.
课堂训练
1.下列说法,正确的是
(C)
A.加正号的数是正数,加负号的数是负数
B.0是最小的正数
C.字母a既可是正数,也可是负数,也可是0
D.任意一个数,不是正数就是负数
2.下列各对关系中,不具有相反意义的量的是( D )
A.运进货物3吨与运出货物2吨
(4)抗洪期间,如果水位超过标准水位1.5米记作+1.5米,那么后
来记录的-0.9米表示 低于标准水位0.9米
.
课堂训练
1
4.下列各数-2,0,-2 ,-10,3.5中,是正数的有 3.5 .
5.把下列各数填入相应的括号内:
-28,20,0,5,0.23,- 3 ,- 3 1 ,-3.2%,25%,3.14,0.62.
第1章 有理数
1.1 有理数的引入
1.正数和负数
华师大版-数学-七年级上册
学习目标
1.了解正数与负数是从实际需要中产生的. 2.理解正数、负数及0的意义,掌握正数、负数的 表示方法.【重点】 3.会用正数、负数表示具有相反意义的量.【难点】
新课导入
问题 我们在小学学过哪些数?你能按照某一标准将它 们分类吗? 自然数:0、1、2、3…
华师版七年级上册数学知识点

华师版七年级上册数学知识点在数学课堂教学中,教师应有意识而且有必要地还原数学知识的生活背景,书本上的知识放在生活中来学习,把让数学问题生活化。
这次小编给大家整理了华师版七年级上册数学知识点,供大家阅读参考。
七年级上册数学知识点第一章有理数(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整数之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,取相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. ab = a +(b) 减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版七年级上册数学知识点(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第1章 走进数学世界1.在n ·n 的正方形方格中,有2.幻方: 三阶幻方:四阶幻方: 第2章 有理数定义:像﹣2、﹣2.5、﹣237、﹣0.7这样的数是负数,像13、3.5、500、1.2这样的数是正数.(正数前面有时也可以放上一个“+”<读作“正”>号)注意:零既不是正数,也不是负数.分类:方法1:整、分法方法2:正、零、负法162 3 13 511 10 8 97 6 12 4 14 15 1有理数整数 分数正整数 负整数 零 正分数 负分数数集的定义:把这些数(指上文提到的有理数)放在一起,就组成一个数的集合,简称数集.上文有理数组成的数集叫做有理数集.定义:规定了原点、正方向和单位长度的直线叫做数轴.方法:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数都大于负数.2.3相反数几何定义:1.在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.2.只有正负号不同的数成为互为相反数.(例:数a的相反数是﹣a,﹣a的相反数是a)注意:零的相反数是零.变为相反数的方法:通常在一个数的前面添上“﹣”号,表示这个数的相反数.(在一个数的前面添上“+”号,仍表示这个数本身.(例题解析)正负号组合化简方法:1.根据相反数的意义.2.数前面负号的个数。
负号的个数为偶数个时,取正;负号的个数为奇数个时,取负.2.4绝对值定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.取一个数的绝对值的结果:1.一个正数的绝对值是它本身.2.零的绝对值是零.3.一个负数的绝对值是它的相反数.4.任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任意有理数a,总有|a|≥0.2.5有理数的大小比较两个负数,绝对值大的反而小.法则内容:1.同号两数相加,取与加数相同的正负号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数.法则扩充总结:正正相加,和大于其中任意一个加数;负负相加,和小于其中任意一个加数;正负相加,和大于负数,小于正数.(正指正数,负指负数)注意:一个有理数由正负号和绝对值两部分组成,进行加法运算时,应注意确定和的正负号及绝对值.加法交换律:两个数相加,交换加数的位置,和不变.字母表示:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.字母表示:(a+b)+c=a+(b+c).2.7有理数的减法法则:减去一个数,等于加上这个数的相反数.字母表示:a-b=a+(-b)2.8有理数的加减混合运算方法:1.按照运算顺序,从左到右逐步运算.2.用有理数减法法则,统一为只有加法运算的和式.加法运算律的应用:因为有理数的加减法可以统一成加法,所以在进行有理数加减混合运算时,可以适当应用加法运算律,简化运算.补充概念:从1开始逐步增大的连续奇数的和等于奇数个数的平方;从2开始逐步增大的连续偶数的和,等于偶数个数的平方加偶数个数.内容:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.(两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.)乘法交换律:两个数相乘,交换因数的位置,积不变.字母表示:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(ab)c=a(bc)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a(b+c)=ab+ac积的正负号与各因数的正负号之间的关系:几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.几个数相乘,有一个因数为零,积就为零.2.10有理数的除法倒数的定义:乘积是1的两个数互为倒数.有理数的除法转为乘法的方法:除以一个数等于乘以这个数的倒数.注意:零不能作除数.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.2.11有理数的乘方定义及相关内容:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a中,a叫做底数,n叫做指数,a读作a的n次方,a看作是a的n次方的结果时,也可读作a的n次幂.幂的特点:(根据有理数乘法法则)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.2.12科学记数法定义:一个大于10的数就记成a×10的形式,其中1≤a<10,n是正整数.像这样的记数法叫做科学记数法.注意:1.a的整数数位只有一位.2.n是原数的整数数位少1.2.13有理数的混合运算混合运算的运算顺序:1.先算乘方,再算乘除,最后算加减;2.同级运算,按照从左至右的顺序进行;3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.补充:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.注意:进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.2.14近似数一个与实际非常接近的数,称为近似数.题型分析:科学记数法中a×10看它精确到哪一位,就看a最右边的那个数字在原数中是哪一位.注意:1.题目要求精确到十位、百位等,往往采用科学记数法,而要求精确到十分位、百分位等,往往不采用科学记数法.2.对一个比较大的数,取近似值往往采用科学记数法,因为科学记数法中的精确度只看a.3.取近似值有三种方法:四舍五入法、去尾法、进一法,要根据题的要求和实际情况而定.2.15用计算器进行计算:略第二章小结第三章整式的加减注意:1.式子中出现的乘号,通常写作“·”或忽略不写.2.数字与字母相乘时,数字通常写在字母前面.3.除法运算写成分数形式.4.括号前面的乘号也要被省略.定义:由数和字母用运算符号连接所成的式子,称为代数式.单独一个数或一个字母也是代数式.列代数式的原因:在解决问题时,列出代数式,使问题变得简洁,更具一般性.3.2代数式的值定义:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.定义:由数与字母的乘积组成的代数式叫做单项式.注意:1.当一个单项式的系数是1或-1时,“1”通常省略不写.2.单项式的系数是带分数时,通常写成假分数.定义:几个单项式的和叫做多项式.其中,每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.多项式里,次数最高项的次数,就是这个多项式的次数.定义:把一个多项式各项的位置按照其中某一字母指数的大小顺序来排列.从大到小为降幂排列,从小到大为升幂排列.注意:1.重新排列多项式时,每一项一定要连同它的正负号一起移动.2.含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列.定义:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都是同类项.法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.注意:添括号与去括号的过程正好相反,添括号是否正确,不妨用去括号检验一下.运算步骤:先去括号,再合并同类项.第3章小结第4章图形的初步认识4.1生活中的立体图形立体图形展示图:柱体锥体球体多面体的定义:每一个面都是平的的立体图形叫做多面体.注意:圆柱、球体等含有曲面的立体图形不称为多面体.视图的定义:视图来自于投影.中心投影的定义:从一点发出的这种投影称为中心投影.平行投影的定义:平行投影是在一束平行光线照射下形成的投影.物体的三视图及其定义:从正面得到的投影,称为主视图;从上面得到的投影,称为俯视图;从侧面得到的投影,称为侧视图,依投影方向不同,有左视图和右视图.通常将主视图、俯视图与左(或右)视图称做一个物体的三视图.因而,三视图一般画主视图、俯视图、左视图.注意:1.画出来的是平面图形.2.画出能看到的轮廓.3.画出能看到的棱、尖点.4.3立体图形的表面展开图:略4.4平面图形圆的特性:由曲线围成的封闭图形.多边形的定义:由线段围成的封闭图形叫做多边形.三角形在多边形中的意义:在多边形中,三角形是最基本的图形.每个多边形都可以分割成若干个三角形.从n边形的某一顶点出发引对角线,能得到(n-3)条对角线,能分成(n-2)个三角形.点存在的意义:表示那些大小尺寸可以忽略的物体.许多点的聚集又可以表现不同的图形.线段的意义:线段是无数排成行的点的聚集.多面体各部分名称示意图:面棱顶点关于线段的基本事实:两点之间,线段最短.射线的定义:把线段向一方无限延伸所形成的图形叫做射线.直线的定义:把线段向两方无限延伸所形成的图形叫做直线.关于直线的基本事实:(三种说法)经过两点有一条直线,并且只有一条直线;两点确定一条直线;经过两点有且只有一条直线.比较方法:1.用刻度尺量,比较大小2.将其中一条线段移到另一条线段上去加以比较.中点的定义:把一条线段分成两条相等线段的点,叫做这条线段的中点.题型分析:一条直线上有n个点,线段的条数为n(n-1)/2条.注意:线段的和差往往用图形语言告诉我们,我们要善于挖掘图形语言.点和直线的位置关系:1.点在直线上;2.点在直线外.欧拉公式:顶点数+面数-棱数=2(应用的范围是多面体)角的?定义:由两条有公共端点的射线组成的图形叫做角.角的?定义:由一条射线绕着它的端点旋转而成的图形.射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边.表示角的方法:1.两个端点及一个顶点(表示时要把表示角的顶点的字母写在中间);2.一个顶点(顶点处只能有一个角时才能用此方法);3.一个阿拉伯数字或希腊字母(先标出后才能用)平角的定义:绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角.周角的定义:绕着端点旋转到终边和始边再次重合,这时所成的角叫做周角. 角度的单位换算:1°=60′ 1′=60″(1度等于60分,1分等于60秒)注意:描述物体运动的方向时,要以正北、正南方向为基准.题型分析:从一点引出n条射线,确定角的个数为n(n-1)/2个.角的平分线的定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.余角的定义:两个角的和等于90°(直角),就说这两个角互为余角,简称互余.补角的定义:两个角的和等于180°(平角),就说这两个角互为补角.关于余角、补角的定理:同角或等角的余角相等;同角或等角的补角相等.注意:互余和互补有时通过特殊的位置(即图形语言)告诉我们.第4章小结第5章相交线与平行线对顶角的?定义:两个角具有相同的顶点,且其中一个角的两边分别与另一个角的两边互为反向延长线,我们把这样的两个角叫做对顶角.对顶角的?定义:两直线相交所成的四个角中,不相邻的一对角叫做对顶角. 对顶角的性质:对顶角相等.垂直、垂足、垂线的定义:两直线相交所成的四个角中,有一个角等于90°,两线互相垂直,它们的交点叫做垂足,我们把其中的一条直线叫做另一条直线的垂线.关于垂线的基本事实:过一点有且只有一条直线与已知直线垂直.垂线段的定义:过直线外一点作已知直线的垂线,这一点与已知直线相交的点所在的线段叫做垂线段.点到直线的距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.同位角的定义:内错角的定义:同旁内角的定义:平行线的定义:在同一平面内不相交的两条直线叫做平行线.互相平行的两条直线的表示的方法:例:直线a与直线b互相平行,记作“a∥b”.两条不相交的直线的位置关系有:相交或平行.关于平行线的基本事实:1.过直线外一点有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.关于垂直、平行的性质:在同一平面内,垂直于同一条直线的两条直线平行. 性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.第五章小结。