数列典型习题及解题方法

数列典型习题及解题方法
数列典型习题及解题方法

高中数学数列基本题型及解法

这部分内容需要掌握的题型主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

一、知识整合

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n 项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.

3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 二、方法技巧

1.判断和证明数列是等差(等比)数列常有三种方法:

(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。 (2)通项公式法: ①若

=

+(n-1)d=

+(n-k )d ,则{}n a 为等差数列; ②若

,则{}n a 为等比数列。

(3)中项公式法:验证中项公式成立。

2. 在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解:

(1)当1a >0,d<0时,满足1

00m m a a +≥??≤?的项数m 使得m S 取最大值.

(2)当1a <0,d>0时,满足10

m m a a +≤??

≥?的项数m 使得

取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。 三、注意事项

1.证明数列{}n a 是等差或等比数列常用定义,即通过证明11-+-=-n n n n a a a a 或1

1-+=

n n

n n a a a a 而得。 2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。

3.注意n s 与n a 之间关系的转化。如:

n a =110

0n

n S S S -≤??

-≥? 21≥=n n , n a =∑=--+n

k k k a a a 211)(. 4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.

5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的

内在联系和隐含条件,明确解题方向,形成解题策略. 四、例题解析

例1.已知数列{a n }是公差d ≠0的等差数列,其前n 项和为S n .

(2)过点Q 1(1,a 1),Q 2(2,a 2)作直线12,设l 1与l 2的夹角为θ,

证明:(1)因为等差数列{a n }的公差d ≠0

,所以

Kp 1p k 是常数(k=2,3,…,n)

(2)直线l 2的方程为y-a 1=d(x-1),直线l 2的斜率为d

例2.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+== ,

⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2

==

n a c n n

n ,求证:数列{}n c 是等差数列; ⑶求数列{}n a 的通项公式及前n 项和。

分析:由于{b n }和{c n }中的项都和{a n }中的项有关,{a n }中又有S 1n +=4a n +2,可由S 2n +-S 1n +作切入点

探索解题的途径.

解:(1)由S 1n +=4a 2n +,S 2n +=4a 1n ++2,两式相减,得S 2n +-S 1n +=4(a 1n +-a n ),即a 2n +=4a 1n +-4a n .(根据b n 的构造,如何把该式表示成b 1n +与b n 的关系是证明的关键,注意加强恒等变形能力的训练)

a 2n +-2a 1n +=2(a 1n +-2a n ),又

b n =a 1n +-2a n ,所以b 1n +=2b n ① 已知S 2=4a 1+2,a 1=1,a 1+a 2=4a 1+2,解得a 2=5,b 1=a 2-2a 1=3 ② 由①和②得,数列{b n }是首项为3,公比为2的等比数列,故b n =3·2

1

n -.

当n ≥2时,S n =4a 1n -+2=2

1

n -(3n-4)+2;当n=1时,S 1=a 1=1也适合上式.

综上可知,所求的求和公式为S n =2

1

n -(3n-4)+2.

说明:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前n 项和。解决本题的关键在于由条件241+=+n n a S 得出递推公式。

2.解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用.

例3.设数列{a n }的前项的和S n =3

1

(a n -1) (n ∈N +),(1)求a 1;a 2; (2)求证数列{a n }为等比数列。 解: (Ⅰ)由)1(3111-=a S ,得)1(3111-=a a ∴=1a 21- 又)1(3122-=a S ,即)1(31

221-=+a a a ,得

4

12=a .

(Ⅱ)当n >1时,),1(3

1

)1(3111---=-=--n n n n n a a S S a

,2

11-=-n n a a 所以{}n a 是首项21-,公比为21

-的等比数列.

例4、设a 1=1,a 2=

35,a n +2=35a n +1-3

2

a n (n =1,2,---),令

b n =a n +1-a n (n =1,2---)求数列{b n }的通项公式,(2)求数列{na n }的前n 项的和S n 。

解:(I )因121+++-=n n n a a b 1115222

()3333

n n n n n n a a a a a b +++=

--=-= 故{b n }是公比为32的等比数列,且故,32121=-=a a b ),2,1()

3

2( ==n b n

n (II )由得n

n n n a a b )3

2(1=-=+

)()()(121111a a a a a a a a n n n n n -++-+-=--++

])3

2(1[232)32()32()32(21n n n -=++++=-

注意到,11=a 可得),2,1(3231 =-=-n a n n

n

记数列}3

2{11

--n n n 的前n 项和为T n ,则

12222222

12(),2()()333333n n n n T n T n -=+?++?=+?++?

211222222

1()()()3[1()](),3333333

n n n n n T n n -=++++-=-- 两式相减得

1

1

121

22(3)29[1()]3()93333(3)2

23(12)2(1)18

23n

n n n n n n n n n n T n n S a a na n T n n -+-+=--=-

+=+++=+++-=++- 故从而

例5.在直角坐标平面上有一点列 ),(,),(),,(222111n n n y x P y x P y x P ,对一切正整数n ,点n P 位于函数4133+

=x y 的图象上,且n P 的横坐标构成以2

5

-为首项,1-为公差的等差数列{}n x 。 ⑴求点n P 的坐标;

⑵设抛物线列 ,,,,,321n c c c c 中的每一条的对称轴都垂直于x 轴,第n 条抛物线n c 的顶点为n P ,

且过点)1,0(2+n D n ,记与抛物线n c 相切于n D 的直线的斜率为n k ,求:

n

n k k k k k k 132211

11-+

++ 。 ⑶设{}{}1,4|,1,,2|≥==≥∈==n y y y T n N n x x x S n n ,等差数列{}n a 的任一项T S a n ?∈,其中1a 是T S ?中的最大数,12526510-<<-a ,求{}n a 的通项公式。

解:(1)23

)1()1(25--=-?-+-=n n x n

13535

33,(,3)4424

n n n y x n P n n ∴=?+=--∴----

(2)n c 的对称轴垂直于x 轴,且顶点为n P .∴设n c 的方程为:,4

5

12)232(2+-++=n n x a y 把)1,0(2+n D n 代入上式,得1=a ,n c ∴的方程为:1)32(2

2++++=n x n x y 。

32|0'+===n y k x n ,)3

21

121(21)32)(12(111+-+=++=∴

-n n n n k k n n n n k k k k k k 132211

11-+

++∴ )]321121()9171()7

151[(21+-+++-+-=n n =6

41

101)32151(21+-=+-n n

(3)}1,),32(|{≥∈+-==n N n n x x S ,

}1,),512(|{≥∈+-==n N n n y y T }1,,3)16(2|{≥∈-+-==n N n n y y ,S T T ∴= T 中最大数171-=a .

设}{n a 公差为d ,则)125,265(91710--∈+-=d a ,由此得

).(247,24),

(12,129

248

**N n n a d N m m d T a d n n ∈-=∴-=∴∈-=∴∈-<<-

又 说明:本例为数列与解析几何的综合题,难度较大(1)、(2)两问运用几何知识算出n k ,解决(3)的关

键在于算出S T 及求数列{}n a 的公差。

例6.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈

⑴求数列{}n a 的通项公式;

⑵设||||||21n n a a a S +++= ,求n S ;

⑶设n b =

)

12(1

n a n -)(),(*21*N n b b b T N n n n ∈+++=∈ ,是否存在最大的整数m ,使得对任

意*N n ∈,均有>n T 32

m

成立?若存在,求出m 的值;若不存在,请说明理由。

解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d , 由题意得2382-=?+=d d ,n n a n 210)1(28-=--=∴.

(2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤ 时

21281029,2

n n

a a a n n n +-=+++=

?=- 6n ≥时,n n a a a a a a S ---+++= 76521 4092)(2555+-=-=--=n n S S S S S n n

故=n S

40

992

2

+--n n n n

65

≥≤n n

(3))1

1

1(21)1(21)12(1+-=+=-=n n n n a n b n n

∴n T )]11

1()111(

)4131()3121()211[(21+-+--++-+-+-=n n n n .)1(2+=n n 若32m T n >对任意*N n ∈成立,即161m n n >+对任意*

N n ∈成立,

)(1*N n n n ∈+ 的最小值是21,,2

116<∴m m ∴的最大整数值是7。

即存在最大整数,7=m 使对任意*

N n ∈,均有.32

m T n > 说明:本例复习数列通项,数列求和以及有关数列与不等式的综合问题。.

常用方法

一. 观察法

例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,17

164,1093,542

,211

(3) ,52

,2

1,32,1 (4)

,5

4,43,3

2,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为:110-=n n a

(2);1

22++=n n n a n (3);12+=n a n (4)1)1(1+?-=+n n

a n n . 观察各项的特点,关键是找出各项与项数n 的关系。 二、定义法

例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函

数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),

(1)求数列{ a n }和{ b n }的通项公式;

解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2, ∴a 3-a 1=d 2-(d -2)2=2d ,

∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2,

∴2

213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2, ∴b n =b ·q n -

1=4·(-2)n -

1

当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。

三、 叠加法

例3:已知数列6,9,14,21,30,…求此数列的一个通项。 解 易知,121-=--n a a n n

∵,312=-a a ,523=-a a ,734=-a a

……

,

121-=--n a a n n

各式相加得)

12(7531-++++=-n a a n ∴)

(52N n n a n ∈+=

一般地,对于型如)(1n f a a n n +=+类的通项公式,只要)()2()1(n f f f +++ 能进行求和,则宜采用此方法求解。 四、叠乘法

例4:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 解:由(n+1)·1+n a =n ·n a 得

1

1+=+n n

a a n n , 1a a n =12a a .23a a .34a a (1)

-n n a a =n n n 11433221=-?? 所以n a n

1= 一般地,对于型如1+n a =f (n)·n a 类的通项公式,当)()2()1(n f f f ?? 的值可以求得时,宜采

用此方法。

五、公式法

若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式

??

?≥-==-21

1n S S n S a n n

n n 求解。 例5:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n

解: (1)11111-+==S a

n a =1--n n S S =[]

1)1()1()1(33--+---+n n n n =3232+-n n

此时,112S a ==。∴n a =3232+-n n 为所求数列的通项公式。 (2)011==s a ,当2≥n 时

12]1)1[()1(221-=----=-=-n n n s s a n n n 由于1a 不适合于此等式 。 ∴??

?≥-==)

2(12)1(0

n n n a n

注意要先分n=1和2≥n 两种情况分别进行运算,然后验证能否统一。 例6. 设数列{}n a 的首项为a 1=1,前n 项和S n 满足关系

),4,3,2,0(3)32(31 =>=+--n t t S t tS n n

求证:数列{}n a 是等比数列。

解析:因为)1(),4,3,2,0(3)32(31 =>=+--n t t S t tS n n 所以)2(),4,3,2,0(3)32(321 =>=+---n t t S t tS n n 得:)2()1(-

所以,数列{}n a 是等比数列。

六、阶差法

例7.已知数列{}n a 的前n 项和n S 与n a 的关系是 n

n n b ba S )

1(1

1+-

+-= ,其中b 是与n 无关的常数,且1-≠b 。 求出用n 和b 表示的a n 的关系式。

解析:首先由公式:???≥-==-21

1n S S n S a n n

n n 得:

)

,2(33

20)32(3),4,3,2,0(0))(32()311211N n n t

t a a a t ta n t S S t S S t n n n n n n n n ∈≥+=∴=+-∴=>=-+------- (

)

2()1(1)1(112

1≥+++=+=

+-n b b a b b a b b a n n n

1

2

221)

1()1(1+--+++=+∴n n n b b a b b a b b

133322)1()1()1(+--+++=+∴n n n b b a b b a b b 1

1

1122)

1()1()1(+---+++=+∴n n n n b b a b b a b b

1

1

2

11

1

3211

)1()1()1(1+-++--+++++

+=

++++++

?

?

?

??+=∴n n n n

n n n n b b

b b b b b b b b b a b b a

1

2)1(+++++=∴n n n b b b b a ???

????≠+--==+++1)1)(1(12

1

11b b b b b b n

n n n 利用阶差法要注意:递推公式中某一项的下标与其系数的指数的关系,即

其和为n 。 七、待定系数法

例8:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n

解:设1)1(-+-+=n n bq d n a c

1

32

211121237242-+=????????=====???

????=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a 点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,

)1,0(≠≠-=q Aq A Aq s n n 。

八、

辅助数列法

有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。

例9.在数列{}n a 中,11=a ,22=a ,n n n a a a 3

1

3212+=

++,求n a 。 解析:在n n n a a a 313212+=++两边减去1+n a ,得)(3

1

112n n n n a a a a --=-+++

∴ {}n n a a -+1是以112=-a a 为首项,以3

1

-为公比的等比数列,

∴1

1)3

1(-+-=-n n n a a ,由累加法得

n a =112211)()()(a a a a a a a n n n n +-+???+-+----

=+--2

)

3

1(n +--3)3

1(n …11)31(++-=3

11)31

(11

+---n =1])31(1[431+---n

=

1)3

1(4347---n 例10.(2003年全国高考题)设0a 为常数,且1123---=n n n a a (*N n ∈), 证明:对任意n ≥1,02)1(]2)1(3[5

1a a n n n n

n ??-+?-+=

证明:设,)3(2311--?--=?-n n n n t a t a 用1123---=n n n a a 代入可得5

1=

t ∴ {}5

3n

n a -

是公比为2-,首项为5

31-a 的等比数列,

∴ 10)2()53

21(53--?--=-n n n a a (*N n ∈), 即:012)1(5

2)1(3a a n n n

n n n ??-+?-+=

- 型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)可用转化为等比数列等.

(1)f(n)= q (q 为常数),可转化为a n+1+k=p(a n +k),得{ a n +k }是以a 1+k 为首项,p 为公比的等比数列。 例11:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a 。

解:∵121+=+n n a a ∴)1(211+=++n n a a 令1+=n n a b

则辅助数列}{n b 是公比为2的等比数列

∴11-=n n q b b 即n n n q a a 2)1(111=+=+- ∴12-=n n a 例12: 已知数列{n a }中11=a 且1

1+=

+n n

n a a a (N n ∈),

,求数列的通项公式。 解:∵1

1+=

+n n

n a a a ∴

11111+=+=+n

n n n a a a a , 设n n a b 1

=,则11+=+n n b b 故{n b }是以11

1

1==

a b 为首项,1为公差的等差数列 ∴n n b n =-+=)1(1 ∴n

b a n n 11==

例13.(07全国卷Ⅱ理21)设数列{}n a 的首项1

13(01)2342

n n a a a n --∈==,,

,,,,…. (1)求{}n a 的通项公式; 解:(1)由1

32342

n n a a n --==,,,,…, 整理得 11

1(1)2

n n a a --=--.

又110a -≠,所以{1}n a -是首项为11a -,公比为1

2

-的等比数列,得

1

111(1)2n n a a -??

=--- ?

??

注:一般地,对递推关系式a n+1=pa n +q (p 、q 为常数且,p ≠0,p ≠1)可等价地改写成

)1(11p

q

a p p q a n n --=--

+ 则{p q a n --1}成等比数列,实际上,这里的p q -1是特征方程x=px+q 的

根。

(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++n

n n n q

a p q a q

,令b n =n n q a ,可转化为b n+1=pb n +q 的形式。

例14.已知数列{a n }中,a 1=

65, a n+1=31a n +(2

1)n+1

,求a n 的通项公式。 解:a n+1=31a n +(21)n+1 乘以2n+1 得 2n+1a n+1=32(2n a n )+1 令b n =2n

a n 则

b n+1=3

2b n +1

易得 b n =3)32(341+-

-n 即 2n a n =3)3

2

(341+--n ∴ a n =n n 2

3

32+-

(3) f(n)为等差数列

例15.已知已知数列{a n }中,a 1=1,a n+1+a n =3+2 n ,求a n 的通项公式。 解:∵ a n+1+a n =3+2 n ,a n+2+a n+1=3+2(n+1),两式相减得a n+2-a n =2

因此得,a 2n+1=1+2(n -1), a 2n =4+2(n -1), ∴ a n =?

??+是偶数是奇数

n n n n ,2,。

注:一般地,这类数列是递推数列的重点与难点内容,要理解掌握。

(4) f(n)为非等差数列,非等比数列

例16.(07天津卷理)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>. (Ⅰ)求数列{}n a 的通项公式;

解:由11(2)2()n n n n a a n λλλ+*+=++-∈N ,0λ>,

可得1

1

1221n n

n n

n n a a λλλλ+++????

-=-+ ?

???

??

, 所以2n

n n a λλ????

??-?? ???????

为等差数列,其公差为1,首项为0,故21n n n a n λλ??-=- ???,所以数列{}n a 的通项公式

为(1)2n n n a n λ=-+.

这种方法类似于换元法, 主要用于已知递推关系式求通项公式。

九、归纳、猜想

如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。

例17.(2002年北京春季高考)已知点的序列*),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…

(1) 写出n x 与21,--n n x x 之间的关系式(3≥n )。

(2) 设n n n x x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明。 (3) 略

解析:(1)∵ n A 是线段32--n n A A 的中点, ∴)3(2

2

1≥+=--n x x x n n n (2)a a x x a =-=-=0121,

2122322x x x x x a -+=

-==a x x 21

)(2112-=--,

3233432

x x x x x a -+=

-==a x x 41

)(2123=--,

猜想*)()2

1

(1

N n a a n n ∈-=-,下面用数学归纳法证明

01 当n=1时,a a =1显然成立;

02 假设n=k 时命题成立,即*)()2

1

(1N k a a k k ∈-=-

则n=k+1时,k k k k k k x x x x x a -+=

-=++++2

1121=k k k a x x 21

)(211-=--+

=a a k

k )2

1

()2

1)(21(1-=---

∴ 当n=k+1时命题也成立,∴ 命题对任意*

N n ∈都成立。

例18:在数列{n a }中,1,22

11+-==+na a a a n n ,则n a 的表达式为 。 分析:因为1,2211+-==+na a a a n n ,所以得:5,4,3432===a a a ,

猜想:1+=n a n 。 十、倒数法

数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以

,11-n n a a 先求出.,1

n n

a a 再求得 例19.设数列}{n a 满足,21=a ),N (3

1∈+=

+n a a a n n

n 求.n a 解:原条件变形为.311n n n n a a a a =?+?++两边同乘以

,11+?n n a a 得1

1

131+=

?+n n a a . ∵11321

1,211)2113

-+=+∴+=+n n n n a a a ( ∴.1

322

1

-?=-n n a

(完整版)数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

高考数列万能解题方法

数列的项n a 与前n 项和n S 的关系:1 1 (1)(2)n n n s n a s s n -=?=?-≥? 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。 2、错项相减法:适用于差比数列(如果 {}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列) 即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比 数列求和。 3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。 适用于数列11n n a a +???????和??(其中{}n a 等差) 可裂项为: 11 1111 ()n n n n a a d a a ++=-?,

1 d = 等差数列前n项和的最值问题: 1、若等差数列{}n a的首项10 a>,公差0 d<,则前n项和 n S有最大值。 (ⅰ)若已知通项 n a,则 n S最大? 1 n n a a + ≥ ? ? ≤ ? ; (ⅱ)若已知2 n S pn qn =+,则当n取最靠近 2 q p -的非零自然数时 n S最大; 2、若等差数列{}n a的首项10 a<,公差0 d>,则前n项和 n S有最小值 (ⅰ)若已知通项 n a,则 n S最小? 1 n n a a + ≤ ? ? ≥ ? ; (ⅱ)若已知2 n S pn qn =+,则当n取最靠近 2 q p -的非零自然数时 n S最小; 数列通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知 n S(即 12 () n a a a f n +++= L)求 n a,用作差法:{11,(1),(2) n n n S n a S S n - = =-≥。 已知 12 () n a a a f n = g g L g求 n a,用作商法: (1),(1) () ,(2) (1) n f n f n a n f n = ?? =?≥ ?- ? 。 ⑶已知条件中既有 n S还有 n a,有时先求 n S,再求 n a;有时也可直接求 n a。 ⑷若 1 () n n a a f n + -=求 n a用累加法: 11221 ()()() n n n n n a a a a a a a --- =-+-++- L 1 a +(2) n≥。 ⑸已知1() n n a f n a +=求 n a,用累乘法:12 1 121 n n n n n a a a a a a a a - -- =???? L(2) n≥。 ⑹已知递推关系求 n a,用构造法(构造等差、等比数列)。 特别地,(1)形如 1 n n a ka b - =+、 1 n n n a ka b - =+(,k b为常数)的递推数列都可以用待 定系数法转化为公比为k的等比数列后,再求n a;形如1n n n a ka k - =+的递推数列都可以除以 n k得到一个等差数列后,再求 n a。 (2)形如1 1 n n n a a ka b - - = + 的递推数列都可以用倒数法求通项。

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

数列知识点及典型例题

数列知识点及典型例题 一、 知识点 一、 选择题:本大题共10个小题;每小题5分,共50分 1、数列 的一个通项公式是( D ) A. B . C . D . 2、已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数,则b 2(a 2-a 1)=( C )A.8 B.-8 C.±8 D. 3、已知数列{}n a 是等比数列,若,a a a a 41813229=+则前30项的和=30S (B ) A 、154, B 、15 2, C 、15 21?? ? ?? D 、153, 12) 1(3++-=n n n a n n 1 2) 3()1(++-=n n n a n n 121 )1() 1(2--+-=n n a n n 1 2) 2()1(++-=n n n a n n ?--,9 24 ,715,58,18 9

4、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为 ( B ) A .15. B .17. C .19. D .21 5、等差数列}{n a 的前n 项和为n S ,若45818,a a S =-=则( D ) A 、18 B 、36 C 、54 D 、72 6、等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( C ) A . -1221 B .-21.5 C .-20.5 D .-20 二、填空题:本大题共4小题;每小题4分,共16分。 7、已知数列的通项公式74+=n a n ,则其中三位数的个数有255个 8、设等差数列}{n a 的前n 项和为n S ,若2010S S =,则30S 的值是0。 三、解答题:本大题共7小题,共84分。 11、已知等差数列{}n a 中,公差为,1=d 且9999=s ,求+++852a a a 15a +Λ的值。 解法一:9999=S ,{}n a 是等差数列 所以 992 98 99991=?+ d a ,又1=d ,481-=a 所求量为首项为-47,公差为3的前5项和S 5=…… 12、⑴在等比数列{}n a 中,若,a a ,a a 6243224=+=-求首项1a 和公比q 。 ⑵设等比数列{}n a ,n s 是它的前n 项和,若,s s s 9632=+求公比q 。 解:⑴由已知有:24131=-q a q a 及6211=+q a q a 得5 1 1= a , 5=q ⑵当1=q 时,{}n a 是常数列,则根据,s s s 9632=+得1111863a a a =+,01=a , 因为{}n a 是等比数列,01≠a 故1≠q 。 当1≠q 时,()()() q q a q q a q q a --= --+--1121111916131,解得321-=q 。 13、三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52 a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11 000 0><≥≤?? ?+ 当,,由可得达到最小值时的值。a d a a S n n n n 11000 <>≤≥?? ?+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 33113 = +===

第一讲数列地极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取Λ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?,,有G x n >,则称{}n x 为无穷大量,记 作∞=∞ →n n x lim .

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

数列知识点和常用解题方法归纳总结

数列知识点和常用解题方法 归纳总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11000 0><≥≤???+ 当,,由可得达到最小值时的值。a d a a S n n n n 11 000 0<>≤≥???+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 3311 3 = +===

(完整版)等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以,故,选B 3.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, , 则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解 析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 2 1 222q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

高中数列经典题型大全

高中数列经典题型大全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121==x x ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a

数列解题技巧归纳总结

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

数列经典例题(裂项相消法)

数列经典例题(裂项相消法)

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为, 15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101 100 2.数列, )1(1 += n n a n 其前n 项之和为,109 则在平面直角坐标系中, 直线0)1(=+++n y x n 在y 轴上的截距为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且6 22 321 9,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设, log log log 32313n n a a a b +++= 求数列}1{n b 的前n 项和. 4.正项数列}{n a 满足0 2)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令, )1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且1 2,4224 +==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,2 1 1*221 1N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26 ,7753 =+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;

数列常见题型总结经典

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122 -=,求数列|}{|n a 的前n项和n T 练习: 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。答案:???=-12 2n n a )2() 1(≥=n n 2、若数列}{n a 的前n 项和32 3-=n n a S ,求该数列的通项公式。答案:n n a 32?= 3、设数列}{n a 的前n项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式. 4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +) 5、设数列{}n a 满足2 *12333()3 n n a a a a n N +++= ∈n-1 …+3,求数列{}n a 的通项公式(作差法) 2。形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+。 (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a 例2.已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2() 1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式。 3。形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a 。 (2)当f(n )为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式.答案:12+=n a n 练习: 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。答案:)1(2 +=n n a n 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。 4。形如s ra pa a n n n += --11 型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211 ≥+=--n a a a n n n ,求通项公式n a

高考数列万能解题方法定稿版

高考数列万能解题方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

数列的项n a 与前n 项和n S 的关系:1 1(1)(2)n n n s n a s s n -=?=?-≥? 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。 2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数 列) 即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。 3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。 适用于数列11n n a a +???????和??(其中{}n a 等差)

可裂项为: 111111()n n n n a a d a a ++=-? 1 d = 等差数列前n 项和的最值问题: 1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。 (ⅰ)若已知通项n a ,则n S 最大?10 n n a a +≥??≤?; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p - 的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值 (ⅰ)若已知通项n a ,则n S 最小?1 0n n a a +≤??≥?; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p - 的非零自然数时n S 最小; 数列通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{ 11,(1) ,(2) n n n S n a S S n -== -≥。 已知12 ()n a a a f n =求n a ,用作商法:(1),(1)() ,(2) (1) n f n f n a n f n =??=?≥?-?。 ⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。

数列经典例题(裂项相消法)20392

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101100 2.数列,)1(1+=n n a n 其前n 项之和为,10 9 则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距 为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且622 3219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1 { n b 的前n 项和. 4.正项数列}{n a 满足02)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足 ,,2 1 1*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(1 1*2 N n a b n n ∈-= 求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 2 11)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;

相关文档
最新文档