磁共振波谱(MRS)临床应用 聂林
认识磁共振:五、磁共振波谱分析(MRS)

认识磁共振:五、磁共振波谱分析(MRS)磁共振波谱分析(MRS)是测定活体内某一特定组织区域化学成分的唯一的无损伤技术,是磁
共振成像和磁共振波谱技术完美结合的产物,是在磁共振成像的基础上又一新型的功能分析诊
断方法。
MRS是目前唯一能无创性观察活体组织代谢及生化变化的技术。
现今磁共振波谱研究较早、较多的是应用于中枢神经系统,其通过组织内化学代谢产物的多少,可以进行对脑肿瘤与非肿瘤性病变鉴别、脑肿瘤良恶性鉴别、恶性肿瘤分级、肿瘤术后复
发与坏死的鉴别、原发与转移瘤的鉴别等等。
在心脏方面的应用主要是在心肌缺血、心肌病等心肌代谢方面的研究。
肝脏主要研究包括代
谢性疾病、肝炎肝硬化及肝肿瘤等。
MRS还能提供前列腺组织的代谢信息,对于鉴别前列腺癌和前列腺增生的鉴别有重大意义。
MRS还能无创性地检测骨骼肌磷脂代谢和能量代谢的代谢产物及细胞内pH值,研究骨及软组织肿瘤的磷脂代谢和能量代谢的异常变化。
牡丹江医学院第二附属医院影像科自引进256排双源双能量CT以来,以影像学博士李为民主任
为首的诊断团队先后开展了双低冠脉成像扫描、双能量成像去伪影、虚拟平扫等技术,填补了
牡丹江地区在此领域的空白,给患者带来了巨大的福祉。
磁共振波谱在诊断颅内肿瘤中的应用

乳酸(lactic acid,Lac)
Lac峰出现是无氧酵解和Lac清除率降低的结果,提示脑组织缺血、缺氧,坏死 肿瘤的能量代谢特点为糖酵解作用增强,故高级别胶质瘤中心及周围的波谱中多出现Lac峰,但不是恶性肿瘤的可靠征象 囊肿、脓肿、梗塞、坏死、术后缺损区或体积较大的良性肿瘤(因限制Lac的清除导致清除率下降)也出现Lac峰 Lac的波谱位于1.33ppm处,在正常脑组织内探测不到
Department of Neurosurgery Peking University People’s Hospital
丙氨酸(alanine,Ala)
Ala来自于糖分解中的丙酮酸,是谷氨酰胺转氨基和部分氧化作用大于糖酵解的结果 Ala增高被认为是脑膜瘤的特征,但并非所有脑膜瘤均会出现 胶质瘤内也可出现Ala峰,脑膜瘤的Ala/Cr比值比星形细胞瘤高3-4倍 神经鞘瘤和转移瘤无Ala峰 Ala峰的波谱位于波谱曲线1.4ppm处
Department of Neurosurgery Peking University People’s Hospital
氢质子磁共振波谱(1H-MRS)
目前,可用在医学领域波谱研究的原子核有1H、31P、23Na、13C、19F、7Li等 由于氢质子1H较其他原子核在有机物结构中具有高自然丰度和核磁感性,故做波谱分析时多采用1H 1H-MRS在脑部疾病诊断中的应用最为广泛 如:脑肿瘤、脑梗塞、脑脓肿、脑炎、癫痫、家族性精神分裂症、缺血缺氧性脑病、多发性硬化、肝性脑病、脑部的放射性损伤等
可检测出活体组织代谢物的浓度,为MRI影像提供定量诊断依据 可反映组织的代谢信息和状态,来确定组织的性质 是目前唯一无创研究人体器官、组织代谢、生化改变及化合物定量分析的方法
核磁共振的临床应用

核磁共振的临床应用核磁共振的临床应用一、引言核磁共振(Nuclear Magnetic Resonance,NMR)是一种基于原子核自旋性质的物理现象的研究手段。
它已经成为医学领域重要的诊断工具之一,并在临床应用中发挥着重要作用。
本文将介绍核磁共振在临床中的应用,并详细讨论各个方面的相关内容。
二、核磁共振成像1.核磁共振成像(Magnetic Resonance Imaging,MRI)的原理和基本过程2.MRI的临床应用范围和意义3.常见的MRI技术及其在不同疾病诊断中的应用三、核磁共振波谱1.核磁共振波谱(Magnetic Resonance Spectroscopy,MRS)的原理和技术2.MRS在肿瘤诊断中的应用3.MRS在神经系统疾病诊断中的应用四、核磁共振血流成像1.核磁共振血流成像(Magnetic Resonance Angiography,MRA)的原理和技术2.MRA在心血管疾病诊断中的应用3.MRA在脑血管疾病诊断中的应用五、核磁共振弹性成像1.核磁共振弹性成像(Magnetic Resonance Elastography,MRE)的原理和技术2.MRE在肿瘤诊断中的应用3.MRE在肝脏疾病诊断中的应用六、核磁共振透明化成像1.核磁共振透明化成像(Magnetic Resonance Transparentization Imaging,MRTI)的原理和技术2.MRTI在肿瘤手术中的应用七、法律名词及注释1.核磁共振(Nuclear Magnetic Resonance,NMR):一种基于原子核自旋性质的研究手段核磁共振原理获取人体组织影像的技术3.核磁共振波谱(Magnetic Resonance Spectroscopy,MRS):利用核磁共振原理获取物质分子结构信息的技术4.核磁共振血流成像(Magnetic Resonance Angiography,MRA):利用核磁共振原理获取血管结构影像的技术5.核磁共振弹性成像(Magnetic Resonance Elastography,MRE):利用核磁共振原理获取组织弹性信息的技术6.核磁共振透明化成像(Magnetic Resonance Transparentization Imaging,MRTI):利用核磁共振原理获取手术辅助信息的技术附件:1.相关研究论文和文献2.实例图片和案例分析本文涉及附件,具体内容请参见附件部分。
MRS成像技术及临床应用总结

MRS成像技术及临床应用总结<i>MRS成像技术、MRS分析的主要代谢产物、脑肿瘤―鉴别肿瘤和非肿瘤性病变、原发和转移鉴别、胶质瘤分级提示、鉴别放疗后复发和放射性脑坏死、颞叶癫痫-定侧、定量、血管性异常―梗死、脑缺氧、感染性病变--脑炎、脑脓肿</i>一MRS成像技术回波时间应用长、短TE确定的常规代谢物-N-乙酰天门冬氨酸(N-acetyl asparte, NAA)-肌酸(creatine, Cr)-胆碱(choline, Cho)-乳酸(lactate, Lac)仅短TE确定的代谢物-脂质(lipids, Lip)-谷氨酰胺和谷氨酸(glutamine and glutamate, Glx)-肌醇(myo-inositol, mI)如何选择长、短TE中等TE(144ms)PRESS用于肿瘤性病变。
易于显示Cho和Lac 峰,两者是肿瘤性病变的主要代谢改变短TE(30-35ms)PRESS用于其他的病理状态体素的位置和大小为提高1H MRS 敏感性,感兴趣区(ROI)要求有严格的边界,并避免来自邻近组织的干扰:●血管、血液、空气、脑脊液、脂肪、坏死区、金属、钙化● 颅骨,ROI距其至少约5~10mm● 邻近静脉窦体素越小,部分容积效应越小,但信噪比及空间分辨率降低如何确定Lac峰(Lac与Lip 共振频率基本相同)严格匀场后,Lac的共振呈双峰线(doublet)当TE为144ms时,Lac峰反转于基线下当选择长TE(270ms)时,Lip信号不再磁化,只能检测到Lac 二MRS分析的主要代谢产物NAA(N-乙酰门冬氨酸):主要存在于神经元及其轴突,可作为神经元的内标物,其含量可反映神经元的功能状态。
含量降低表示神经元受损;峰值升高仅见于Canavan病(海绵状脑白质营养不良)。
第一大峰。
主要位于2.02ppm,正常浓度为6.5-9.7mmol,平均7.8mmol胆碱化合物(Cho )主要是自由胆碱、细胞膜翻转的标志物,反映细胞增殖,其峰值升高见于肿瘤、炎症、慢性缺氧,降低见于卒中、脑病(肝性脑病、AIDS)等位于3.20ppm,正常浓度0.8-1.6mmol,平均1.3mmol肌酸类(Cr)<i>MRS成像技术、MRS分析的主要代谢产物、脑肿瘤―鉴别肿瘤和非肿瘤性病变、原发和转移鉴别、胶质瘤分级提示、鉴别放疗后复发和放射性脑坏死、颞叶癫痫-定侧、定量、血管性异常―梗死、脑缺氧、感染性病变--脑炎、脑脓肿</i>此峰由肌酸、磷酸肌酸、-氨基丁酸、赖氨酸和谷胱甘肽共同组成;是脑细胞能量代谢的提示物,在低代谢状态下增加,而在高代谢状态下减低。
MRS在神经外科的应用

颅内常见临床疾病的1H MRS表现
1H-MRS 能够鉴别颅内肿瘤与脑梗死,原发肿 瘤和转移瘤,并能对肿瘤的恶性程度进行评估, 特别是能鉴别恶性肿瘤放疗后所产生的新病灶 为肿瘤复发还是放射性脑病 等。
1.肿瘤区别于其他非肿瘤疾病如梗死或脓肿的 重要特点是:肿瘤1H-MRS 表现为Cr 、NAA 峰 值降低, Cho 峰值增高;而梗死或脓肿则三者均 降低,并且发现随胶质瘤恶性程度的增加,Cho 峰值也逐渐升高, 且脂质峰值逐渐升高。
➢ 脑肿瘤中,Lac出现提示恶性程度较高, 常见于多形胶质母细胞瘤中;
➢ Lac也可以积聚于无代谢的囊肿和坏死区 内;
1H MRS测定的代谢物及其临床含义
脂质(Lip)
➢ 位于1.3、0.9、1.5和6.0 ppm处,分布代表 甲基、亚甲基、等位基和不饱和脂肪酸的乙 烯基;
➢ 共振频率与Lac相似,可以遮蔽Lac峰;
带负电荷的电子具有与原子核相似的自 旋特性,在原子核周围形成具有屏蔽作 用的磁场,这一磁场称为电子云。
电子云的作用使得外加磁场对原子核的 作用减弱。
MRS 的成像基础
处于化合物中的同一种原子核,由于所 受磁屏蔽作用的程度不同,将具有不同 的共振频率,这就是所谓的化学位移现 象(Chemical Shift Phenomenon), 也是磁共振波谱成像的基础。
峰随着肿瘤恶性程度的增加而增高;
1H MRS测定的代谢物及其临床含义
丙氨酸(Ala)
➢ 位于1.3-1.44 ppm,常被Lac和Lip峰所遮盖, 其功能尚不肯定;
谷氨酸(Glu)和谷氨酰胺(Gln)
➢ 位于2.1-2.5 ppm; ➢ Glu是一种兴奋性神经递质,在线粒体代谢
中具有重要功能; ➢ Gln参与神经递质的灭活和调节活动;
MRS在脑肿瘤疾病中的应用

MRS在脑肿瘤疾病中的应用正确诊断脑肿瘤才能更好地对其进行处理和治疗。
MRS是目前唯一无创伤性的研究人体器官、组织代谢、生化改变及化合物定量分析的方法,为传统的影像学技术提供了重要的补充。
现就MRS的原理及MRS在脑肿瘤诊断中的应用现状作一综述。
标签:MRS;脑肿瘤;诊断磁共振波谱(Magnetic Resonance Spec-troscopy, MRS)是检测活体组织器官能量代谢、生化改变以及化合物定量分析的一种非损伤最新技术[1]。
作为一种无创伤性研究活体器官组织代谢、生化变化及化合物定量分析的方法,目前主要在脑部应用研究较多。
随着磁共振及其波谱装置不断改进,软件开发及临床研究的不断深入,人们通过磁共振波谱对各种疾病的生化代谢的认识将不断提高,为临床的诊断、鉴别、分期、治疗和预后提供更多有重要价值的信息。
有的还可应用磁共振的功能成像对脑梗死进行早期诊断,甚至在超急性期即能发现脑梗死灶,提高了病变检出的准确性和效率,达到早诊断、早治疗,以减少致残率和致死率。
1 MRS的原理与方法MRS和MRI的基本原理相似,主要区别在于对数据的处理和显示方式的不同。
MRS使用1个外加磁场激发一个体素组织内的原子核,并使原子核之间的弛豫特征发生微小变化,即出现化学位移。
这种由原子核间相互作用以及原子核周围电子间相互作用产生的磁场所引起的化学位移,可用于鉴别化合物或代谢产物。
用傅里叶变换将复杂的MR信号转换为MR波谱,在所测组织内不同代谢产物的化学位移产生不同的信号强度峰值。
化学位移大小以每百万单位(ppm)表示,纵坐标代表代谢产物的信号强度单位,信号峰值由磁共振频率、峰高和半高宽度决定[2]。
2 用于医学研究的原子核的磁共振波谱2.1 质子(1H)磁共振波谱氢质子磁共振波谱(1H MRS)自应用于临床以来,因其可以在人体无创地分析病变内代谢产物的浓度,从分子水平对病变进行评估,开拓并丰富了脑肿瘤诊断、鉴别诊断、肿瘤分级、评估肿瘤治疗、肿瘤复发和放射治疗损伤的思维,弥补了常规MRI的不足。
MRS磁共振波普成像

双侧基底节区及双侧额颞叶进行多体素波
谱分析(3D SCI press 144TE),将感兴 趣区分别置于双侧颞叶、海马、额叶,所 得谱线基线平稳,Hunter角正常、开口向 右,各代谢物峰高、比值未见明显异常。 双侧颞叶,包括海马区三维多体素法MRS 未见明显异常谱线。
1.5T磁共振波谱分析提示双侧颞叶、海马、额叶未见明显异常
磁共振波谱成像(MR天门冬氨酸):只存在于神经 元中,是神经元活性的标记物,在脑肿瘤、脑梗死及痴呆 中含量降低。 3.02、3.94ppm,Cr(肌酸/磷酸肌酸):存在于神经元 和神经胶质中,是能量代谢物,在星形细胞瘤中降低,在 脑膜瘤和转移瘤中几乎消失。 3.22ppm,Cho(胆碱):存在于细胞膜、髓磷脂和脑内 脂质中,其升高反映了细胞膜合成的增加或细胞数的增多 ,是肿瘤的标记。
HUNTER角
MRS谱线图
MRS代谢物图
SVS SE 30
CSI SE 135
解剖定位相显示:左侧额叶、颞叶及岛叶可见不规则形低信号影,左 侧外侧裂池及侧脑室受压变窄,中线结构稍向右移位。双侧筛窦粘膜增厚。 2D多体素(TE=135):ROI置于病灶实性部分、坏死部分及对侧及同 侧正常区,所得谱线基本平稳,信噪比较好,病灶实性部分、坏死部分 HUNTER角倒置,可见脂峰及倒置的乳酸峰;CHO/NAA值增高,值为1.16, 1.96,3.63,1.92;对侧及同侧正常脑实质区CHO/NAA值约为0.66,0.38。 单体素(TE=30)置于病灶内,所得谱线平稳,信噪比尚好,扫得谱线 HUNTER角倒置,但CHO/NAA峰下面积比值》1,可见脂峰及乳酸峰。
MR意见:左侧额叶、颞叶及岛叶占位,符合肿瘤波谱改变
病理:(左侧额、颞、岛叶)少突胶质细胞瘤(WHOⅡ级)
磁共振波谱分析

磁共振波谱分析摘要:磁共振波谱(MRS)是一种新的脑功能检查技术和唯一无创性检测活体组织器官能量代谢、生化改变和特定化合物定量分析的技术。
MRS是在MRI形态学诊断的基础上,从代谢方面对病变进一步研究。
【MRS的定义与基本原理】磁共振波谱(MRS)是一种新的脑功能检查技术和唯一无创性检测活体组织器官能量代谢、生化改变和特定化合物定量分析的技术。
MRS是在MRI形态学诊断的基础上,从代谢方面对病变进一步研究。
MRS的原理在某些方面与MRI相同,要求短的射频脉冲以激励原子核,采集到的信号称为自由感应衰减信号,将这种信号通过傅立叶转换变成波谱。
MRS成像的基本原理是依据化学位移和J-耦合两种物理现象。
由于化学位移不同,不同化合物可以根据其在MRS上共振峰的位置不同加以区别。
化学位移采用磁场强度的百万分之一为单位(part per million,ppm)。
共振峰的面积与共振核的数目成正比,反映化合物的浓度,因此可用来定量分析。
峰值在横轴上的位置代表物质的种类,波峰的高度或波峰下的面积代表物质的数量,化合物的含量亦可用图谱色阶表示。
【人脑常见的代谢物及其意义】1.N-乙酰天门冬氨酸(NAA)在正常脑1HMRS中NAA是最高的峰,位于2.02ppm。
它主要存在于成熟的神经元内,是神经元的内标物,其含量的多少可反映神经元的功能状态。
NAA含量的降低代表神经元的缺失。
肿瘤、多发性硬化、梗死、缺氧、神经细胞变性疾病、代谢性疾病及脱髓鞘疾病等均可引起NAA浓度的下降;不含神经元的脑部肿瘤(如脑膜瘤、转移瘤)MRS显示NAA缺失。
在婴儿脑发育、成熟过程中以及神经损伤后轴索恢复中NAA会升高。
Canavan病(中枢神经系统海绵状变性)是唯一可以引起NAA增高的疾病,是由于该病人体内缺乏NAA水解酶。
2.胆碱(Cho)包括磷酸胆碱、磷脂酰胆碱及磷酸甘油胆碱,反映脑内总胆碱储备量,波峰位于3.2ppm。
Cho是乙酰胆碱和磷脂酰胆碱的前体,是细胞膜磷脂代谢的成分之一,参与细胞膜的合成与代谢,Cho峰的高低可以作为肿瘤细胞增殖的指标。