实数典型例题

合集下载

实数知识点及典型例题

实数知识点及典型例题

实数知识点及典型例题一、实数知识点。

(一)实数的分类。

1. 有理数。

- 整数:正整数、0、负整数统称为整数。

例如:5,0,-3。

- 分数:正分数、负分数统称为分数。

分数都可以表示为有限小数或无限循环小数。

例如:(1)/(2)=0.5,(1)/(3)=0.333·s。

- 有理数:整数和分数统称为有理数。

2. 无理数。

- 无理数是无限不循环小数。

例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。

3. 实数。

- 有理数和无理数统称为实数。

(二)实数的相关概念。

1. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 实数与数轴上的点是一一对应的关系。

2. 相反数。

- 只有符号不同的两个数叫做互为相反数。

a的相反数是-a,0的相反数是0。

例如:3与-3互为相反数。

- 若a、b互为相反数,则a + b=0。

3. 绝对值。

- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。

例如:| 5| = 5,| -3|=3。

4. 倒数。

- 乘积为1的两个数互为倒数。

a(a≠0)的倒数是(1)/(a)。

例如:2的倒数是(1)/(2)。

(三)实数的运算。

1. 运算法则。

- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。

- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。

2. 运算律。

- 加法交换律:a + b=b + a。

- 加法结合律:(a + b)+c=a+(b + c)。

- 乘法交换律:ab = ba。

实数知识点及典型例题

实数知识点及典型例题

(4 )《实数》知识点总结及典型例题练习题第一节.平方根1.平方根与算数平方根的含义平方根:如果一个数的平方等于4,那么数X 就叫做d 的平方根。

即X —,记作X 二土長算数平方根:如果一个正数X 的平方等于a,那么正数x 叫做a 的篡:术士方投,即X 2=a,记作x 二需。

2 .平方根的性质与表示⑴表示:正数d 的平方根用土丽表示,亦叫做正平方根,也称为算术平方根,-百叫做a 的负 平方根。

⑵一个正数有两个平方根:土亦(根指数2省略) 0有一个平方根,为0,记作"=0负数没有平方根⑶平方与开平方互为逆运算开平方:求一个数。

的平方根的运算。

(y[a =6/ ( a >0 )⑷長的双重非负性:a>0且亦n0 (应用较广)例:Jx-4 +j4-x = y 得知 x = 4,y = 0⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动 一位。

区分:4的平方根为 _____ 的平方根为 _________ 品=—4开平方后,得 ___________ (6)若 a > b > 0 ,则 yfa > y/b (7)y[a x y[b = 4ab(ci > O,b > 0)典型习题:(1) 求算数平方根与平方根 1:求下列数的平方根 36 0.09 (-4) 2 0 1(2) 解简单的二次方程3:81X 2-25 = O(3) 被开方数的意义5:若a 为实数,下列代数式中,一定是负数的是() A. -a 2 B. -( d+l)2 C.-倚D.-(|-«| + l)爷弋心/?>0)4 :4(X +1)2=8u>0 a <06:实数a在数轴上的位置如图所示,化简:-1| + yj(a-2)2二 * o 1 ~' 2 才(4):有关x的取值范围目前中考的所有考点例题:求使得下列各式成立的x的取值范围7:』3x-58:当加____________ 时,丁3 —加有意义;当加 ____________ 时,"加一3有意义io.等式= 成立的条件是( ).A、xllB、x>-\C、-1 <x< 1D、x<-ls£> 1(5)非负性知识点:总结:若儿个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.10.已知a,b是实数,且有h_V5 + l| + (b + Q2=o,求的值.11 :.已知实数a、b、c 满足,2 a-1 + J” + c + (c-丄)?二0,,求a+b+c 的值.213•若y = Jx-l + Jl-x -1,求x, y 的值。

实数难题

实数难题

初二实数典型例题1a 2,小数部分为b ,求-16ab-8b 的立方根。

2.已知5+11的小数部分为a ,5-11的小数部分为b , 求:(1)a +b 的值;(2)a -b 的值.3、若3,b a b +a ,则的值为( )A 、0B 、1C 、-1D 、23.10.1=,则= . 4.已知4495.26=,7460.760=。

直接写出下列各式的值: (1) =6.0 (2) =600 (3) =06.0 (4) =60005.已知2m-3和m-12是数p 的平方根,试求p 的值6.已知某数有两个平方根分别是a +3与2a -15,求这个数.7.一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+29.如果a (a >0)的平方根是±m ,那么( )A.a 2=±mB.a =±m 2C.a =±mD.±a =±m 10.,,4x y m m -试求的算术平方根。

11.、28、已知052522=--+-xx x y ,求7(x +y )-20的立方根。

12.若x 、y 都是实数,且y =3-x +x -3+8,求x +3y 的立方根.13.已知,,x y z =试求x,y,z 的值。

14.△ABC 的三边长为a 、b 、c ,a 和b2440b b -+=,求c 的取值范围。

15.在Rt △ABC 中,∠C =90°,c 为斜边,a 、b 为直角边,则化简2)(c b a +--2|c -a -b |的结果为( ) A.3a +b -cB.-a -3b +3cC. a +3b -3cD. 2a绝对值相关16. 对于每个非零有理数c b a ,,式子abcabcc c b b a a +++的所有可能的值有?17.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|试化简:|b-c|-|b-a|+|a-c-2b|-|c-a|例1 已知y x ,满足,04232=--+-+y x y x 532--y x 求的值.例2 已知在实数范围内x 23-有意义,化简7296-+-x x .例3 在实数范围内解方程28.6322=-+-+-y x x ππ.例4 已知()02352,,2=-+-+-c b a c b a 满足(1)求c b a ,,的值; (2)试问以c b a ,,为边能否构成三角形?如果能构成三角形,求它的周长;如果不能构成三角形,请说明理由.例5 已知()333423,0312,4z y x x x y z ++=-++-=求且的值。

实数知识点及例题

实数知识点及例题

实数习题集【知识要点】1.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数0;1=ab 没有倒数.5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2±a . 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.实数易错题分类汇总典型例题一:计算1.计算()2010200902211-⨯⎪⎭⎫ ⎝⎛-的结果是【答案】-1 2. ()()212321-+-+⎪⎭⎫ ⎝⎛--π的值为【答案】13.下列计算中,正确的是( )A .020= B .2a a a =+C3=±D .623)(a a =【答案】D4.下列运算正确的是( )A .1331-÷= Ba = C .3.14 3.14ππ-=- D .326211()24a b a b =典型例题二:估算 1.82cm 接近于( )实数有理数无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数)正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<aA .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度 【答案】C2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a【答案】D典型例题三:应用题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人【答案】B.2.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 【注:销售利润率=(售价—进价)÷进价】 【答案】40%典型例题四:信息与推断题1.观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 2.观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 3.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=( )A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C4.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C . 【答案】210典型例题五:比较大小10 -1 a b B A1. 31.0与1.02.331与213. 215--与-2 4. 2003-2002与2002-2001作业:设2的整数部分为a ,小数部分为b ,则1+2a b -2b =第三讲 平移、旋转与对称专题例题精讲1. 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD绕D 点顺时针方向旋转90后,B 点的坐标为( )A .(22)-,B .(41),C .(31), D .(40),随堂练习1下列四张扑克牌图案,属于中心对称的是( ).2.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个例题精讲2将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另 一条对角线对折,如图(七)所示。

实数3

实数3

【典型例题】【例1】 求值:(1)32的五次方根 (2)-32的五次方根 (3)16的四次方根(4)64的六次方根 (4)0.000064的六次方根 (6)32243-的五次方根 【分析】 运用乘方运算求方根的值是常用的方法,对于正数的偶次方根有两个,它们互为相反数要充分理解,求n 次方根的值必须考虑指数的奇、偶性,增强分类的意识,学会正确的语言表述是很重要的,给书写也带来简便.【解答】 (1)5232=∴32的五次方根5322==(2)()5232-=-∴-32的五次方根5322=-=-(3)()4216±=∴16的四次方根6642=±=±(4)()6264±= ∴64的六次方根6642=±=±(5)()60.20.000064±=∴0.000064的六次方根60.0000640.2=±=± (6)52323243⎛⎫-=- ⎪⎝⎭ ∴32243-的五次方根53222433=-=-【例2】 选择题:1.下列语句中,正确的是( )(A )正数a 的n 次方根记作n a(B )如果n 是偶数,当且仅当a 是非负实数时,则n a 有意义(C )零的n 次方根无意义(D )任何实数都能开方2.5x -在实数范围内能开偶次方根的条件是( )(A )x 为任意实数 (B )5x ≥ (C )5x ≤ (D )0x ≤【分析】理解立方根和开立方的概念【解答】1.(B )当n 是奇数时,正数a 的n 次方根记作“n a ”, 当n 是偶数时,正数a 的n 次方根记作“n a ±”,故(A )错.当a 为非负实数时,a 有偶次方根,所以n a (n 是偶数)有意义,故(B )对.零的n 次方为零,故(C )错.负数没有偶次方根,任何实数不一定都能开方,故(D )错.2.(C )由被开方数50x -≥解得5x ≤,故选(C ).【例3】求适合下列等式中的x .(1)3910x -= (2)4810x =【分析】理解开n 次方与n 次乘方互为逆运算的关系 【解答】(1)x 是910-的立方根,因为3391010--=(),所以310-是910-的立方根,因此310x -= ,即0.001x =.(2)由已知可知,x 是810的四次方根,由于248(10)10±=,所以210±是810的四次方根,因此210x =±,即100x =±.【基础训练】 1.132-的五次方根是( ) 2.81的四次方根是 ( ) 3. 423⎛⎫- ⎪⎝⎭的四次方根是( ) 4. 5(5)-的五次方根是( )5.如果(0,)n x a a n =≥是偶数,那么x =6.下列式子中,正确的是54444()11()11()(1)1()11A B C D ±=±=±-=---= 7.用符号表示下列各方根,并求出各方根的值. (1) 12-的三次方的三次方根 (2)164的六次方根 (3)—8平方的六次方根8.计算:43343(56)⋅【能力提高】1.下列各式不正确的是4343()82()(6)6()1255()()n n A B C D a a n -=--=--=-=是奇数 2. ()(0)x y zy z z x x y xyz xyz x y z+++++≠= 3.计算:20072007333(21)(421)-++4.已知n 是自然数, a 是实数且()n n nn a a =成立.试讨论n 及a 的取值范围.第3讲实数的运算(1)用数轴上的点表示实数【知识要点】知识点1 用数轴上的点表示无理数方法一:用画图的方法找到数轴上的一个点来表示它.例如:边长为1的正方形,对角线长为2(这在学习了直角三角形中勾股定理后很容易知道,现在暂不作介绍),我们可以在数轴上以一个单位长为边长作一个2-B O2正方形,以原点O为圆心,正方形对角线为半径作弧,与数轴正(2)半轴交于点A就表示无理数2,与数轴负半轴交于点B就表示图1 -.无理数2方法二:用无限不循环小数点的近似值来确定这个点的位置.例如:π可以精确到百分位的近似数3.14来确定数轴上表示π这个点的位置.π-01233.144x1知识点2 数轴上的点和实数成一一对应每一个有理数和无理数都可以用数轴上的一个点来表示,反过来数轴上的每一个点都可以用一个有理数或无理数表示.为有理数和无聊隶属统称为实数,因此,全体实数所对应的点布满了整个数轴,数轴上的点和实数成一一对应.知识点3 实数的相反数和绝对值一个实数在数轴上所对应的点到原点的距离,叫做这个数的绝对值,实数a的绝对值记作a∣∣ ,a当0a>时a=时a∣∣=0当0-当0aa<时绝对值相等,符号相反的两个数叫做互为相反数,零的相反数是零,非零实数a的相反数-.是a知识点4 两个实数大小的比较两个实数可以比较大小,其大小顺序的规定同有理数一样,负数小于零,零小于正数,两个正数,绝对值大的数较大;两个负数,绝对值大的反而小,从数轴上看,右边的点所表示的数总比左边的点索表示的数大.知识点5 同一数轴上,两点间的距离在数轴上,如果点A 、点B 索对应的数分别是a b 、,那么A B 、两点的距离AB a b ∣∣=∣-∣.方法与技能:当有理数系扩展到实数后,有理数的绝对值、相反数、大小比较法则都自然延伸到实数系.有关概念、性质仍然正确,特别是数形结合思想仍然是研究的重要方法.了解了数学系扩大的原则,大大的提高了学习的效率.【学习目标】1.会用数轴上的点表示实数;2.理解在实数范围内绝对值、相反数的概念,会比较实数的大小;【典型例题】【例1】写出下列各数的相反数与绝对值:0.5,12-,7-,0,5π-,37- 【分析】与有理数一样,实数(0)a a ≠的相反数是a -;实数a 的绝对值的为(0)a a ≥或(0)a a -<.【解答】 0.5的相反数是0.5-,绝对值是0.5;12-的相反数是21-,绝对值是21-;7-的相反数是7,绝对值是7;0的相反数是0,绝对值是0;5π-的相反数是5π,绝对值是5π; 37-的相反数是37--,绝对值是37-【例2】比较53-与13-的大小.【分析】 5 2.236,53 2.23630.764≈-≈-≈- 3 1.732,131 1.7320.732≈-≈-≈-∴可以先将无理数用近似的有限小数表示,转化为有理数后再进行比较.【解答】 53 2.23630.764-≈-≈- 131 1.7320.732-≈-≈-0.7640.732-<-5313∴-<-【例3】 如图2,在数轴上,如果点A 、点B 所对应的数分别为6和3-,求A B 、 两点间的距离.B A 3 1- 0 1 26 3 图2【解答】 6(3)6363AB ∣∣=∣--∣=∣+∣=+【注】 也可以这样计算: 3636)[(36)]36AB ∣∣=∣--∣=∣-(+∣=--+=+【例4】 已知a b c 、、在数轴上的位置如图3所示,则22()a a b a c b c -∣+∣+-+∣+∣的值等于( )(A )2c a - (B )2a b -(C )a - (D )bb a 0 c图 3【解答】 如图12-5所示,知b a c -<-<.22,,(),()a a a b a b a c c a b c b c ∴=-∣+∣=---=-∣+∣=-+∴原式a a b c a b c a =-+++---=-.选(C ).【例5】 当1x <-是,2(2)21x x x ---∣-∣=( ) (A )0 (B )44x - (C )44x - (D )44x +【解答】 21,20,(2)2,11,x x x x x x <-∴->-=-∣-∣=- ∴原式22(1)44x x x x =-+--=-,选(B ).。

第四讲__实数的完备性典型例题

第四讲__实数的完备性典型例题

第四讲 实数的完备性一、内容提要 1.上确界设E 为一实数集,β为一实数,如果 (1)E x ∈∀,有β≤x ;(2)0>∀ε,E x ∈∃0,使得εβ->0x . 则称β为集合E 的上确界,记为E sup =β. 2.下确界设E 为一实数集,α为一实数,如果 (1)E x ∈∀,有α≥x ;(2)0>∀ε,E x ∈∃0,使得εα+<0x .则称α为集合E 的下确界,记为E inf =α. 3.确界存在定理有上界的非空数集必有上确界,有下界的非空数集必有下确界. 4.闭区间套定理若闭区间列]},{[n n b a 具有如下性质: (1)嵌套性:⊂++],[11n n b a ],[n n b a ; (2)紧缩性:()0lim =-∞→n n n a b .则存在唯一的实数ξ,使得n n b a ≤≤ξ( ,2,1=n ). 5.Cauchy 收敛准则 数列{}n x 收敛N m n N >∀N ∈∃>∀⇔,,,0ε,有ε<-m n x x .6.聚点和聚点定理若S 是一实数集,则下列条件之间是两两等价: (1)ξ是S 的聚点;(2)若点ξ的任何ε邻域内都含有S 中异于ξ的点; (3)存在各项互异的收敛数列{}S x n ⊂,使ξ=∞→n n x lim .聚点定理:实轴上任一有界无限点列至少有一个聚点. 7.致密性定理有界数列必有收敛子列. 8.有限覆盖定理设H 是闭区间],[b a 上的(无限)开覆盖,则从H 中可选出有限个开区间来覆盖],[b a .9.实数完备性基本定理的等价性 (1)确界定理;(2)单调有界定理;(3)闭区间套定理;(4)有限覆盖定理;(5)聚点定理;(6)Cauchy 收敛准则,这六个基本定理是相互等价的,其中任何一个都可以作为实数完备性的定义.注1 在描述实数连续性的几个定理中,有限覆盖定理的形式很特殊,它着眼点是闭区间的整体,而其他几个等价定理着眼点是一点的局部,凡是证明的结论涉及闭区间的问题,可考虑使用有限覆盖定理,凡是证明的结论涉及一点的问题,可考虑使用其他的几个等价定理. 注2 有限覆盖定理将无限转化为有限,从而把函数)(x f 在闭区间],[b a 上的局部性拓广到闭区间],[b a 上的整体性. 二、典型例题。

中考典型例题精析实数的运算及大小比较

中考典型例题精析实数的运算及大小比较-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2中考典型例题精析二考点一 实数的大小比较例 1 (2015·潍坊)在|-2|, 20 ,2-1,2这四个数中,最大的数是( ) A .|-2| B .20C .2-1D. 2 考点二 实数非负性的应用例 2 (2015·绵阳)若a +b +5+||2a -b +1=0,则(b -a)2 015= ( ) A .-1 B .1 C .52 015 D .-52 015 考点三 实数的混合运算例 3 (2015·安顺)计算:⎝ ⎛⎭⎪⎫-12-2-(3.14-π)0+|1-2|-2sin 45°.基础巩固训练:1.在13,0,-1,2这四个实数中,最大的数是( ) A. 13 B .0 C .-1 D. 22.计算:3-2×(-1)=( ) A .5 B .1 C .-1 D .6 3.下面计算错误的是( )A .(-2 015)0=1 B.3-9=-3 C. ⎝ ⎛⎭⎪⎫12-1=2 D .(32)2=814.若(a -2)2+||b +3=0,则(a +b)2 016的值是( )A .1B .-1C .2 016D .-2 0165.若a =20,b =(-3)2,c =3-9,d =⎝ ⎛⎭⎪⎫12-1,则a ,b ,c ,d 按由小到大的顺序排列正确的是( )A .c <a <d <b B .b <d <a <c C .a <c <d <b D .b <c <a <d6.计算: 3-4 -⎝ ⎛⎭⎪⎫12-2= .7.实数m ,n 在数轴上的位置如图所示,则 |n -m|= . 8.计算:3-27-(-3)÷⎝ ⎛⎭⎪⎫-13×3= . 9.计算:(1)(1-2)0+(-1)2 016-3tan 30°+⎝ ⎛⎭⎪⎫13-2;(2) (-1)2 016+(1-π)0×3-27-⎝ ⎛⎭⎪⎫17-1+|-2|.考点训练一、选择题1.(2015·山西)计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-42.杨梅开始采摘了!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A .19.7千克B .19.9千克C .20.1千克D .20.3千克 3.在实数-1,0,12,-3,2 0160中,最小的数是( ) A .-3 B .-1 C. 12 D .0 4.(2015·衡阳)计算()-10+||-2的结果是( ) A .-3 B .1 C .-1 D .35.(2015·北海)计算2-1+12的结果是( ) A .0 B .1 C .2 D .212 6.下列计算错误的是( )A .4÷(-2)=-2B .4-5=-1C .(-2)-2=4D .2 0140=17.(2015·常州)已知a =22,b =33,c =55,则下列大小关系正确的是( ) A .a >b >c B .c >b >a C .b >a >c D .a >c >b8.(2015·六盘水)下列运算结果正确的是( )A .-87×(-83)=7 221 B .-2.68-7.42=-10 C .3.77-7.11=-4.66 D.-101102<-10210339.计算9-2 0160×⎝ ⎛⎭⎪⎫12-1的结果为( )A .4 B .1 C. 12 D .010.已知实数x ,y 满足x -1+|y +3|=0,则 x +y 的值为( ) A .-2 B .2 C .4 D .-411.(2015·成都)实数a ,b 在数轴上对应的点的位置如图所示,计算|a -b|的结果为( )A .a +bB .a -bC .b -aD .-a -b12.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac>bcB .|a -b|=a -bC .-a<-b<cD .-a -c>-b -c 二、填空题(每小题3分,共27分) 13.(2015·玉林)计算:3-(-1)= . 14.(2015·德州)计算:2-2+(3)0= .15.(2015·泉州)比较大小:4 15(用“>”或“<”号填空). 16.(2015·襄阳)计算:2-1-318= .17.(2015·烟台)如图,数轴上点A ,B 所表示的两个数的和的绝对值是1.18.计算:-22-(-2)2=19.(2015·百色)实数28-2的整数部分是 .20.(2015·攀枝花)计算:9+||-4+(-1)0-⎝ ⎛⎭⎪⎫12-1= .21.(2015·荆州)计算:9-2-1+38-|-2|+⎝ ⎛⎭⎪⎫-130= .三、解答题22. (1)(2015·绍兴)计算:2cos 45°-(π+1)0+14+⎝ ⎛⎭⎪⎫12-1.(2)(2015·菏泽)计算:(-1)2 015+sin 30°+(π-3.14)0+⎝ ⎛⎭⎪⎫12-1.23.(每小题4分,共16分)(1)计算: 2 +(π-3)0+⎝ ⎛⎭⎪⎫12-1-2cos 45°.(2)计算:2tan 30°- 1- 3 +(2 014-2)0+13.(3)(2015·武威)计算:(π-5)0+4+(-1)2 015- 3tan 60°.(4)(2015·梅州)计算:8+ 22-3 -⎝ ⎛⎭⎪⎫13-1- (2 015+2)0.24.(1)(4分)计算:(-3)2-⎝ ⎛⎭⎪⎫14-1+(π-310)0-(-1)10.(2)(4分)计算:(3-2)0+⎝ ⎛⎭⎪⎫13-1+4cos 30°-|3-27|.(3)(5分)计算:12-⎝ ⎛⎭⎪⎫12-3+⎝ ⎛⎭⎪⎫cos 68°+5π0+33-8sin 60° .。

实数典型例题和解析

实数典型例题和解析
实数是数学中非常重要的概念,涉及到实数的典型例题和解析
有很多种,我会从不同的角度给出一些例题和解析。

1. 实数的基本性质:
例题,证明实数a和b满足交换律,即a + b = b + a。

解析,根据实数加法的定义,a + b = b + a恒成立。

因为实
数加法满足交换律,所以这个命题成立。

2. 实数的大小比较:
例题,已知a = 3和b = 5,求证a < b。

解析,根据实数大小比较的定义,当a和b是实数且a < b时,必有b a > 0。

所以,5 3 = 2 > 0,因此a < b成立。

3. 实数的运算性质:
例题,计算(√2 + 3)(√2 3)的值。

解析,利用实数的乘法分配律,展开式子得到(√2 + 3)(√2 3) = (√2)^2 3^2 = 2 9 = -7。

4. 实数的绝对值:
例题,求实数-5的绝对值。

解析,实数-5的绝对值记作|-5|,根据绝对值的定义,当x <
0时,|x| = -x。

所以|-5| = -(-5) = 5。

5. 实数的分段函数:
例题,设f(x) = |x 2|,求f(x)的图像。

解析,根据绝对值函数的图像特点,当x < 2时,f(x) = -(x 2),当x ≥ 2时,f(x) = x 2。

因此,f(x)的图像在x = 2处有转
折点。

以上是一些关于实数的典型例题和解析,涉及到实数的基本性
质、大小比较、运算性质、绝对值和分段函数等方面。

希望这些例题和解析能够帮助你更好地理解实数的概念和性质。

人教版七年级数学下册15.实数全章复习与巩固(基础)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】实数全章复习与巩固(基础)责编:康红梅【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】【:389318 实数复习,知识要点】 类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

实数典型例题(含答案)


1 的根号外的 a 移入根号内得( ) a A、 a B、 a C、 a D、 a
(2)已知 a<b,化简二次根式 A、 a ab
a
3
b 正确的结果是(
C、 a ab

B、 a ab
D、 a ab
8、已知实数 、 、 在数轴上的位置如图所示:
化简 答案: 9、已知: 答案:a=7, b=21 10、判断下列说法是否正确 (1 ) =0,求实数 a, b 的值。
(1+
2 )2.善于思考的小明进行了以下探索:设 a+b 2 =(m+n 2 )2(其中 a、b、m、n 均为整数),则有
a+b 2 =
请你仿照小明的方法探索并解决下列问题:
m
2
2 n 2mn 2 。∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似 a+b 2 的式子化为平方式的方法.
(2)把下列无限循环小数化成分数:① 答案:解:由
的整数部分 a=5,
(2)解:(1) 设 x=



②-①得 9x=6

.
(2) 设
① (3) 设


②-①,得 99x=23∴ ② ②-①,得 999x=107,∴
. .①Βιβλιοθήκη 则12、细心观察图表,认真分析各式,然后解答问题。
1 ; 2 2 ( 2 )2+1=3, S2= ; 2 3 ( 3 )2+1=4, S3= ; …… 2
第 3 页 共 3 页
2
(1)当 a、b、m、n 均为正整数时,若 a b 3 b=_______;
(m n 3 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数典型例题及练习习题
一.有关概念的识别
1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()
A、1
B、2
C、3
D、4
解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数
故选C
举一反三:
【变式1】下列说法中正确的是()
A、的平方根是±3
B、1的立方根是±1
C、=±1
D、是5的平方根的相反数
【答案】本题主要考察平方根、算术平方根、立方根的概念,
∵=9,9的平方根是±3,∴A正确.
∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()
A、1
B、1.4
C、
D、
【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.
【变式3】
【答案】∵π= 3.1415…,∴9<3π<10
因此3π-9>0,3π-10<0

类型二.计算类型题
2.设,则下列结论正确的是()
A. B.
C. D.
解析:(估算)因为,所以选B
举一反三:
【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)
___________,___________,___________.
【答案】1);.2)-3. 3),,
【变式2】求下列各式中的
(1)(2)(3)
【答案】(1)(2)x=4或x=-2(3)x=-
类型三.数形结合
3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______
解析:在数轴上找到A、B两点,
举一反三:
【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C
表示的数是()
A.-1 B.1-C.2-D.-2
【答案】选C
[变式2]已知实数、、在数轴上的位置如图所示:
化简
【答案】:
类型四.实数绝对值的应用
4.化简下列各式:
(1) |-1.4| (2) |π-3.142|
(3) |-| (4) |x-|x-3|| (x≤3)
(5) |x2+6x+10|
分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。

解:(1) ∵=1.414…<1.4
∴|-1.4|=1.4-
(2) ∵π=3.14159…<3.142
∴|π-3.142|=3.142-π
(3) ∵<, ∴|-|=-
(4) ∵x≤3, ∴x-3≤0,
∴|x-|x-3||=|x-(3-x)|
=|2x-3| =
说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。

(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|
∵(x+3)2≥0, ∴(x+3)2+1>0
∴|x2+6x+10|= x2+6x+10
举一反三:
【变式1】化简:
【答案】=+-=
类型五.实数非负性的应用
5.已知:=0,求实数a, b的值。

分析:已知等式左边分母不能为0,只能有>0,则要求a+7>0,分子+|a2-49|=0,
由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a, b的值。

解:由题意得
由(2)得a2=49 ∴a=±7
由(3)得a>-7,∴a=-7不合题意舍去。

∴只取a=7
把a=7代入(1)得b=3a=21
∴a=7, b=21为所求。

举一反三:
【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。

解:∵(x-6)2++|y+2z|=0
且(x-6)2≥0, ≥0, |y+2z|≥0,
几个非负数的和等于零,则必有每个加数都为0。

∴解这个方程组得
∴(x-y)3-z3=(6-2)3-(-1)3=64+1=65
【变式2】已知那么a+b-c的值为___________
【答案】初中阶段的三个非负数:,
a=2,b=-5,c=-1; a+b-c=-2
类型六.实数应用题
6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。

解:设新正方形边长为xcm,
根据题意得x2=112+13×8
∴x2=225
∴x=±15
∵边长为正,∴x=-15不合题意舍去,
∴只取x=15(cm)
答:新的正方形边长应取15cm。

举一反三:
【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。

(4个长方形拼图时不重叠)
(1)计算中间的小正方形的面积,聪明的你能发现什么?
(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积
多24cm2,求中间小正方形的边长.
解析:(1)如图,中间小正方形的边长是:
,所以面积为=
大正方形的面积=,
一个长方形的面积=。

所以,
答:中间的小正方形的面积,
发现的规律是:(或)
(2) 大正方形的边长:,小正方形的边长:
,即,
又大正方形的面积比小正方形的面积多24 cm2
所以有,
化简得:
将代入,得:
cm
类答:中间小正方形的边长2.5 cm。

型七.易错题
7.判断下列说法是否正确
(1)的算术平方根是-3;(2)的平方根是±15.
(3)当x=0或2时,(4)是分数
解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故
(2)表示225的算术平方根,即=15.实际上,本题是求15的平方根,故的平方根是.
(3)注意到,当x=0时,=,显然此式无意义,
发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,x=0.
(4)错在对实数的概念理解不清. 形如分数,但不是分数,它是无理数.
类型八.引申提高
8.(1)已知的整数部分为a,小数部分为b,求a2-b2的值.
(2)把下列无限循环小数化成分数:①②③
(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.解:由得
的整数部分a=5, 的小数部分,

(2)解:(1) 设x=①则②②-①得9x=6
∴.
(2) 设①则②②-①,得99x=23
∴.
(3) 设①则②②-①,得999x=107,
∴.
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

相关文档
最新文档