黄冈中学2019年自主招生(理科实验班)预录考试数学模拟试题A(无答案)

合集下载

湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题

湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题

湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题一、选择题 本大题共12道小题。

1.设集合{}2|20A x x x =--<,{}2|log 0B x x =<,则A ∪B =( )A. (-1,2)B. (0,1)C. (-∞,2)D. (-1,1)答案及解析:1.A 【分析】分别求出集合A 和B ,再求并集即可.【详解】解不等式220x x --<得12x -<<,即()1,2A =-; 由20log x <得01x <<,即()B 0,1=; 所以()A B 1,2⋃=-. 故选A【点睛】本题主要考查集合的并集运算,熟记概念即可求解,属于基础题型. 2..“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.答案第2页,总22页……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………根据该走势图,下列结论正确的是( )A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化B. 这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值答案及解析:2.D选项A 错,并无周期变化,选项B 错,并不是不断减弱,中间有增强。

C 选项错,10月的波动大小11月分,所以方差要大。

D 选项对,由图可知,12月起到1月份有下降的趋势,所以会比1月份。

2019年黄冈中学高考数学模拟试题六份(含答案)

2019年黄冈中学高考数学模拟试题六份(含答案)

仿真模拟训练(一)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若纯虚数z 满足(1+i )z =1-a i ,则实数a 等于( )A .0B .-1或1C .1D .-12.[2018·重庆西南附属中学月考]设曲线y =x 2及直线y =1所围成的封闭图形为区域D ,不等式组⎩⎪⎨⎪⎧-1≤x ≤1,0≤y ≤1所确定的区域为E ,在区域E 内随机取一点,则该点恰好在区域D 内的概率为( )A .14B .13C .23D .343.[2018·华中师范大学附属中学模拟]在高校自主招生中,某中学获得6个推荐名额,其中中南大学2名,湖南大学2名,湖南师范大学2名,并且湖南大学和中南大学都要求必须有男生参加,学校通过选拔定下3男3女共6个推荐对象,则不同的推荐方法共有( )A .54B .45C .24D .724.[2018·安徽省皖江八校联考]已知双曲线x 2a 2-y 2b 2=1(a>0,b>0),四点P 1(4,2),P 2(2,0),P 3(-4,3),P 4(4,3)中恰有三点在双曲线上,则该双曲线的离心率为( )A .52B .52C .72D .725.[2018·陕西吴起高级中学期中考试]某空间几何体的三视图如图所示,则该几何体的体积为( )A .73B .83C .8-π3D .7-π36.[2018·保定联考]设有下面四个命题:P 1:若x>1,则0.3x >0.3;P 2:若x =log 23,则⎝ ⎛⎭⎪⎫12x +1=16; P 3:若sin x>33,则cos 2x<13;P 4:若f(x)=tan πx 3,则f(x)=f(x +3).其中真命题的个数为( )A .1B .2C .3D .47.若函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx -π3(0<ω<10)的图象与g(x)=cos (x +φ)(0<φ<3)的图象都关于直线x =-π12对称,则ω与φ的值分别为( )A .8,7π12B .2,7π12C .8,π12D .2,π128.[2018·天津一中、益中学校月考]已知f(x)是定义在区间[-1,1]上的奇函数,当x<0时,f(x)=x(x -1).则关于m 的不等式f(1-m)+f(1-m 2)<0的解集为( )A .[0,1)B .(-2,1)C .(-2,2)D .[0,2)9.[2018·重庆西南大学附中月考]某程序框图如图所示,该程序运行后输出的值是4 0352 018,则( )A .a =2 016B .a =2 017C .a =2 018D .a =2 01910.[2018·山东烟台月考]某传媒大学的甲乙丙丁四位学生分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且选修课程互不相同.下面是关于他们选课的一些信息:①甲和丙均不选播音主持,也不选广播电视;②乙不选广播电视,也不选公共演讲;③如果甲不选公共演讲,那么丁就不选广播电视.若这些信息都是正确的,依据以上信息推断丙同学选修的课程是( )A .影视配音B .广播电视C .公共演讲D .播音主持11.[2018·安徽宿州模拟]在等差数列{a n }中,a 7a 6<-1,若它的前n 项和S n 有最大值,则当S n >0时,n 的最大值为( )A .11B .12C .13D .1412.设函数f(x)=sin x sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4,g(x)=x -1a e 2x ,若∀x 1∈R ,∃x 2∈(0,+∞),f (x 1)<g (x 2),则正数a 的取值范围为( )A .(0,e)B .(e ,+∞)C .(0,e -3)D .(e -3,+∞)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上.13.[2018·云南昆明第八次月考]已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±33x ,若抛物线y 2=8x 的焦点与双曲线C 的焦点重合,则双曲线C 的方程为________.14.[2018·河北武邑中学第六次模拟]设平面向量m 与向量n 互相垂直,且m -2n =(11,-2),若|m |=5,则|n |=________.15.[2018·湖南益阳月考]分别在曲线y =ln x 与直线y =2x +6上各取一点M 与N ,则MN 的最小值为________.16.[2018·河南南阳一中月考]在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________________________________________________________________________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本题满分12分)[2018·湖南郴州第六次月考]已知各项均为正数的等比数列{a n }的前n 项和为S n ,a 1=14,a 3+a 5=564.(1)求数列{a n }的通项公式;(2)设b n =1(2n +1-1)·S n ,求数列{b n }的前n 项和T n .18.(本题满分12分)[2018·贵州凯里一中月考]第三届移动互联创新大赛,于2017年3月~10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一种子选手甲.再从全校征集出3位志愿者分别与甲进行一场技术对抗赛,根据以往经验,甲与这三位志愿者进行比赛一场获胜的概率分别为34,35,23,且各场输赢互不影响.(1)求甲恰好获胜两场的概率;(2)求甲获胜场数的分布列与数学期望.19.(本题满分12分)[2018·河北武邑中学模拟]如图,已知平面ADC ∥平面A 1B 1C 1,B 为线段AD 的中点,△ABC ≌△A 1B 1C 1,四边形ABB 1A 1为边长为1的正方形,平面AA 1C 1C ⊥平面ADB 1A 1,A 1C 1=A 1A ,∠C 1A 1A =π3,M 为棱A 1C 1的中点.(1)若N 为线DC 1上的点,且直线MN ∥平面ADB 1A 1,试确定点N 的位置;(2)求平面MAD 与平面CC 1D 所成的锐二面角的余弦值.20.(本题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的四个顶点围成的菱形的面积为43,点M 与点F 分别为椭圆C 的上顶点与左焦点,且△MOF 的面积为32(点O 为坐标原点).(1)求C 的方程; (2)直线l 过F 且与椭圆C 交于P ,Q 两点,且△POQ 的面积为335,求l 的斜率.21.(本题满分12分)[2018·益阳调研]已知函数f (x )=(2e +1)ln x -3a 2x +1,a ∈R ,(e 为自然对数的底数).(1)讨论函数f (x )的单调区间;(2)当a =23时,x e x +m ≥f (x )恒成立,求实数m 的最小值.请考生在22,23两题中任选一题作答.22.【选修4-4 坐标系与参数方程】(本题满分10分)[2018·六安一中月考]在平面直角坐标系xOy 中,C 1:⎩⎪⎨⎪⎧ x =t y =k (t -1)(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 2:ρ2+10ρcos θ-6ρsin θ+33=0.(1)求C 1的普通方程及C 2的直角坐标方程;(2)若P ,Q 分别为C 1,C 2上的动点,且|PQ |的最小值为2,求k 的值.23.【选修4-5 不等式选讲】(本题满分10分)已知函数f (x )=|3x -2|.(1)若不等式f ⎝ ⎛⎭⎪⎫x +23≥|t -1|的解集为⎝ ⎛⎦⎥⎤-∞,-13∪⎣⎢⎡⎭⎪⎫13,+∞,求实数t 的值; (2)若不等式f (x )≤|3x +1|+3y +m ·3-y 对任意x ,y 恒成立,求实数m 的取值范围.仿真模拟训练(二)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·四川双流中学模拟]若a ∈R ,则“复数z =5-a i i 在复平面内对应的点在第三象限”是“a >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知R 为实数集,A ={x |y =lg(x +3)},B ={x |x ≥2},则∁R (A ∪B )=( )A .{x |x >-3}B .{x |x <-3}C .{x |2≤x <3}D .{x |x ≤-3}3.[2018·武威六中诊断考试]设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( )A .0B .1C .2D .34.[2018·安徽六安月考]已知等差数列{a n }的前n 项和为S n ,若2a 11=a 9+7,则S 25=( )A.1452 B .145 C.1752 D .1755.[2018·厦门外国语学校适应考试]我国成功申办2022年第24届冬季奥林匹克运动会,届时冬奥会的高山速降运动将给我们以速度与激情的完美展现,某选手的速度ξ服从正态分析(100,σ2),(σ>0),若ξ在(80,120)内的概率为0.7,则他速度超过120的概率为( )A .0.05B .0.1C .0.15D .0.26.[2018·哈尔滨市第六中学模拟]已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤3y ≥x x ≥1,那么x +3y 的最大值是( ) A .4 B .6 C .7 D .87.[2018·黄冈中学模拟考试]公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值 3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正n 边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出n 的值分别为( )(参考数据:sin20°≈0.342 0,sin ⎝ ⎛⎭⎪⎫203°≈0.116 1)A .S =12×n ×sin 180°n ,24B .S =12×n ×sin 180°n ,18C .S =12×n ×sin 360°n ,54D .S =12×n ×sin 360°n ,188.[2018·江西省重点中学协作体联考]函数f (x )=ln|x -1|-ln|x +1|的大致图象为( )9.已知点P 在双曲线x 2a 2-y 2b 2=1(a >0,b >0)上,PF ⊥x 轴(其中F 为双曲线的右焦点),点P 到该双曲线的两条渐近线的距离之比为13,则该双曲线的离心率为( )A.233B. 3C.255D. 510.[2018·福建南平月考]已知顶点在同一球面O 上的某三棱锥三视图中的正视图,俯视图如图所示.若球O 的体积为43π,则图中的a 的值是( )A.352 B .2 2 C.354 D .2 3 11.[2018·泉州质量检查]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,F 2也是抛物线E :y 2=2px (p >0)的焦点,点A 为C 与E 的一个交点,且直线AF 1的倾斜角为45°,则C 的离心率为( ) A.5-12 B.2-1 C .3- 5 D.2+112.已知定义域为正整数集的函数f (x )满足f (x +y )=f (x )+f (y )+1,f (1)=1,则数列{(-1)n f (n )f (n +1)}(n ∈N *)的前99项和为( )A .-19 799B .-19 797C .-19 795D .-19 793二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上.13.若(1+2x 2)⎝ ⎛⎭⎪⎫1+1x n 的展开式中所有项的系数和为96,则展开式中含1x 2项的系数是________.14.已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=1,则|a-2b |=________.15.[2018·南山中学月考]已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围为________.16.[2018·天津一中月考]已知点P (x ,y )在椭圆x 23+2y 23=1上运动,则1x 2+21+y 2最小值是______. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本题满分12分)[2018·广西南宁第二中学6月月考]如图,在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且3b sin A =c ,D 为AC 边上一点.(1)若D 是AC 的中点,且A =π4,BD =26,求△ABC 的最短边的边长;(2)若c =2b =4,S △BCD =53,求DC 的长.18.(本题满分12分)[2018·东北三省四市模拟]直三棱柱ABC -A 1B 1C 1中,AC =AA 1=4,AC ⊥BC .(1)证明:AC 1⊥A 1B ;(2)当BC 的长为多少时,直线A 1B 与平面ABC 1所成角的正弦值为13.19.(本题满分12分)某菜园要将一批蔬菜用汽车从所在城市甲运至哈尔滨,已知从城市甲到哈尔滨只有两条公路,且运费由菜园承担.若菜园恰能在约定日期(×月×日)将蔬菜送到,则哈尔滨销售商一次性支付给菜园20万元;若在约定日期前送到,每提前一天销售商将多支付给菜园1万元;若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:(1)记汽车走公路1时菜园获得的毛利润为ξ(单位:万元),求ξ的分布列和数学期望Eξ;(2)假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?20.(本题满分12分)设离心率为22的椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,点P是E上一点,PF1⊥PF2,△PF1F2内切圆的半径为2-1.(1)求E的方程;(2)矩形ABCD的两顶点C、D在直线y=x+2上,A,B在椭圆E上,若矩形ABCD的周长为1123,求直线AB的方程.21.(本题满分12分)已知函数f (x )=a ln x +12x 2-ax (a 为常数)有两个极值点.(1)求实数a 的取值范围;(2)设f (x )的两个极值点分别为x 1,x 2,若不等式f (x 1)+f (x 2)<λ(x 1+x 2)恒成立,求λ的最小值.请考生在22,23两题中任选一题作答. 22.【选修4-4 坐标系与参数方程】(本题满分10分)[2018·四川广元适应性考试]已知平面直角坐标系中,曲线C :x 2+y 2-6x -8y =0,直线l 1:x -3y =0,直线l 2:3x -y =0,以坐标原点O 为极点,x 轴正半轴为极轴,建立坐标系.(1)写出曲线C 的参数方程以及直线l 1,l 2的极坐标方程; (2)若直线l 1与曲线C 分别交于O ,A 两点,直线l 2与曲线C 分别交于O ,B 两点,求△AOB 的面积.23.【选修4-5 不等式选讲】(本题满分10分)[2018·安徽合肥一中最后Ⅰ卷]已知函数f (x )=|x -a |+|x +2|.(1)当a =1时,解不等式f (x )≥4;(2)∃x 0∈R ,f (x 0)≤|2a +1|,求a 的取值范围.仿真模拟训练(三)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |2x ≥4},集合B ={x |y =ln(x -1)},则A ∩B =( )A .[1,2)B .(1,2]C .[2,+∞)D .[1,+∞)2.下列函数中,既是偶函数又在区间(0,1)内单调递减的是( )A .y =x 2B .y =cos xC .y =2xD .y =|ln x |3.设S n 是等差数列{a n }的前n 项和,若a 3+a 11=18,S 3=-3,那么a 5等于( )A .4B .5C .9D .184.已知OA →=(cos15°,sin15°),OB →=(cos75°,sin75°),则|AB →|=( )A .2 B. 3 C. 2 D .15.过原点且倾斜角为π3的直线被圆x 2+y 2-4y =0所截得的弦长为( )A. 3 B .2 C. 6 D .2 36.设l ,m 是两条不同的直线,α,β是两个不同平面,给出下列条件,其中能够推出l ∥m 的是( )A .l ∥α,m ⊥β,α⊥βB .l ⊥α,m ⊥β,α∥βC .l ∥α,m ∥β,α∥βD .l ∥α,m ∥β,α⊥β7.函数y =log a (x -3)+1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,其中m >0,n >0,则mn 的最大值为( )A.116B.18C.14D.12 8.设S n 是数列{a n }的前n 项和,若S n =2a n -3,则S n =( )A .2n +1B .2n +1-1 C .3·2n -3 D .3·2n -19.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该几何体的体积为 ( )A .4B .2 C.43 D.2310.千年潮未落,风起再扬帆,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦奠定坚实基础,哈三中积根据上表可得回归方程y =b x +a 中的b 为1.35,我校2018届同学在学科竞赛中获省级一等奖及以上学生人数为63人,据此模型预报我校今年被清华、北大等世界名校录取的学生人数为( )A .111B .117C .118D .12311.已知F 1,F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,点P 为双曲线C 右支上一点,直线PF 1与圆x 2+y 2=a 2相切,且|PF 2|=|F 1F 2|,则双曲线C 的离心率为( )A.103B.43C.53 D .2 12.设函数f (x )=ln x +ax 2+bx ,若x =1是函数f (x )的极大值点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,12 B .(-∞,1) C .[1,+∞) D.⎣⎢⎡⎭⎪⎫12,+∞ 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上.13.已知正方形ABCD 边长为2,M 是CD 的中点,则AM →·BD →=________.14.若实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x +y ≥1,y ≥x -1,则2x +y 的最大值为________.15.直线l 与抛物线y 2=4x 相交于不同两点A ,B ,若M (x 0,4)是AB 中点,则直线l 的斜率k =________.16.钝角△ABC 中,若A =3π4,|BC |=1,则22|AB |+3|AC |的最大值为________________________________________________________________________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本大题满分12分)已知函数f (x )=3sin 2x +sin x cos x .(1)当x ∈⎣⎢⎡⎦⎥⎤0,π3时,求f (x )的值域; (2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,f ⎝ ⎛⎭⎪⎫A 2=32,a =4,b +c =5,求△ABC 的面积.18.(本大题满分12分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)外体育达标”.(1)请根据上述表格中的统计数据填写下面的2×2列联表:(2)的前提下认为“课外体育达标”与性别有关?参考格式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d19.(本大题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =120°且AC =BC =AA 1=2,E 是棱CC 1上的动点,F 是AB 的中点.(1)当E 是CC 1中点时,求证:CF ∥平面AEB 1; (2)在棱CC 1上是否存在点E ,使得平面AEB 1与平面ABC 所成锐二面角为π6,若存在,求CE 的长,若不存在,请说明理由.20.(本大题满分12分)已知F 是椭圆x 26+y 22=1的右焦点,过F 的直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点.(1)若x 1+x 2=3,求AB 弦长;(2)O 为坐标原点,∠AOB =θ,满足3OA →·OB →tan θ=46,求直线l 的方程.21.(本大题满分12分)已知函数f (x )=ln(ax +2)+21+x.(x ≥0).(1)当a =2时,求f (x )的最小值;(2)若f (x )≥2ln2+1恒成立,求实数a 的取值范围.请考生在22,23两题中任选一题作答. 22.【选修4-4 坐标系与参数方程】(本题满分10分)在极坐标系中,曲线C 1的方程为ρ2=31+2sin 2θ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 2的方程为⎩⎨⎧x =2+32t y =12t(t 为参数).(1)求曲线C 1的参数方程和曲线C 2的普通方程; (2)求曲线C 1上的点到曲线C 2的距离的最大值. 23.【选修4-5 不等式选讲】(本题满分10分)已知函数f (x )=2|x -a |-|x +2|.(1)当a =1时,求不等式f (x )≥0的解集;(2)当a =2时,函数f (x )的最小值为t ,1m +14n =-t (m >0,n >0),求m +n 的最小值.仿真模拟训练(四)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足(i +1)z =-2,则在复平面内,z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.已知集合A ={x |x 2-16≤0},B ={x |lg|x -2|>0},则A ∩B =( )A .[-4,1)∪(3,4]B .[-4,-3)∪(-1,4]C .(-4,1)∪(3,4)D .(-4,-3)∪(-1,4)3.下列函数中,图象是轴对称图形且在区间(0,+∞)上单调递减的是( )A .y =1x B .y =-x 2+1 C .y =2x D .y =log 2|x |4.已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4).现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )附:若X 服从正态分布N (μ,σ2),则P (μ-σ<X <μ+σ)≈0.682 7,P (μ-2σ<X <μ+2σ)≈0.954 5.A .3 413件B .4 772件C .6 826件D .8 186件 5.已知△ABC 与△BCD 均为正三角形,且AB =4.若平面ABC ⊥平面BCD ,且异面直线AB 和CD 所成的角为θ,则cos θ=( )A .-154 B.154 C .-14 D.146.如图,在△ABC 中,N 为线段AC 上靠近点A 的三等分点,点P 在线段BN 上且AP →=⎝ ⎛⎭⎪⎫m +211AB →+211BC →,则实数m 的值为( )A .1 B.13 C.911 D.5117.已知不等式ax -2by ≤2在平面区域{(x ,y )||x |≤1且|y |≤1}上恒成立,若a +b 的最大值和最小值分别为M 和m ,则Mm 的值为( )A .4B .2C .-4D .-28.刘徽《九章算术注》记载:“邪解立方,得两堑堵.邪解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意即把一长方体沿对角面一分为二,这相同的两块叫堑堵,沿堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为( )A.3πB.32π C .3π D .4π 9.已知函数f (x )=sin ωx的图象关于点⎝ ⎛⎭⎪⎫2π3,0对称,且f (x )在⎣⎢⎡⎦⎥⎤0,π4上为增函数,则ω=( )A.32 B .3 C.92 D .610.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)11.在平面直角坐标系xOy 中,抛物线C :y 2=2px (p >0)的焦点为F ,准线为l .过F 的直线交C 于A ,B 两点,交l 于点E ,直线AO 交l 于点D .若|BE |=2|BF |,且|AF |=3,则|BD |=( )A .1B .3C .3或9D .1或912.若关于x 的方程(ln x -ax )ln x =x 2存在三个不等实根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,1e -e B.⎝ ⎛⎭⎪⎫1e 2-1e ,0 C.⎝ ⎛⎭⎪⎫-∞,1e 2-1e D.⎝ ⎛⎭⎪⎫1e -e ,0 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上.13.在⎝ ⎛⎭⎪⎫x +4x -45的展开式中,x 3的系数是________.14.更相减损术是出自《九章算术》的一种算法.如图所示的程序框图是依据更相减损术写出的,若输入a =91,b =39,则输出的a 值为________.15.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥,已知同底的两个正四棱锥内接于同一个球,它们的底面边长为a ,球的半径为R ,设两个正四棱锥的侧面与底面所成的角分别为α,β,则tan(α+β)=________.16.在数列{a n }中,a 1=0,且对任意k ∈N *,a 2k -1,a 2k ,a 2k+1成等差数列,其公差为2k ,则a n =________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本大题满分12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a cos C sin B =b sin B +ccos C .(1)求sin(A +B )+sin A cos A +cos(A -B )的最大值;(2)若b =2,当△ABC 的面积最大时,求△ABC 的周长.18.(本大题满分12分)某学校八年级共有学生400人,现对该校八年级学生随机抽取50名进行实践操作能力测试,实践操作能力测试结果分为四个等级水平,一、二等级水平的学生实践操作能力较弱,三、四等级水平的学生实践操作能力较强,测试(1)有95%的把握认为学生实践操作能力强弱与性别有关?(2)能力测试,记抽到水平一的男生的人数为ξ,求ξ的分布列和数学期望.参考公式:K2=,其中n=a+b+c(a+b)(c+d)(a+c)(b+d)+d.19.(本大题满分12分)如图,在正棱锥P-ABC中,平面P AB⊥平面ABC,AB=6,BC=23,AC=26,D,E分别为线段AB,BC上的点,且AD=2DB,CE=2EB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若直线P A与平面ABC所成的角为π4,求平面P AC与平面PDE所成的锐二面角.20.(本大题满分12分)已知直线l过抛物线C:x2=2py(p>0)的焦点,且垂直于抛物线的对称轴,l与抛物线两交点间的距离为2.(1)求抛物线C 的方程;(2)若点P (2,2),过点(-2,4)的直线与抛物线C 相交于A ,B 两点,设直线P A 与PB 的斜率分别为k 1和k 2,求证:k 1k 2为定值,并求出此定值.21.(本大题满分12分)已知函数f (x )=ln(ax )+bx 在点(1,f (1))处的切线是y =0.(1)求函数f (x )的极值;(2)若mx 2e x ≥f (x )+1-e e x (m <0)恒成立,求实数m 的取值范围(e 为自然对数的底数).请考生在22,23两题中任选一题作答. 22.【选修4-4 坐标系与参数方程】(本题满分10分)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =2sin θ(θ为参数),直线l的参数方程为⎩⎪⎨⎪⎧x =t +3,y =2t -23(t 为参数),直线l 与曲线C 交于A,B两点.(1)求|AB|的值;→的值.(2)若F为曲线C的左焦点,求F A→·FB23.【选修4-5不等式选讲】(本题满分10分)已知函数f(x)=x2+2,g(x)=|x-a|-|x-1|,a∈R.(1)若a=4,求不等式f(x)>g(x)的解集;(2)若对任意x1,x2∈R,不等式f(x1)≥g(x2)恒成立,求实数a的取值范围.仿真模拟训练(五)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|y=log2(2-x)},B={x|x2-3x+2<0},则∁AB=()A.(-∞,1) B.(-∞,1]C.(2,+∞) D.[2,+∞)2.在复平面内,复数2-3i3+2i+z对应的点的坐标为(2,-2),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知△ABC中,sin A+2sin B cos C=0,则tan A的最大值是()A.33 B.233 C. 3 D.4334.设A={(x,y)|0<x<m,0<y<1},S为(e+1)n的展开式的第一项(e为自然对数的底数),m=nS,若任取(a,b)∈A,则满足ab>1的概率是()A.2e B.2e C.e-2e D.e-1e5.函数y=2|x|sin 2x的图象可能是()ABCD6.已知一个简单几何体的三视图如图所示,若该几何体的体积为24π+48,则该几何体的表面积为( )A .24π+48B .24π+90+641C .48π+48D .24π+66+6417.已知a =17117,b =log 1617,c =log 1716,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a8.执行如下程序框图,则输出结果为( )A .20200B .-5268.5C .5050D .-51519.设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( )A.12B.23C.13D.1410.设函数f (x )为定义域为R 的奇函数,且f (x )=f (2-x ),当x ∈[0,1]时,f (x )=sin x ,则函数g (x )=|cos(πx )|-f (x )在区间⎣⎢⎡⎦⎥⎤-52,92上的所有零点的和为( ) A .6 B .7 C. 3 D .1411.已知函数f (x )=22019x+1+sin x ,其中f ′(x )为函数f (x )的导数,求f (2018)+f (-2018)+f ′(2019)+f ′(-2019)=( )A .2B .2019C .2018D .012.已知直线l :y =ax +1-a (a ∈R ),若存在实数a 使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a |,则称此曲线为直线l 的“绝对曲线”.下面给出的四条曲线方程:①y =-2|x -1|;②(x -1)2+(y -1)2=1;③x 2+3y 2=4;④y 2=4x .其中直线l 的“绝对曲线”的条数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上.13.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y -2≥0,2x +y -4≤0,y ≤x +1,且m =x +3y +4x +1,则实数m 的取值范围为________.14.双曲线x 2a 2-y 2b 2=1的左右焦点分别为F 1、F 2, P 是双曲线右支上一点,I 为△PF 1F 2的内心,PI 交x 轴于Q 点,若|F 1Q |=|PF 2|,且|PI |:|IQ |=2:1,则双曲线的离心率e 的值为________.15.若平面向量e 1,e 2满足|e 1|=|3e 1+e 2|=2,则e 1在e 2方向上投影的最大值是________.16.观察下列各式: 13=1; 23=3+5; 33=7+9+11;43=13+15+17+19; ……若m 3(m ∈N *)按上述规律展开后,发现等式右边含有“2017”这个数,则m 的值为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本大题满分12分)已知等差数列{a n }中,公差d ≠0,S 7=35,且a 2,a 5,a 11成等比数列.(1)求数列{a n }的通项公式;(2)若T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,且存在n ∈N *,使得T n-λa n +1≥0成立,求λ的取值范围.18.(本大题满分12分)为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:(1)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数.(2)若从学习时间不少于4小时的学生中选取4人,设选到的男生人数为X ,求随机变量X 的分布列.(3)试比较男生学习时间的方差s 21与女生学习时间方差s 22的大小.(只需写出结论)19.(本大题满分12分)如图所示,四棱锥P -ABCD 的底面为矩形,已知P A =PB =PC =PD =BC =1,AB =2,过底面对角线AC 作与PB 平行的平面交PD 于E .(1)试判定点E 的位置,并加以证明; (2)求二面角E -AC -D 的余弦值.20.(本大题满分12分)在平面直角坐标平面中,△ABC 的两个顶点为B (0,-1),C (0,1),平面内两点P 、Q 同时满足:①P A →+PB→+PC →=0;②|QA →|=|QB →|=|QC →|;③PQ →∥BC →. (1)求顶点A 的轨迹E 的方程;(2)过点F (2,0)作两条互相垂直的直线l 1,l 2,直线l 1,l 2与点A 的轨迹E 相交弦分别为A 1B 1,A 2B 2,设弦A 1B 1,A 2B 2的中点分别为M ,N .①求四边形A 1A 2B 1B 2的面积S 的最小值;②试问:直线MN 是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.21.(本大题满分12分)已知函数f (x )=ln (x +1)ax +1.(1)当a =1时,求函数y =f (x )的图象在x =0处的切线方程; (2)若函数f (x )在(0,1)上单调递增,求实数a 的取值范围; (3)已知x ,y ,z 均为正实数,且x +y +z =1,求证:(3x -1)ln (x +1)x -1+(3y -1)ln (y +1)y -1+(3z -1)ln (z +1)z -1≤0.请考生在22,23两题中任选一题作答. 22.【选修4-4 坐标系与参数方程】(本题满分10分)在极坐标系中,曲线C 1的极坐标方程是ρ=244cos θ+3sin θ,以极点为原点O ,极轴为x 轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy 中,曲线C 2的参数方程为:⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数).(1)求曲线C 1的直角坐标方程与曲线C 2的普通方程;(2)将曲线C 2经过伸缩变换⎩⎪⎨⎪⎧x ′=22xy ′=2y后得到曲线C 3,若M ,N 分别是曲线C 1和曲线C 3上的动点,求|MN |的最小值.23.【选修4-5 不等式选讲】(本题满分10分)已知f (x )=|2x -a |-|x +1|(a ∈R ).(1)当a =1时,解不等式f (x )>2.(2)若不等式f (x )+|x +1|+x >a 2-12对x ∈R 恒成立,求实数a 的取值范围.仿真模拟训练(一)1.C z =1-a i 1+i=1-a 2-1+a2i ,z 为纯虚数, ∴1-a2=0,∴a =1.故选C. 2.C D =⎠⎛1-1(1-x 2)d x =⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪⎪1-1=⎝ ⎛⎭⎪⎫1-13-⎝ ⎛⎭⎪⎫-1+13=43,∴P =432=23,故选C .3.A 第一类:将3个男生每个大学各推荐1人,有A 33A 33=36种方法,第二类:将3个男生推荐给湖南大学和中南大学有C 23A 22C 23=18种方法,故共有36+18=54种推荐方法,故选A . 4.C 由题可知,P 2,P 3,P 4在双曲线上,∴⎩⎨⎧4a 2-0b 2=1,16a 2-9b2=1,解得⎩⎪⎨⎪⎧a =2,b =3∴c 2=a 2+b 2=7,∴e =c a =72,故选C . 5.C 由三视图可知,该几何体是一个四棱锥挖去半个圆锥,∴V =13×2×2×2-13π×12×2×12=83-π3,故选C . 6.C y =0.3x 为减函数,∴0.3x <0.3,P 1错;由x =log 23,得2x=3,∴⎝ ⎛⎭⎪⎫12x +1=12x ·12=16,P 2正确; cos 2x =1-2sin 2x ∈⎝ ⎛⎭⎪⎫-1,13,P 3正确;f(x +3)=tan π(x +3)3=tan πx3=f(x),P 4正确,故选C . 7.D 由题可得,⎩⎨⎧-πω12-π3=π2+k π,k ∈Z-π12+φ=k π,∵0<ω<10,0<φ<3,∴ω=2,φ=π12,故选D.8.A 由题可知f (x )在[-1,1]上为减函数, 由f (1-m )+f (1-m 2)<0得f (1-m )<f (m 2-1), ∴⎩⎪⎨⎪⎧-1≤1-m ≤1,-1≤1-m 2≤1,1-m >m 2-1,∴0≤x <1,故选A. 9.B 由程序框图可得s =1+11×2+12×3+13×4+…+1i (i +1)=1+1-12+12-13+13-14+…+1i -1i +1=2-1i +1=4 0352 018∴i =2 017,∴i ≤2 017,∴a =2 017,故选B.10.A 由题可知,甲、丙选择影视配音和公共演讲,乙选择影视播音或播音主持;若甲选影视配音,丙选公共演讲,乙选播音主持,则丁选广播电视,与③矛盾;若甲选公共演讲,丙选影视配音,乙选播音主持,则丁选广播电视,符合条件,故选A.11.A 由a 7a 6<-1,得a 7a 6+1<0,得a 7+a 6a 6<0,若S n 有最大值,则d <0,∴a 6>0,a 7+a 6<0,∴S 11=11a 6>0,S 12=12(a 1+a 12)2=6(a 7+a 6)<0,∴使S n >0时,n 的最大值为11,故选A.12.C f (x )=12sin x (sin x -cos x )(sin x +cos x ) =12sin x (2sin 2x -1)令t =sin x ,t ∈[-1,1],∴h (t )=12t (2t 2-1)=12()2t 3-t ,t ∈[-1,1],h ′(t )=12(6t 2-1),令h ′(t )=0,∴t =±66,∴当-1<t <-66,66<t <1时,h ′(t )>0,h (t )为增函数,当-66<t <66时,h ′(t )<0,h (t )为减函数, h ⎝ ⎛⎭⎪⎫-66=618,h (1)=12,∴h ⎝⎛⎭⎪⎫-66<h (1),∴h (t )在[-1,1]上的最大值为h (1)=12,g ′(x )=3-2xa e 2x ,令g ′(x )=0,得x =32,则当a >0时,g (x )在⎝ ⎛⎭⎪⎫0,32为增函数,在⎝ ⎛⎭⎪⎫32,+∞为减函数,∴g (x )max =g ⎝ ⎛⎭⎪⎫32=12a e 3. 由题可知f (x )max <g (x )max , ∴12<12a e 3,∴a <1e 3,又a >0,∴0<a <e -3,故选C. 13.x 23-y 2=1解析:由题可得⎩⎪⎨⎪⎧b a =33,c =2∴a 2=3,b 2=1,∴双曲线C 的方程为x 23-y 2=1. 14.5解析:由m -2n =(11,-2), 得|m -2n |2=125, ∴m 2-4m ·n +4n 2=125, ∴25+4n 2=125, n 2=25,∴|n |=5. 15.(7+ln2)55解析:由y =ln x (x >0),得y ′=1x ,令1x =2,∴x =12,y =ln 12=-ln2,∴曲线y =ln x 上与直线y =2x +6平行的切线的切点坐标为⎝ ⎛⎭⎪⎫12,-ln2,则 |MN |=|2×12+ln2+6|5=(7+ln2)55. 16.2 3解析:由12b cos A =sin B , 得12cos A =sin B b =sin A a , ∴12cos A =sin A a ,∴tan A =a2=3,∵A ∈(0,π),∴A =π3, 由a 2=b 2+c 2-2b cos A , 得12=(b +c )2-2bc -2bc ·12,bc =8,∴S =12bc sin A =12×8×32=2 3.17.解析:(1)设等比数列{a n }的公比为q ,∵a 1=14,a 3+a 5=564, ∴14q 2+14q 4=564,∴q 2=14,∴q =±12,∵a n >0,∴q =12,∴a n =14×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n +1.(2)由(1)知a n =⎝ ⎛⎭⎪⎫12n +1,∵a 1=14, ∴S n =14⎝ ⎛⎭⎪⎫1-12n 1-12=12⎝⎛⎭⎪⎫1-12n =2n -12n +1, b n =1(2n +1-1)S n =2n +1(2n +1-1)(2n-1) =2⎝ ⎛⎭⎪⎪⎫12n -1-12n +1-1. ∴T n =2⎝⎛1-122-1+122-1-123-1+…+12n -1-⎭⎪⎪⎫12n +1-1=2⎝ ⎛⎭⎪⎪⎫1-12n +1-1. 18.解析:(1)设甲与三位志愿者比赛一场获胜的事件分别为A ,B ,C∴P (A )=34,P (B )=35,P (C )=23. ∴甲恰好获胜两场的概率 P =P (A -BC )+P (A B -C )+P (AB C -) =14×35×23+34×25×23+34×35×13 =920.(2)设甲获胜场次为X ,则X 的可能取值为0,1,2,3P (X =0)=P (A -B -C -)=14×25×13=130;P (X =1)=14×25×23+14×35×13+34×25×13=1360;P (X =2)=920;P (X =3)=34×35×23=310; ∴X 的分布列为∴EX =0×130+1×1360+2×920+3×310=12160. 19.解析:(1)连接A 1D ,∵MN ∥平面ADB 1A 1, MN ⊂平面A 1C 1D ,平面C 1DA 1∩平面ADB 1A 1=A 1D ,∴MN ∥A 1D , 又M 为C 1A 1的中点,∴MN 为△C 1A 1D 的中位线, ∴N 为DC 1的中点.(2)A 1B 1=1,∴AA 1=1,CC 1=1, ∵B 为AD 的中点, ∴AD =2,∵△ABC ≌△A 1B 1C 1,平面A 1B 1C 1∩平面A 1ACC 1=A 1C 1, ∴A 1C 1∥AC ,∴四边形A 1ACC 1为平行四边形, 又A 1C 1=A 1A ,∴四边形A 1ACC 1为菱形,∠C 1A 1A =π3,A 1M =12,∴AM =32,∴AM ⊥AC ,∵AD ⊥AA 1,平面ADB 1A 1⊥平面ACC 1A 1, ∴AD ⊥平面A 1ACC 1, ∴AD ⊥AM ,AD ⊥AC , ∴AM ,AD ,AC 两两互相垂直,以A 为坐标原点,AD ,AC ,AM 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,∴A (0,0,0),D (2,0,0),C (0,1,0),C 1⎝⎛⎭⎪⎫0,12,32, ∴DC →=(-2,1,0),DC 1→=⎝⎛⎭⎪⎫-2,12,32,设平面CC 1D 的法向量为n =(x ,y ,z )∴⎩⎪⎨⎪⎧-2x +y =0,-2x +12y +3z 2=0∴令z =23,∴x =3,y =6, ∴n =(3,6,23), 又AC ⊥平面MAD , ∴AC→=(0,1,0), ∴cos 〈n ,AC →〉=657=25719.20.解析:(1)∵S △MOF =32, ∴12bc =32,∴bc =3,又S 菱形=43,∴12×2a ×2b =43,∴ab =23,∴c =3b ,a =23b ,由a 2-c 2=b 2,12b 2-3b 2=b 2, ∴b 2=3,a 2=4,∴椭圆C 的方程为x 24+y 23=1.(2)设直线l 的方程为x =my -1,P (x 1,y 1),Q (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 23=1,x =my -1,得(3m 2+4)y 2-6my -9=0,∴y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2=⎝ ⎛⎭⎪⎪⎫6m 3m 2+42+363m 2+4=12m 2+13m 2+4, ∴S △POQ =12|OF ||y 1-y 2|=6m 2+13m 2+4=335,解得m 2=2,∴k l =1m =±22.21.解析:(1)f (x )的定义域为(0,+∞), ∴f ′(x )=2e +1x -3a2,当a ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增, 当a >0时,0<x <2(2e +1)3a ,f ′(x )>0, x >2(2e +1)3a ,f ′(x )<0, ∴f (x )的单调递增区间为⎝⎛⎭⎪⎪⎫0,2(2e +1)3a ,递减区间为⎝ ⎛⎭⎪⎪⎫2(2e +1)3a ,+∞. (2)当a =23时,f (x )=(2e +1)ln x -x +1, 由x e x +m ≥f (x ),得x e x +m -(2e +1)ln x +x -1≥0恒成立. 令g (x )=x e x +m -(2e +1)ln x +x -1. g ′(x )=(x +1)e x-2e +1x +1.g ″(x )=(x +2)e x+2e +1x 2>0,∴g ′(x )为增函数,又g ′(1)=2e -2e -1+1=0, ∴当0<x <1时,g ′(x )<0, 当x >1时,g ′(x )>0, ∴g (x )≥g (1)=e +m . ∴e +m ≥0,∴m ≥-e. ∴实数m 的最小值为-e.22.解析:(1)C 1的普通方程为y =k (x -1), C 2的直角坐标方程:x 2+y 2+10x -6y +33=0. (2)C 2表示圆心(-5,3),半径为1的圆, 圆心(-5,3)到直线y =k (x -1)的距离d =|6k +3|1+k2,故|PQ |的最小值为|6k +3|1+k2-1=2,解得k =0或k =-43.23.解析:(1)∵f ⎝ ⎛⎭⎪⎫x +23=|3x |,∴|3x |≥|t -1|,∴x ≥|t -1|3或x ≤-|t -1|3, ∴|t -1|3=13,∴t =0或t =2. (2)原不等式等价于|3x -2|-|3x +1|≤3y +m ·3-y 恒成立. |3x -2|-|3x +1|≤3. ∴3y +m ·3-y ≥3.∴m ≥3y (3-3y )恒成立,∵[3y (3-3y )]max =94,∴m ≥94.当且仅当y =log 232时成立.。

2019年湖北省黄冈市麻城市思源实验学校自主招生数学模拟试卷

2019年湖北省黄冈市麻城市思源实验学校自主招生数学模拟试卷

2019年湖北省黄冈市麻城市思源实验学校自主招生数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A. 白B. 红C. 黄D. 黑2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a−b|=3,|b−c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A. 在A的左边B. 介于A、B之间C. 介于B、C之间D. 在C的右边3.已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组{4x≥3(x+1)2x−x−12<a有解的概率为()A. 29B. 13C. 49D. 594.若实数a≠b,且a,b满足a2−8a+5=0,b2−8b+5=0,则代数式b−1a−1+a−1b−1的值为()A. −20B. 2C. 2或−20D. 2或205.对于每个非零自然数n,抛物线y=x2−2n+1n(n+1)x+1n(n+1)与x轴交于A n,B n以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+⋯+|A2017B2017|的值是()A. 20172016B. 20162017C. 20172018D. 201820176.如图,从△ABC各顶点作平行线AD//EB//FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A. 3B. √3C. 52D. 27.半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A. 254B. 203C. 163D. 928.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中−1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<−1,其中结论正确的有()A. 1个B. 2个C. 3个D. 4个9.直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A. 6条B. 7条C. 8条D. 无数条10.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG =√34CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A. 只有①②B. 只有①③C. 只有②③D. ①②③二、填空题(本大题共8小题,共32.0分)11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是______.12.12+(13+23)+(14+24+34)+(15+25+35+45)+⋯+(150+250+⋯+4850+4950)=______.13.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为______.14.已知t1、t2是关于t的二次函数s=−3t2+6t+f的图象与x轴两交点的横坐标,且x=10t1,y=10t2,那么y与x间的函数关系式为______15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,√2),∠OCB=60°,∠COB=45°,则OC=______.16.如图所示:两个同心圆,半径分别是2√6和4√3,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是______.17. 直线l :y =kx +5k +12(k ≠0),当k 变化时,原点到这条直线的距离的最大值为______.18. 将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为______.三、解答题(本大题共6小题,共58.0分) 19. 先化简分式:(a −3a+4a+3)÷a−2a+3⋅a+3a+2,再从−3、√5−3、2、−2中选一个你喜欢的数作为a 的值代入求值.20. 已知关于x 的方程|x 2+2px −3p 2+5|−q =0,其中p 、q 都是实数.(1)若q =0时,方程有两个不同的实数根x 1x 2,且1x 1+1x 2=17,求实数p 的值.(2)若方程有三个不同的实数根x 1、x 2、x 3,且1x 1+1x 2+1x 3=0,求实数p 和q 的值.21. 如图,在△ABC 中,∠BAC =60°,D 是AB 上一点,AC =BD ,P 是CD 中点.求证:AP =12BC .22.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,若PB=OB,CD=2√2,求⊙O的半径.23.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).24.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(−2,−2),(√2 , √2),…都是“梦之点”,显然“梦之点”有无数个.(n为常数,n≠0)的图象上的“梦之点”,求这(1)若点P(2,m)是反比例函数y=nx个反比例函数的解析式;(2)函数y=3kx+s−1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个“梦之,点”A(x1,x1),B(x2,x2),且满足−2<x1<2,|x1−x2|=2,令t=b2−b+15748试求t的取值范围.答案和解析1.【答案】C【解析】解:由图可知,共有黑、绿、白、红、蓝、黄六种颜色, 与白相邻的颜色有黑、绿、黄、红, 所以,白的对面是蓝,与绿相邻的有白、黑、蓝、红, 所以,绿的对面是黄,与红相邻的有绿、蓝、黄、白, 所以,红的对面是黑,综上所述,涂成绿色一面的对面的颜色是黄. 故选:C .先判断出共有6种颜色,再根据与白相邻的颜色有黑、绿、黄、红判断出白的对面是蓝,与绿相邻的有白、黑、蓝、红判断出绿的对面是黄,与红相邻的有绿、蓝、黄、白判断出红的对面是黑,从而得解.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,确定出与一个颜色相邻的四个颜色是解题的关键. 2.【答案】C【解析】【分析】本题考查了数值以及绝对值,解题的关键是确定a 、b 、c 的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键. 由A 、B 、C 三点表示的数之间的关系结合三点在数轴上的位置即可得出b =a +3,c =b +5,再根据原点O 与A 、B 的距离分别为4、1,即可得出a =±4、b =±1,结合a 、b 、c 间的关系即可求出a 、b 、c 的值,由此即可得出结论. 【解答】解:∵|a −b|=3,|b −c|=5, ∴b =a +3,c =b +5,∵原点O 与A 、B 的距离分别为4、1, ∴a =±4,b =±1, ∵b =a +3,∴a =−4,b =−1, ∵c =b +5, ∴c =4.∴点O 介于B 、C 点之间. 故选:C .3.【答案】C【解析】解:因为关于x 的不等式组{4x ≥3(x +1)2x −x−12<a有解,可得:{x ≥3x <23(a −12),所以得出a >5,因为a 取≤9的整数,可得a 的可能值为6,7,8,9,共4种可能性,所以使关于x 的不等式组{4x ≥3(x +1)2x −x−12<a有解的概率为49,故选C根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=mn .4.【答案】A【解析】解:∵a ,b 满足a 2−8a +5=0,b 2−8b +5=0, ∴a ,b 可看着方程x 2−8x +5=0的两根, ∴a +b =8,ab =5,b−1a−1+a−1b−1=(b−1)2+(a−1)2(a−1)(b−1)=(a+b)2−2ab−2(a+b)+2ab−(a+b)+1=82−2×5−2×8+25−8+1=−20. 故选A .由于实数a ≠b ,且a ,b 满足a 2−8a +5=0,b 2−8b +5=0,则a ,b 可看着方程x 2−8x +5=0的两根,根据根与系数的关系得a +b =8,ab =5,然后把b−1a−1+a−1b−1通分后变形得到(b−1)2+(a−1)2(a−1)(b−1),再利用整体代入的方法计算.本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−ba ,x 1x 2=ca .也考查了分式的化简求值.5.【答案】C【解析】解:y =x 2−2n+1n(n+1)x +1n(n+1)=(x −1n )(x −1n+1), ∴A n (1n ,0),B n (1n+1,0), ∴|A n B n |=1n −1n+1,∴|A 1B 1|+|A 2B 2|+⋯+|A 2017B 2017|=11−12+12−13+13−14+⋯+12017−12018=1−12018=20172018, 故选:C .y =x 2−2n+1n(n+1)x +1n(n+1)=(x −1n )(x −1n+1),可求抛物线与x 轴的两个交点坐标,所以|A n B n |=1n −1n+1,代入即可求解;本题考查二次函数图象及性质,探索规律;能够通过因式分解求二次函数与x 轴的交点坐标是解题的关键.6.【答案】D【解析】证明:∵AD//BE ,AD//FC ,FC//BE , ∴△ADE 和△ABD 在底边AD 上的高相等,△ADF 和△ADC 在底边AD 上的高相等,△BEF 和△BEC 在底边BE 上的高相等,∴S △ADF =S △ADC ,S △BEF =S △BEC ,S △AEF =S △BEF −S △ABE =S △BEC −S △ABE =S △ABC ∴S △DEF =S △ADE +S △ADF +S △AEF =S △ABD +S △ADC +S △ABC =2S △ABC . 即S △DEF =2S △ABC . ∵S △ABC =1, ∴S △DEF =2, 故选:D .根据平行线间的距离处处相等得到:△ADE 和△ABD 在底边AD 上的高相等,△ADF 和△ADC 在底边AD 上的高相等,△BEF 和△BEC 在底边BE 上的高相等,所以由三角形的面积公式和图形间的面积的数量关系进行证明即可.本题考查了平行线间的距离和三角形的面积.两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离. 7.【答案】B【解析】解:∵AB 是直径, ∴AB =5,∠ACB =90°,∴AB 2=AC 2+BC 2,且BC :CA =4:3, ∴BC =4,AC =3,∵∠A =∠P ,∠ACB =∠PCQ =90°, ∴△ACB∽△PCQ , ∴ACPC =CBCQ , ∴CQ =43PC ,∴当PC 最大时,CQ 有最大值, ∴PC 是直径时,CQ 的最大值=43×5=203,故选:B .由勾股定理可求BC ,AC 的值,通过证明△ACB∽△PCQ ,可得ACPC =CBCQ ,可得CQ =43PC ,当PC 是直径时,CQ 的最大值=43×5=203.本题考查了相似三角形的判定和性质,圆周角定理,求出CQ =43PC 是本题的关键.8.【答案】D【解析】解:由抛物线的开口向下知a <0, 与y 轴的交点为在y 轴的正半轴上,得c >0, 对称轴为x =−b2a <1,∵a <0,∴2a +b <0,而抛物线与x 轴有两个交点,∴b 2−4ac >0, 当x =2时,y =4a +2b +c <0,当x =1时,a +b +c =2. ∵4ac−b 24a>2,∴4ac −b 2<8a , ∴b 2+8a >4ac ,∵①a +b +c =2,则2a +2b +2c =4, ②4a +2b +c <0, ③a −b +c <0.由①,③得到2a +2c <2,由①,②得到2a −c <−4,4a −2c <−8, 上面两个相加得到6a <−6, ∴a <−1. 故选:D .由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.考查二次函数y =ax 2+bx +c 系数符号的确定由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数等. 9.【答案】B【解析】解:联立直线y =px 与直线y =x +10,{y =pxy =x +10, 得px =x +10,x =10p−1,∵x 为整数,p 也为整数.∴P 的取值范围为:−9≤P ≤11,且P ≠1,P ≠0. 而.10=2×5=1×10, 0<P ≤11,有四条直线,P ≠0,−9≤P <0,只有三条直线, 那么满足条件的直线有7条. 故选:B .联立直线y =px 与直线y =x +10,求出p 的取值范围即可求得结果.本题考查了两条直线相交或平行问题,难度较大,关键不要漏掉某条直线. 10.【答案】D【解析】【分析】此题综合考查了全等三角形的判定和性质、平行线分线段成比例、不规则图形的面积计算方法等知识点,综合性较强,难度较大.①易证△ABD 为等边三角形,根据“SAS ”证明△AED≌△DFB ;②证明∠BGE =60°=∠BCD ,从而得点B 、C 、D 、G 四点共圆,因此∠BGC =∠DGC =60°.过点C 作CM ⊥GB 于M ,CN ⊥GD 于N.证明△CBM≌△CDN ,所以S 四边形BCDG =S 四边形CMGN ,易求后者的面积.③过点F 作FP//AE 于P 点.根据题意有FP :AE =DF :DA =1:3,则FP :BE =1:6=FG :BG ,即BG =6GF . 【解答】解:如图所示,①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,∵{CM=CNBC=CD,∴△CBM≌△CDN,(HL)∴S四边形BCDG =S四边形CMGN.S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=√32CG,∴S四边形CMGN =2S△CMG=2×12×12CG×√32CG=√34CG2.③过点F作FP//AE于P点,∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF.所以其中正确的有①②③.故选D.11.【答案】4037x2019【解析】解:∵x,3x2,5x3,7x4,9x5,11x6,…∴第n个式子是(2n−1)x n,当n=2019时,对应的式子为4037x2019,故答案为:4037x2019.根据题目中的式子可以系数为连续的奇数,未知数x的次数从1次、2次依次递增,从而可以得到第2019个单项式,本题得以解决.本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现题目中单项式的变化规律,求出相应的单项式.12.【答案】612.5【解析】解:设s=12+(13+23)+(14+24+34)+(15+25+35+45)+⋯+(150+250+⋯+4850+4950),①又s=12+(23+13)+(34+24+14)+(45+35+25+15)+(4950+4850++150),②①+②,得2s=1+2+3+4+⋯+49,③2s=49+48+47+⋯+2+1,④③+④,得4s=50×49=2450,故s=612.5;故答案为:612.5.仔细观察,知原式还可以是12+(23+13)+(34+24+14)+(45+35+25+15)+(4950+4850++150).又12+12=1,(23+13)+(13+23)=2,(14+24+34)+(34+24+14)=3,…依此类推可知,将原式倒过来后再与原式相加,问题就转化为1+2+3+⋯+502.本题主要考查了有理数的混合运算.解答此题时,采用了“倒序相加法”,该方法在解答此类的数列时,会经常用到.13.【答案】(256,0)【解析】解:由题意可得,OP0=1,OP1=2×1=2,OP2=2×2=22,OP3=2×22=23,OP4=2×23=24,…OP8=2×27=28=256,∵每一次都旋转45°,360°÷45°=8,∴每8次变化为一个循环组,∴P8在x4的正半轴上,P8(256,0),故答案为(256,0).先根据伸长的变化规律求出OP8的长度,再根据每8次变化为一个循环组,然后确定出所在的位置,再根据等腰直角三角形的直角边等于斜边的√22倍解答即可.本题考查了点的坐标的规律探寻,读懂题意,需要从伸长的变化规律求出OP2011的长度,从旋转的变化规律求出点P2011所在的象限两个方面考虑求解.(x>0)14.【答案】y=100x【解析】解:∵t1、t2是二次函数s=−3t2+6t+f的图象与x轴两交点的横坐标,∴t1+t2=2,而x=10t1,y=10t2,∴xy=10t1×10t2=10t1+t2=102=100,(x>0).∴y=100x(x>0).故答案为:y=100x由于t1、t2是二次函数s=−3t2+6t+f的图象与x轴两交点的横坐标,利用根与系数的关系可以得到t1+t2=2,又x=10t1,y=10t2,利用同底数幂的乘法法则计算即可解决问题.此题主要考查了抛物线与x轴交点的坐标特点,也考查了同底数幂的乘法法则,解题的关键是利用根与系数的关系得到t1+t2=2,然后利用同底数幂的乘法法则即可解决问题.15.【答案】1+√3【解析】解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=√3OA=√3×√2=√6.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,OB=√3.则OD=BD=√22Rt△BCD中,∠OCB=60°,BD=1.则CD=√33∴OC=CD+OD=1+√3.故答案为:1+√3.连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=√2,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD 求出OC的长.此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.16.【答案】16+12√2【解析】解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6√2,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12√2.此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.本题考查的是矩形的定理以及垂径的性质,考生应注意运用勾股定理来求得边长继而才能求出周长.17.【答案】13【解析】解:y=kx+5k+12=k(x+5)+12,∴直线经过定点(−5,12),∴原点与定点的距离是原点到直线的最大距离13;故答案为13;通过化简解析式能确定直线经过定点(−5,12),原点与定点的距离是原点到直线的最大距离;本题考查一次函数的图象及性质;能够求出直线经过定点是解题的关键.18.【答案】6【解析】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=108−9y−6z10=3(36−3y−2z)10,∵0<x<10,且为整数,∴36−3y−2z是10的倍数,即:36−3y−2z=10或20或30,当36−3y−2z=10时,y=26−2z3,∵0<y≤11,0<z≤15,且y,z都为整数,∴26−2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36−3y−2z=20时,y=16−2z3,∵0<y≤11,0<z≤15,且y,z都为整数,∴16−2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36−3y−2z=30时,y=6−2z3,∵0<y≤11,0<z≤15,且y,z都为整数,∴6−2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.19.【答案】解:原式=a2+3a−3a−4a+3⋅a+3a−2⋅a+3a+2=a+3,当a=√5−3时,原式=√5−3+3=√5.【解析】将括号里通分,除法化为乘法,约分,代值时,a的取值不能使原式的分母、除式为0.本题考查了分式的化简求值.关键是根据分式混合运算的顺序解题,代值时,字母的取值不能使分母、除式为0.20.【答案】解:(1)若q=0,则方程为x2+2px−3p2+5=0.因该方程有两个不同的实数x1、x2,可得△=(2p)2−4(−3p2+5)=16p2−20>0,x1+x2=−2p,x1x2=5−3p2解得p2>54;由1x1+1x2=17,得1x1+1x2=x2+x1x1x2=−2p5−3p2=17,解得p=5或−13.(注意5−3p2≠0)因为p2>54,所以p=5.(2)显然q>0.方程可写成x2+2px−3p2+5=±q.因该方程有三个不同的实数根,即函数y1=x2+2px−3p2+5与y2=±q的图象有三个不同的交点,∴可得:x3=−p,−q=4(5−3p2)−4p24=5−4p2,即q=4p2−5.x1、x2是方程x2+2px−3p2+5=q的两根,即x2+2px−7p2+10=0.则x1+x2=−2p,x1x2=10−7p2,x3=−p.△=(2p)2−4(−7p2+10)=32p2−40>0,解得p2>54.由1x1+1x2+1x3=0,得x2+x1x1x2+1x3=−2p10−7p2+1−p=10−5p2(7p2−10)p=0,解得p2=2>54,所以p=±√2,q=4p2−5=3.【解析】(1)根据根与系数的关系可得△=(2p)2−4(−3p2+5)=16p2−20>0,x1+x2=−2p,x1x2=5−3p2,代入1x1+1x2=17可得关于p的方程,解方程即可;(2)由方程有三个不同的实数根x1、x2、x3,可得x3=−p,x1、x2是方程x2+2px−3p2+ 5=q的两根;由根与系数的关系可得x1+x2=−2p,x1x2=10−7p2,x3=−p.△=(2p)2−4(−7p2+10)=32p2−40>0,进而得到关于p的方程,解出p即可求出q 的值.本题考查了根与系数的关系,牢记两根之和等于−ba 、两根之积等于ca是解题的关键.21.【答案】证明:延长AP至点F,使得PF=AP,连结BF,DF,CF,∵P是CD中点,∴CP=DP,∴四边形ACFD是平行四边形,∴DF=AC=BD,DF//AC,∴∠FDB=∠BAC=60°,∴△BDF是等边三角形,∴BF=DF=AC,∠ABF=60°,∴∠ABF=∠BAC,在△ABC和△BAF中,∵{AB=BA∠BAC=∠ABF AC=BF,∴△ABC≌△BAF(SAS),∴AF=BC,∴AP=12AF=12BC.【解析】作辅助线,构建全等三角形和平行四边形,先证明四边形ACFD是平行四边形,得DF=AC=BD,DF//AC,再证明△BDF是等边三角形,证明△ABC≌△BAF(SAS),可得结论.本题考查了平行四边形的性质和判定,等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22.【答案】(1)证明:∵DC2=CE⋅CA,∴DCCE =CADC,又∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴CD⏜=CB⏜,∴∠BOC=∠BAD,∴OC//AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴PCPA =PBPD,即4√23r=6√2∴r=4,即⊙O的半径为4.【解析】本题考查了相似三角形的判定与性质:三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有时可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.也考查了圆周角定理.(1)由DC2=CE⋅CA和∠ACD=∠DCE,可判断△CAD∽△CDE,得到∠CAD=∠CDE,再根据圆周角定理得∠CAD=∠CBD,所以∠CDB=∠CBD,于是利用等腰三角形的判定可得BC=DC;(2)连结OC,如图,设⊙O的半径为r,先证明OC//AD,利用平行线分线段成比例定理得到PCCD =POOA=2,则PC=2CD=4√2,然后证明△PCB∽△PAD,利用相似比得到4√2 3r =6√2,再利用比例的性质可计算出r的值.23.【答案】解:(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2√3,t2=−2√3(舍去).∴点P的坐标为(2√3,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴OBPC =BPCQ,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11−t,CQ=6−m.∴611−t =t6−m,∴m=16t2−116t+6(0<t<11);(3)过点P 作PE ⊥OA 于E ,如图3, ∴∠PEA =∠QAC′=90°, ∴∠PC′E +∠EPC′=90°, ∵∠PC′E +∠QC′A =90°, ∴∠EPC′=∠QC′A , ∴△PC′E∽△C′QA , ∴PE AC′=C′E AQ,在△PC′E 和△OC′B′中, {∠PEC′=∠OB′C ∠PC′E =∠OC′B′PE =OB′, ∴△PC′E≌△OC′B′(AAS), ∴PC′=OC′=PC , ∴BP =AC′, ∵AC′=PB =t ,PE =OB =6,AQ =m ,EC′=11−2t , ∴6t =11−2t m ,∵m =16t 2−116t +6,∴3t 2−22t +36=0, 解得:t 1=11−√133,t 2=11+√133故点P 的坐标为(11−√133,6)或(11+√133,6).【解析】(1)根据题意得,∠OBP =90°,OB =6,在Rt △OBP 中,由∠BOP =30°,BP =t ,得OP =2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案;(2)由△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB′P≌△OBP ,△QC′P≌△QCP ,易证得△OBP∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案;(3)首先过点P 作PE ⊥OA 于E ,易证得△PC′E∽△C′QA ,由勾股定理可求得C′A 的长,然后利用相似三角形的对应边成比例与m 和t 的关系,即可求得t 的值,得出P 点坐标. 本题考查了几何变换综合性题目,用到的知识点有:翻折变换的性质、矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质、解一元二次方程等有关的知识点,综合性较强,难度较大.清楚翻折前后的两个图形全等以及熟悉相似三角形的判定与性质是解决本题的关键.24.【答案】解:(1)∵点P(2,m)是反比例函数y =nx (n 为常数,n ≠0)的图象上的“梦之点”, ∴m =2, ∴P(2,2),∴n =2×2=4,∴这个反比例函数的解析式为y =4x ;(2)由y =3kx +s −1得当y =x 时,(1−3k)x =s −1,当k =13且s =1时,x 有无数个解,此时的“梦之点”存在,有无数个; 当k =13且s ≠1时,方程无解,此时的“梦之点”不存在;当k ≠13,方程的解为x =s−11−3k ,此时的“梦之点”存在,坐标为(s−11−3k ,s−11−3k );(3)由{y =ax 2+bx +1y =x 得:ax 2+(b −1)x +1=0,则x 2,x 2为此方程的两个不等实根,由|x 1−x 2|=2,又−2<x 1<2得:−2<x 1<0时,−4<x 2<2;0≤x 1<2时,−2≤x 2<4;∵抛物线y =ax 2+(b −1)x +1的对称轴为x =1−b2a,故−3<1−b 2a<3,由|x 1−x 2|=2,得:(b −1)2=4a 2+4a ,故a >18;t =b 2−b +15748=(b −1)2+10948,y =4a 2+4a +10948=4(a +12)2+6148,当a >−12时,t 随a 的增大而增大,当a =18时,t =176,∴a >18时,t >176.【解析】(1)根据“梦之点”的定义得出m 的值,代入反比例函数的解析式求出n 的值即可;(2)根据梦之点的横坐标与纵坐标相同,可得关于x 的方程,根据解方程,可得答案; (3)由{y =ax 2+bx +1y =x 得:ax 2+(b −1)x +1=0,则x 2,x 2为此方程的两个不等实根,由|x 1−x 2|=2得到−2<x 1<0时,根据0≤x 1<2得到−2≤x 2<4;由于抛物线y =ax 2+(b −1)x +1的对称轴为x =1−b2a,于是得到−3<1−b 2a<3,根据二次函数的性质即可得到结论.本题考查了运用待定系数法求反比例函数的解析式,一次函数的性质,二次函数的性质,一元二次方程根与系数的关系,综合性较强,有一定难度.。

黄冈市2019年中考数学模拟试题A(附答案)

黄冈市2019年中考数学模拟试题A(附答案)

黄冈市2019年中考数学模拟考试(满分120分时间120分钟)第I卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的倒数是( ) A.-31B.31C.3D.-32.下列运算中,正确的是()A.2352x x x+= B. 824m m m÷= C.222()m n m n-=- D. 236()x x=3.已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()A.45°B.40°C.35°D.30°(第3题图)(第5题图)(第6题图)4. 过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为( )5.某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是()A.30吨B.31吨C.32吨D.33吨6.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.27. 如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)8.如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发A.B.C.D.(第4题图)F D At 秒时,△BPQ 的面积为y cm 2,已知y 与t 的函数关系的图象如图2(曲线OM 为抛物线的一部分).则下列结论:①AD=BE=5cm ; ②当0<t ≤5时,252t y =; ③直线NH 的解析式为2725+-=t y ; ④若△ABE 与△QBP 相似,则429=t 秒.其中正确结论的个数为( ) A .4 B .3 C .2 D .1第Ⅱ卷(非选择题 共96分)二、填空题(本大题共7小题,每小题3分,共21分)9.分解因式:24xy x -= .10.近年来,随着交通网络的不断完善,黄冈市近郊旅游持续升温。

湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题)

湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题)

【题文】 已知椭圆2222:1(0)x y C a b a b +=>>F 1、F 2,A 为相圆C 上一点,AF 1与y 轴交于B ,2||AB F B =,||6OB =.(Ⅰ)求椭圆C 的方程;(Ⅱ)过右焦点F 2的直线(2)(0)y k x k =-≠交椭圆于P 、Q 两点若PQ 的中点为N ,O 为原点,直线ON 交直线3x =于点M .求2||PQ MF 的最大值. 【答案】(I )22162x y +=;(II【解析】【分析】(Ⅰ)由题意得21||AB F B F B ==,通过平面几何的知识,可以得到212AF FF ⊥,根据||6OB =,结合222a b c =+,这样可以求出26a =,22b =,进而求出椭圆的标准方程;(II )直线与椭圆方程联立,可以得到一个一元二次方程,设()11,P x y 、()22,Q x y ,利用根与系数关系可以求出N 的坐标,以及PQ 的长度,求出直线ON 的方程,求出M 的坐标,求出MF 的长度表达式,求出 2||PQ MF 平方的表达式,用换元法、配方法,最后求出2||PQ MF 的最大值.【详解】(I )连接2AF ,由题意得21||AB F B F B ==,所以BO 为12FAF ∆的中位线, 又因为12BO F F ⊥,所以212AF F F ⊥,且222||3b AF BO a ===又c e a ==,222a b c =+,得26a =,22b =, 故所求椭圆方程为22162x y +=. (II )联立22162(2)x y y k x ⎧+=⎪⎨⎪=-⎩,可得()222231121260k x k x k +-+-=. 设()11,P x y 、()22,Q x y ,则21221231k x x k +=+,212212631k x x k -=+, 所以为()121224431k y y k x x k k -+=+-=+ 所以PQ 的中点N 坐标为22262,3131k k k k ⎛⎫- ⎪++⎝⎭,||PQ = 因此直线ON 的方程为13y x k =-,从而点M 为13,k ⎛⎫- ⎪⎝⎭,2MF = 设()()2222222241||31k k PQ I MF k +==+,令231u k =+,则 2(1)(2)83u u I u -+=216111322u u ⎛⎫=--- ⎪⎝⎭2161193416u ⎡⎤⎛⎫=---⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 因此当4u =,即1k =±时2||PQ MF【点睛】本题考查了椭圆标准方程、直线与椭圆的位置关系,以及椭圆弦长公式,考查了数学运算能力.【标题】湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题【结束】。

精品解析:【全国百强校】湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题(解析版)

精品解析:【全国百强校】湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题(解析版)

湖北省黄冈中学2019届高三第三次模拟考试数学(理科)试卷注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔在答题卡上填写自己的准考证号、姓名、试室号和座位号。

用2B 型铅笔把答题卡上试室号、座位号对应的信息点涂黑。

2.选择题每小题选出答案后,用2B 型铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|20A x x x =--<,{}2|log 0B x x =<,则AB =( )A. (1,2)-B. (0,1)C. (,2)-∞D. (1,1)-【答案】A 【解析】 【分析】分别求出集合A 和B ,再求并集即可.【详解】解不等式220x x --<得12x -<<,即()1,2A =-; 由20log x <得01x <<,即()B 0,1=; 所以()A B 1,2⋃=-. 故选A【点睛】本题主要考查集合的并集运算,熟记概念即可求解,属于基础题型. 2.设11iz i+=-,z 是z 的共轭复数,则z z ⋅=( ) A. -1 B. iC. 1D. 4【答案】C【解析】 【分析】利用两个复数代数形式的乘除法,虚数单位i 的幂运算性质,求得z 的值,可得z ,从而求得z z ⋅的值.【详解】()()()211111i iz i i i i ++===--+,则z i =-, 故()1z z i i ⋅=⋅-=,故选C.【点睛】本题主要考查复数基本概念,两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题.3.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化B. 这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 【答案】D 【解析】选项A 错,并无周期变化,选项B 错,并不是不断减弱,中间有增强。

黄冈实验中学2019年中考数学模拟试卷(6月份)含答案解析

2019年湖北省黄冈实验中学中考数学模拟试卷(6月份)一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共21分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.下列计算正确的是()A.x2+x3=2x5B.m8÷m2=m4C.(m﹣n)2=m2﹣n2D.(x2)3=x63.函数y=中自变量x的取值范围是()A.x≥1 B.x≥1且x≠±2 C.x≠±2 D.x≥1且x≠24.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.5.点A在双曲线上,AB⊥x轴于B,且△AOB的面积为3,则k=()A.3 B.6 C.±3 D.±66.一个圆锥的侧面展开图是半径为的半圆,则该圆锥的底面半径是()A.1 B.C.D.7.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为()A.8 B.16 C.24 D.32二、填空题(共7小题,每小题3分,共21分)8.分解因式:ab2﹣4ab+4a=.9.不等式组的解集为.10.如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是.11.化简÷=.12.已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是.13.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为,(2)点C的坐标为.14.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为.三、解答题(本大题共10小题,满分共78分)15.解方程组.16.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?17.如图是我市某校八年级学生为贫困山区学生捐款情况抽样调查的条形图和扇形统计图.(1)求本次抽样的学生有多少人;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.18.已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC的数量关系及位置关系,并证明你的猜想.19.有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和﹣3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.20.平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣6,0),B(4,0),C(5,3),反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.21.如图,AB是⊙O的直径.半径OD垂直弦AC于点E.F是BA延长线上一点,∠CDB=∠BFD.(1)判断DF与⊙O的位置关系,并证明;(2)若AB=10,AC=8,求DF的长.22.如图,两建筑物的水平距离BC是30m,从A点测得D点的俯角α是35°,测得C点的俯角β为43°,求这两座建筑物的高度.(结果保留整数)23.在黄冈建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到35元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:y=(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.24.如图,已知抛物线y=x2﹣2x+m交x轴于A,B两点(A在B的左边),交y轴于C点,且OB=OC,连接BC,(1)直接写出m的值和B,C两点的坐标;(2)P点在直线BC下方的抛物线上,△BCP的面积为S,求S最大时,P的坐标;(3)抛物线的对称轴交抛物线于D点,交x轴于E点,在抛物线上是否存在点M,过M点作MN ⊥BD于N点,使△DMN与△BDE相似?若存在,请求出M点的坐标;若不存在,请说明理由.2019年湖北省黄冈实验中学中考数学模拟试卷(6月份)参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共21分)1.9的平方根为()A.3 B.﹣3 C.±3 D.【考点】平方根.【专题】计算题.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.下列计算正确的是()A.x2+x3=2x5B.m8÷m2=m4C.(m﹣n)2=m2﹣n2D.(x2)3=x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【专题】计算题;实数.【分析】A、原式不能合并,错误;B、原式利用同底数幂的除法法则计算得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=m6,错误;C、原式=m2﹣2mn+n2,错误;D、原式=x6,正确,故选D【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.3.函数y=中自变量x的取值范围是()A.x≥1 B.x≥1且x≠±2 C.x≠±2 D.x≥1且x≠2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得,x﹣1≥0且x2﹣4≠0,解得x≥1且x≠±2,所以,x≥1且x≠2.故选D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【解答】解:所给图形的俯视图是B选项所给的图形.故选B.【点评】本题考查了简单组合体的三视图,属于基础题,关键掌握俯视图是从上向下看得到的视图.5.点A在双曲线上,AB⊥x轴于B,且△AOB的面积为3,则k=()A.3 B.6 C.±3 D.±6【考点】反比例函数系数k的几何意义.【专题】计算题.【分析】根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到k的值.【解答】解:根据题意得S△AOB=|k|,所以|k|=3,解得k=±6.故选D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.6.一个圆锥的侧面展开图是半径为的半圆,则该圆锥的底面半径是()A.1 B.C.D.【考点】圆锥的计算.【分析】用到的等量关系为:圆锥的弧长=底面周长.【解答】解:设底面半径为R,则底面周长=2Rπ,半圆的弧长=×2π×=2πR,∴R=.故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为()A.8 B.16 C.24 D.32【考点】等边三角形的性质.【专题】规律型.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2得出答案.【解答】解:如图所示:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32;故选:D.【点评】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出规律A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2是解题关键.二、填空题(共7小题,每小题3分,共21分)8.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x≤2,故此不等式组的解集为:x<1.故答案为:x<1.【点评】本题考查的是解一元一次不等式组,解一元一次不等式组应遵循的原则“同大取较大,同小取较小,小大大小中间找,大大小小解不了”.10.如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是63°.【考点】平行线的性质.【分析】先根据三角形外角性质得∠BFD=∠E+∠D=63°,然后根据平行线的性质得到∠ABE=∠BFD=63°.【解答】解:如图,∵∠BFD=∠E+∠D,而∠D=27°,∠E=36°,∴∠BFD=36°+27°=63°,∵AB∥CD,∴∠ABE=∠BFD=63°.故答案为:63°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.11.化简÷=1.【考点】分式的乘除法.【分析】首先将分式的分子与分母分解因式,进而利用分式乘除运算法则求出即可.【解答】解:原式=×=1.故答案为:1.【点评】此题主要考查了分式的乘除运算,正确分解因式是解题关键.12.已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是.【考点】根与系数的关系.【分析】由于已知方程的一根2﹣,并且一次项系数也已知,根据两根之和公式可以求出方程的另一根.【解答】解:设方程的另一根为x1,由x1+2﹣=4,得x1=2+.【点评】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.13.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为2,(2)点C的坐标为(﹣,1).【考点】正方形的性质;坐标与图形性质.【分析】(1)利用勾股定理直接计算即可求出OA的长;(2)过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【解答】解:(1)∵点A的坐标为(1,),∴OA==2,故答案为:2;(2)如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故答案为(﹣,1).【点评】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.14.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为3﹣,.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【专题】动点型.【分析】应分两种情况进行讨论:①当PQ⊥AC时,△APQ为直角三角形,根据△APQ∽△ABC,可将时间t求出;②当PQ⊥AB时,△APQ为直角三角形,根据△APQ∽△ACB,可将时间t求出.【解答】解:∵AB是直径,∴∠C=90°,又∵BC=2cm,∠ABC=60°,∴AB=2BC=4,AC=2,则AP=(4﹣2t)cm,AQ=t,∵当点P到达点A时,点Q也随之停止运动,∴0<t≤2,①如图1,当PQ⊥AC时,PQ∥BC,则△APQ∽△ABC,∴,∴,解得t=3﹣,②如图2,当PQ⊥AB时,△APQ∽△ACB,则,故,解得t=,故答案为:3﹣,.【点评】本题考查了圆周角定理、相似三角形的性质、直角三角形的性质等知识的综合应用能力.在求时间t时应分情况进行讨论,防止漏解.三、解答题(本大题共10小题,满分共78分)15.解方程组.【考点】解二元一次方程组.【分析】方程组整理后,利用代入消元法求出解即可.【解答】解:方程组整理得:,由②得:x=5y﹣3③,把③代入①得:25y﹣15﹣11y=﹣1,即y=1,把y=1代入③得:x=2,则方程组的解为【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【考点】分式方程的应用.【专题】应用题.【分析】设原来每天制作x件,根据原来用的时间﹣现在用的时间=10,列出方程,求出x的值,再进行检验即可.【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.【点评】此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,本题的等量关系是原来用的时间﹣现在用的时间=10.17.如图是我市某校八年级学生为贫困山区学生捐款情况抽样调查的条形图和扇形统计图.(1)求本次抽样的学生有多少人;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用捐款5元的人数除以它所占的百分比即可解答;(2)用样本容量分别减去捐款5元的人数和捐款10元的人数得到捐款15元的人数,于是可计算出捐款15元的人数的百分比,然后用360°乘以这个百分比即可得到捐款15元的人数所占的圆心角的度数;(3)先样本的平均数,根据样本估计总体,用800乘以这个平均数可估计出九年级学生捐款总数.【解答】解:(1)15÷30%=50(人),答:本次抽样的学生有50人;(2)捐款15元的人数=50﹣15﹣25=10(人),360°×=72°,答:该样本中捐款15元的人数所占的圆心角度数为72°;(3)据此信息可估计该校六年级学生每人捐款为:(5×15+10×25+15×10)÷(15+25+10)=720÷50=9.5(元)9.5×800=7600(元).答:八年级捐款总数为7600元.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体和扇形统计图.18.已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC的数量关系及位置关系,并证明你的猜想.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】求出AB=DC,∠EAB=∠EDC,根据SAS证△EAB≌△EDC推出∠AEB=∠DEC,EB=EC 即可.【解答】BE=EC,BE⊥EC.证明:∵AC=2AB,点D是AC的中点,∴AB=AD=CD,∵∠EAD=∠EDA=45°,∴∠EAB=∠EDC=135°,∵在△EAB和△EDC中,,∴△EAB≌△EDC(SAS),∴∠AEB=∠DEC,EB=EC,∴∠BEC=∠AED=90°,∴BE=EC,BE⊥EC.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定的应用,关键是推出△EAB≌△EDC.19.有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和﹣3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画树状图,根据树状图可以求得点Q的所有可能坐标;(2)根据(1)中的树状图,求得点Q落在直线y=x﹣3上的情况,根据概率公式即可求得答案.【解答】解:(1)画树状图得:∴点Q的坐标有(1,﹣1),(1,﹣2),(1,﹣3),(2,﹣1),(2,﹣2),(2,﹣3);(2)∵点Q落在直线y=x﹣3上的有(1,﹣2),(2,﹣1),∴“点Q落在直线y=x﹣3上”记为事件A,∴P(A)==,即点Q落在直线y=x﹣3上的概率为.【点评】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.20.平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣6,0),B(4,0),C(5,3),反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.【考点】反比例函数综合题.【专题】综合题.【分析】(1)根据反比例函数图象点的坐标特征把C点坐标代入y=,求出k的值即可确定反比例函数解析式;(2)先计算出AB=10,再根据平行四边形的性质得CD=10,则可确定D点坐标为(﹣5,3),然后根据关于x轴对称的点的坐标特征得D′的坐标为(﹣5,﹣3)再根据反比例函数图象点的坐标特征判断点D′在双曲线上;(3)由于点C坐标为(5,3),D′的坐标为(﹣5,﹣3),则点C和点D′关于原点中心对称,根据中心对称的性质得点D′、O、C共线,且OC=OD′,然后利用S△AD′C=S△AD′O+S△AOC=2S△AOC进行计算.【解答】解:(1)∵C(5,3)在反比例函数y=的图象上,∴=3,∴k=15,∴反比例函数解析式为y=;(2)∵A(﹣6,0),B(4,0),∴AB=10,∵四边形ABCD为平行四边形,∴CD=10,而C点坐标为(5,3),∴D点坐标为(﹣5,3),∵平行四边形ABCD和平行四边形AD′C′B关于x轴对称,∴D′的坐标为(﹣5,﹣3),∵﹣5×(﹣3)=15,∴点D′在双曲线y=上;(3)如图,∵点C坐标为(5,3),D′的坐标为(﹣5,﹣3),∴点C和点D′关于原点中心对称,∴点D′、O、C共线,且OC=OD′,∴S△AD′C=S△AD′O+S△AOC=2S△AOC=2××6×3=18.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、平行四边形的性质和轴对称、中心对称的性质;会运用图形与坐标的关系计算线段的长和三角形面积公式.21.如图,AB是⊙O的直径.半径OD垂直弦AC于点E.F是BA延长线上一点,∠CDB=∠BFD.(1)判断DF与⊙O的位置关系,并证明;(2)若AB=10,AC=8,求DF的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)利用圆周角定理以及平行线的判定得出∠FDO=90°,进而得出答案;(2)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.【解答】解:(1)DF与⊙O相切.∵∠CDB=∠CAB,又∵∠CDB=∠BFD,∴∠CAB=∠BFD.∴AC∥DF.∵半径OD垂直于弦AC于点E,∴OD⊥DF.∴DF与⊙O相切.(2)∵半径OD垂直于弦AC于点E,AC=8,∴.∵AB是⊙O的直径,∴.在Rt△AEO中,.∵AC∥DF,∴△OAE∽△OFD.∴.∴.∴.【点评】此题主要考查了相似三角形的判定与性质以及切线的判定等知识,得出△OAE∽△OFD是解题关键.22.如图,两建筑物的水平距离BC是30m,从A点测得D点的俯角α是35°,测得C点的俯角β为43°,求这两座建筑物的高度.(结果保留整数)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.【解答】解:过点D作DE⊥AB,则四边形BCDE为矩形,在Rt△ADE中,∠ADE=35°,DE=30,∴AE=DEtan∠ADE=30×tan35°≈30×0.7≈21;在Rt△ABC中,∠ACB=43°,CB=30,∴AB=BCtanβ=30×tan43°≈30×0.93≈28;则DC=AB﹣AE=28﹣21=7.∴AB=28m,DC=7m.即两座建筑物的高度分别为28m,7m.【点评】本题考查解直角三角形的应用,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.23.在黄冈建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到35元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:y=(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.【考点】二次函数的应用.【分析】(1)因为25<28<30,所以把x=28代入y=40﹣x即可求出该产品的年销售量为多少万件;(2)由(1)中y于x的函数关系式和根据年获利=年销售收入﹣生产成本﹣投资成本,得到w和x 的二次函数关系,再有x的取值范围不同分别讨论即可知道该公司是盈利还是亏损,若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)由题目的条件得到w和x在自变量x的不同取值范围的函数关系式,再分别当w≥67.5,求出对应x的范围,结合y于x的关系中的x取值范围即可确定此时销售单价的范围.【解答】解:(1)∵25<28<30,y=,∴把x=28代入y=40﹣x得,∴y=12(万件),答:当销售单价定为28元时,该产品的年销售量为12万件;(2)①当25≤x≤30时,W=(40﹣x)(x﹣20)﹣25﹣100=﹣x2+60x﹣925=﹣(x﹣30)2﹣25,故当x=30时,W最大为﹣25,即公司最少亏损25万;②当30<x≤35时,W=(25﹣0.5x)(x﹣20)﹣25﹣100=﹣x2+35x﹣625=﹣(x﹣35)2﹣12.5故当x=35时,W最大为﹣12.5,即公司最少亏损12.5万;对比①,②得,投资的第一年,公司亏损,最少亏损是12.5万;答:投资的第一年,公司亏损,最少亏损是12.5万;(3)①当25≤x≤30时,W=(40﹣x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+61x﹣862.5,令W=67.5,则﹣x2+61x﹣862.5=67.5,化简得:x2﹣61x+930=0,解得:x1=31;x2=30,此时,当两年的总盈利不低于67.5万元,x=30;②当30<x≤35时,W=(25﹣0.5x)(x﹣20﹣1)﹣12.5﹣10=﹣0.5x2+35.5x﹣547.5,令W=67.5,则﹣0.5x2+35.5x﹣547.5=67.5,化简得:x2﹣71x+1230=0,解得:x1=30;x2=41,此时,当两年的总盈利不低于67.5万元,30<x≤35,答:到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x≤35.【点评】本题主要考查二次函数在实际中应用,最大销售利润的问题常利函数的增减性来解答,我们首先要弄懂题意,确定变量,建立函数模型解答,其中要注意应该在自变量的取值范围内求最大值.24.如图,已知抛物线y=x2﹣2x+m交x轴于A,B两点(A在B的左边),交y轴于C点,且OB=OC,连接BC,(1)直接写出m的值和B,C两点的坐标;(2)P点在直线BC下方的抛物线上,△BCP的面积为S,求S最大时,P的坐标;(3)抛物线的对称轴交抛物线于D点,交x轴于E点,在抛物线上是否存在点M,过M点作MN ⊥BD于N点,使△DMN与△BDE相似?若存在,请求出M点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用OB=OC进而表示出B点坐标,进而求出即可;(2)首先求出BC的解析式,进而利用配方法求出抛物线的顶点坐标得出答案;(3)分别利用①若M在对称轴左边的抛物线上,②若M在对称轴右边的抛物线上,求出M点坐标即可.【解答】解:(1)∵抛物线y=x2﹣2x+m交x轴于A,B两点(A在B的左边),交y轴于C点,且OB=OC,∴CO=﹣m,BO=﹣m,则B点坐标为:(﹣m,0),将B点坐标代入y=x2﹣2x+m得:0=m2+2m+m,解得:m 1=﹣3,m 2=0(不合题意舍去),则B (3,0),C (0,﹣3);(2)抛物线y=x 2﹣2x ﹣3,设直线BC 的解析式为y=kx +b ,由解得:,∴直线BC 的解析式为y=x ﹣3,设P (x ,y ),则S=×3[(x ﹣3)﹣(x 2﹣2x ﹣3)]=﹣x 2+x ,=﹣(x ﹣)2+,∴y=()2﹣2×﹣3=﹣,∴P 的坐标为(,﹣);(3)存在.D (1,﹣4), ①如图,若M 在对称轴左边的抛物线上,记为M 1,M 1N 1⊥BD 于N 1,当△M 1DN 1∽△DBE 时,∠M 1DN 1=∠DBE延长DM 1交x 轴于G 点,则DG=BG ,设G 点坐标为(x ,0),BG=x +3由勾股定理得DG==,∴x +3=, 解得,x=2,∴G 点坐标为(﹣2,0),可得直线DG 的解析式为:y=﹣x ﹣,由解得,,∴M1的坐标为:(﹣,﹣);②如图,若M在对称轴右边的抛物线上,记为M2,M2N2⊥BD于N2,当BH⊥x轴于点B,BH=DH,设BH=x,则DH=x,故(4﹣x)2+22=x2,解得:x=,则H(3,﹣),可得直线DH的解析式为:y=x﹣,故,解得:,可得M2的坐标为(,﹣),综上所述:M点的坐标为:(﹣,﹣)或(,﹣).【点评】此题主要考查了二次函数综合以及相似三角形的判定与性质等知识,利用分类讨论的思想得出M点坐标是解题关键.。

湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题(

【题文】 已知双曲线22
221(0)x y a b a b
-=>>的左、右焦点分别为F 1、F 2,过点F 1作圆222x y a +=的切线交双曲线右支于点M ,若12F MF ∠4π=
,则双曲线的离心率为______.
【解析】
【分析】
设切点为N ,连接ON ,过2F 作2F A MN ⊥,垂足为A ,由三角形中位线定理和圆切线的
性质,结合双曲线的定义,可以得到,a b 的关系,再结合c =离心率.
【详解】设切点为N ,连接ON ,过2F 作2F A MN ⊥,垂足为A ,如下图:
由圆的切线性质可知:1ON F M ⊥,ON a =,由三角形中位线定理可知:22AF a =,
21AF F M ⊥,在12Rt AF F ∆中,12AF b ==,在2R t A F M ∆中,12F MF ∠4π
=,
所以2MA a =,2F M =,由双曲线定义可知:122F M F M a -=,
即222b a a +-=,所以b =,而c =c =,因
此c e a
==
【点睛】本题考查了双曲线的离心率,运用双曲线的定义、平面几何的相关知识是解题的关键.
【标题】湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题
【结束】。

湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题

湖北省黄冈中学2019届高三第三次模拟考试数学(理科)试卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|20A x x x =--<,{}2|log 0B x x =<,则AB =( )A. (1,2)-B. (0,1)C. (,2)-∞D. (1,1)-2.设11iz i+=-,z 是z 共轭复数,则z z ⋅=( ) A. -1B. iC. 1D. 43.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化B. 这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 4.将函数sin 23y x π⎛⎫=+⎪⎝⎭图象上所有的点向左平移6π个单位长度,再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象对应的函数解析式为( ) A cos 6y x π⎛⎫=+⎪⎝⎭B. 2sin 43y x π⎛⎫=+⎪⎝⎭的C cos y x =D. sin 4y x =5.执行如图所示的程序框图,若输出的结果是7,则判断框内m 的取值范围是( )A. (30,42)B. (30,42]C. (42,56]D. (42,56)6.已知一个简单几何体的三视图如图所示,若该几何体的体积为2448π+,则r =( )A. 1B. 2C. 3D. 47.已知抛物线2C :8x y =,定点(0,2)A ,(0,2)B -,点P 是抛物线C 上不同于顶点的动点,则PBA ∠的取值范围为( ) A. 0,4π⎛⎤⎥⎝⎦B. ,42ππ⎡⎫⎪⎢⎣⎭C. 0,3π⎛⎤⎥⎝⎦D. ,32ππ⎡⎫⎪⎢⎣⎭8.如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( ).A.1πB.12πC.1142π-D.112π- 9.设{}n a 是各项为正数的等比数列,q 是其公比,n K 是其前n 项的积,且56K K <,678K K K =>,则下列结论错误的是( ) A. 01q << B. 71a =C. 95K K >D. 6K 与7K 均为n K 的最大值10.已知()f x 是定义在R 上偶函数,()g x 是定义在R 上的奇函数,且()(1)g x f x =-,则(2017)(2019)f f +的值为( )A. -1B. 1C. 0D. 无法计算11.已知正方体1111ABCD A B C D -的棱长为1,在对角线1A D 上取点M ,在1CD 上取点N ,使得线段MN 平行于对角面11A ACC ,则||MN 的最小值为( ) A. 112.已知函数()ln 2f x a x x =-+(a 为大于1的整数),若()y f x =与(())y f f x =的值域相同,则a 的最小值是( )(参考数据:ln20.6931≈,ln3 1.0986≈,ln5 1.6094≈) A. 5B. 6C. 7D. 8二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.设x ,y 满足约束条件10202x y x y x -+≤⎧⎪-≥⎨⎪≤⎩,则23z x y =+的最小值为______.14.现将6张连号门票分给甲、乙等六人,每人1张,且甲、乙分得的电影票连号,则共有______种不同的分法(用数字作答).15.已知双曲线22221(0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,过点1F 作圆222x y a +=的切线交双曲线右支于点M ,若12F MF ∠4π=,则双曲线的离心率为______.16.已知m ,n 是两个非零向量,且||2m =,|2|4m n +=,则||||m n n ++的最大值为______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.已知在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对应边,点D 为边BC 的中点,ABC ∆的面积为22sin AD B.(I )求sin sin BAD BDA ∠⋅∠的值;(II )若2BD AB =,AD =b .18.设矩形ABCD 中,4=AD ,AB =点F 、E 分别是BC 、CD 的中点,如图1.现沿AE 将AED ∆折起,使点D 至点M 的位置,且ME MF ⊥,如图2.(Ⅰ)证明:AF ⊥平面MEF ; (Ⅱ)求二面角M AE F --的余弦值.19.已知椭圆2222:1(0)x y C a b a b +=>>,左、右焦点分别为1F 、2F ,A 为相圆C 上一点,1AF 与y 轴交于B ,2||AB F B =,||6OB =.(Ⅰ)求椭圆C 的方程;(Ⅱ)过右焦点2F 的直线(2)(0)y k x k =-≠交椭圆于P 、Q 两点若PQ 的中点为N ,O 为原点,直线ON交直线3x =于点M .求2||PQ MF 的最大值.20.10月1日,某品牌的两款最新手机(记为W 型号,T 型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:(Ⅰ)若在10月1日当天,从A ,B 这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为W 型号手机的概率;(Ⅱ)现从这5个手机店中任选3个举行促销活动,用X 表示其中W 型号手机销量超过T 型号手机销量的手机店的个数,求随机变量X 的分布列和数学期望;(III )经测算,W 型号手机的销售成本η(百元)与销量(部)满足关系34ηξ=+.若表中W 型号手机销量的方差20(0)S m m =>,试给出表中5个手机店的W 型号手机销售成本的方差2S 的值.(用m 表示,结论不要求证明)21.已知函数()||ln (0)f x x a x a =-->. (Ⅰ)讨论()f x 的单调性;(Ⅱ)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所作的第一题计分.22.在平面直角坐标系中,以原点为极点,以x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 4sin 4ρρθρθ=-+,直线1l 的极坐标方程为(cos sin )3ρθθ-=. (Ⅰ)写出曲线C 和直线1l 的直角坐标方程;(Ⅱ)设直线2l 过点(1,0)P -与曲线C 交于不同两点A ,B ,AB 的中点为M ,1l 与2l 的交点为N ,求||||PM PN ⋅.23.已知函数()|2|f x ax =-.(Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围.。

湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题-28c2ff6c30424b51901b5

○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题试卷副标题题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、单选题1.设集合{}2|20A x x x =--<,{}2|log 0B x x =<,则A B =( )A .(1,2)-B .(0,1)C .(,2)-∞D .(1,1)-2.设11iz i+=-,z 是z 的共轭复数,则z z ⋅=( ) A .-1B .iC .1D .43.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C .从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 4.将函数图象上所有的点向左平移个单位长度,再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象对应的函数解析式为( ) A .B .C .D .5.执行如图所示的程序框图,若输出的结果是7,则判断框内m 的取值范围是( )A .(30,42)B .(30,42]C .(42,56]D .(42,56)6.已知一个简单几何体的三视图如图所示,若该几何体的体积为2448π+,则r =( )A .1B .2C .3D .47.已知抛物线2C :8x y =,定点(0,2)A ,(0,2)B -,点P 是抛物线C 上不同于顶点的动点,则PBA ∠的取值范围为( ) A .0,4π⎛⎤⎥⎝⎦B .,42ππ⎡⎫⎪⎢⎣⎭C .0,3π⎛⎤⎥⎝⎦D .,32ππ⎡⎫⎪⎢⎣⎭○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .1πB .12πC .1142π-D .112π- 9.设{}n a 是各项为正数的等比数列,q 是其公比,n K 是其前n 项的积,且56K K <,678K K K =>,则下列结论错误的是( )A .01q <<B .71a =C .95K K >D .6K 与7K 均为n K 的最大值10.已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()(1)g x f x =-,则(2017)(2019)f f +的值为( )A .-1B .1C .0D .无法计算11.已知正方体1111ABCD A B C D -的棱长为1,在对角线1A D 上取点M ,在1CD 上取点N ,使得线段MN 平行于对角面11A ACC ,则||MN 的最小值为( ) A .1B 2C .22D 312.已知函数()ln 2f x a x x =-+(a 为大于1的整数),若()y f x =与(())y f f x =的值域相同,则a 的最小值是( )(参考数据:ln20.6931≈,ln3 1.0986≈,ln5 1.6094≈)A .5B .6C .7D .8第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………13.设x ,y 满足约束条件10202x y x y x -+≤⎧⎪-≥⎨⎪≤⎩,则23z x y =+的最小值为______.14.现将6张连号的门票分给甲、乙等六人,每人1张,且甲、乙分得的电影票连号,则共有______种不同的分法(用数字作答).15.已知双曲线22221(0)x y a b a b -=>>的左、右焦点分别为1F 、2F ,过点1F 作圆222x y a +=的切线交双曲线右支于点M ,若12F MF ∠4π=,则双曲线的离心率为______.16.已知m ,n 是两个非零向量,且||2m =,|2|4m n +=,则||||m n n ++的最大值为______. 评卷人 得分三、解答题17.已知在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对应边,点D 为边BC 的中点,ABC ∆的面积为22sin AD B. (I )求sin sin BAD BDA ∠⋅∠的值; (II )若2BD AB =,3AD =,求b .18.设矩形ABCD 中,4=AD ,22AB =,点F 、E 分别是BC 、CD 的中点,如图1.现沿AE 将AED ∆折起,使点D 至点M 的位置,且ME MF ⊥,如图2.(Ⅰ)证明:AF ⊥平面MEF ; (Ⅱ)求二面角M AE F --的余弦值.19.已知椭圆2222:1(0)x y C a b a b +=>>6,左、右焦点分别为1F 、2F ,6○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………(Ⅰ)求椭圆C 的方程;(Ⅱ)过右焦点2F 的直线(2)(0)y k x k =-≠交椭圆于P 、Q 两点若PQ 的中点为N ,O 为原点,直线ON 交直线3x =于点M .求2||PQ MF 的最大值. 20.10月1日,某品牌的两款最新手机(记为W 型号,T 型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表: 手机店A BC DEW 型号手机销量6 613811T 型号手机销量 129 13 6 4(Ⅰ)若在10月1日当天,从A ,B 这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为W 型号手机的概率;(Ⅱ)现从这5个手机店中任选3个举行促销活动,用X 表示其中W 型号手机销量超过T 型号手机销量的手机店的个数,求随机变量X 的分布列和数学期望;(III )经测算,W 型号手机的销售成本η(百元)与销量(部)满足关系34ηξ=+.若表中W 型号手机销量的方差20(0)S m m =>,试给出表中5个手机店的W 型号手机销售成本的方差2S 的值.(用m 表示,结论不要求证明) 21.已知函数()||ln (0)f x x a x a =-->. (Ⅰ)讨论()f x 的单调性;(Ⅱ)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.22.在平面直角坐标系中,以原点为极点.以x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 4sin 4ρρθρθ=-+,直线1l 的极坐标方程为()cos sin 3ρθθ-=.(1)写出曲线C 和直线1l 的直角坐标方程;(2)设直线2l 过点()10P -,与曲线C 交于不同两点A B ,,AB 的中点为M ,1l 与2l 的交点为N ,求PM PN ⋅. 23.已知函数()|2|f x ax =-.(Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围.参考答案1.A 【解析】 【分析】分别求出集合A 和B ,再求并集即可. 【详解】解不等式220x x --<得12x -<<,即()1,2A =-; 由20log x <得01x <<,即()B 0,1=; 所以()A B 1,2⋃=-. 故选A 【点睛】本题主要考查集合的并集运算,熟记概念即可求解,属于基础题型. 2.C 【解析】 【分析】利用两个复数代数形式的乘除法,虚数单位i 的幂运算性质,求得z 的值,可得z ,从而求得z z ⋅的值. 【详解】()()()211111i iz i i i i ++===--+,则z i =-,故()1z z i i ⋅=⋅-=,故选C. 【点睛】本题主要考查复数基本概念,两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题. 3.D 【解析】 【详解】选项A 错,并无周期变化,选项B 错,并不是不断减弱,中间有增强.C 选项错,10月的波动大小11月分,所以方差要大.D 选项对,由图可知,12月起到1月份有下降的趋势,所以去年12月份的平均值大于今年1月份的平均值.选D.4.A【解析】【分析】将图象上所有的点向左平行移动个单位长度得,再将所得图象上所有点的横坐标伸长到原来的倍得,再利用诱导公式得出结果.【详解】先将函数图象上所有的点向左平行移动个单位长度得再将所得图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得故选A【点睛】本题考查了正弦函数的图像变化和诱导公式,正确的掌握图像的平移变化和伸缩变化是解题的关键.5.B【解析】【分析】执行程序框图,从执行的结果中,找到判断框内m的取值范围.【详解】执行程序框图结果如下:S 0 2 6 12 20 30 42 56k 1 2 3 4 5 6 7 8输出的结果为7,则m的取值范围是(30,42],故本题选B.【点睛】本题考查了读框图的能力,通过执行框图的过程,找到输出结果为7时,m应满足怎样的条件,是解题的关键.6.B【解析】【分析】通过三视图可知:该几何体是一个三棱锥和14圆锥组成的几何体,利用几何体的体积求出r 的值.【详解】通过三视图可知:该几何体是一个三棱锥和14圆锥组成的几何体,设组合体的体积为V, 所以21111943342448,24332V r r r r r rππ=⨯⨯⨯⨯+⨯⨯⨯⨯=⇒+=,故本题选B.【点睛】本题考查了通过三视图识别组合体的形状,并根据体积求参数问题,考查了数学运算能力. 7.A【解析】【分析】根据图像分析得到当直线PB与抛物线相切时,PBA∠最大,联立直线和抛物线,使得264640k∆=-=得到参数k,进而得到结果.【详解】作出抛物线C,如图所示.由图可知,当直线PB与抛物线相切时,PBA∠最大.设直线PB的方程为2y kx=-,联立282xyy kx⎧=⎪⎨⎪=-⎩得28160x kx.令264640k∆=-=,得1k=±,此时4PBAπ∠=,所以0,4PBAπ⎛⎤∠∈ ⎥⎝⎦.【点睛】在处理直线和圆锥曲线的位置关系时,往往先根据题意合理设出直线方程,再联立直线和圆锥曲线方程,但要注意“直线不存在斜率”的特殊情况. 8.D 【解析】 【分析】先设出圆O 的半径,然后算出阴影部分的面积,再计算出圆O 的面积,最后利用几何概型公式求出概率. 【详解】设圆O 的半径为2,阴影部分为8个全等的弓形组成,设每个小弓形的面积为S ,则2112111424S ππ-=⋅-⨯⨯=,圆O 的面积为224ππ⋅=,在圆O 内随机取一点,则此点取自阴影部分的概率是P ,则82411442S P ππππ-===-,故本题选D. 【点睛】本题考查了几何概型,正确计算出阴影部分的面积是解题的关键,考查了数学运算能力. 9.C 【解析】分析:利用等比数列11n n a a q -=的通项公式,解出n K 的通项公式,化简整理56K K <,678K K K =>这三个表达式,得出结论.详解:设等比数列11n n a a q -=,n K 是其前n 项的积所以()121n n n n K a q-=,由此55611K K a q <⇒<,66711K K a q =⇒=,77811K K a q >⇒>所以6711a a q ==,所以B 正确,由551111a q a q <<,,各项为正数的等比数列,可知01q <<,所以A 正确 ()162111n n nn a q K a q-==,,可知()()113221n n n n n n K a q q--==,由01q <<,所以xq 单调递减,()132n n -在n 6,7=时取最小值,所以n K 在n 6,7=时取最大值,所以D 正确.故选C点睛:本题应用了函数的思想,将等比数列当作指数型函数对其单调性进行研究,n K 为复合函数,对于复合函数的单调性“同增异减”. 10.C 【解析】 【分析】因为()g x 是定义在R 上的奇函数,所以有()()g x g x -=-,结合已知的等式,可以得到(1)()()(1)f x g x g x f x --=-=-=--,由()f x 是定义在R 上的偶函数,可得()()f x f x -=,可得(1)(1)0f x f x ++-=,最后求出(2017)(2019)f f +的值.【详解】因为()g x 是定义在R 上的奇函数,所以有()()g x g x -=-,(1)()()(1)f x g x g x f x ∴--=-=-=--,因为()f x 是定义在R 上的偶函数,所以()()f x f x -=(1)[(1)](1)f x f x f x ∴+=-+=--,所以(1)(1)0f x f x ++-=,因此(2017)(2019)f f +=0,故本题选C.【点睛】本题考查了抽象函数的性质,结合奇偶函数的性质,根据所给的式子进行变换是解题的关键. 11.D 【解析】 【分析】作1MM AD ⊥,垂足为1M ,作1NN CD ⊥,垂足为1N ,根据面面垂直的性质定理、线面垂直的性质定理、线面平行的性质定理可以得出11///M N AC ,设11DM DN x ==,由此可以求出||MN 的最小值. 【详解】作1MM AD ⊥,垂足为1M ,作1NN CD ⊥,垂足为1N ,如下图所示:在正方体1111ABCD A B C D -中,根据面面垂直的性质定理,可得11,MM NN ,都垂直于平面ABCD ,由线面垂直的性质,可知11MM NN ,易知:1111//M M A N N ACC 平面,由面面平行的性质定理可知://11M N AC ,设11DM DN x ==, 在直角梯形11MM N N 中,222211(2)(12)633MN x x x ⎛⎫=+-=-+ ⎪⎝⎭,当13x =时,||MN 的最小值为33, 故本题选D. 【点睛】本题考查了线段长的最小值的求法,应用正方体的几何性质、运用面面垂直的性质定理、线面垂直的性质、线面平行的性质定理,是解题的关键. 12.A 【解析】 【分析】求导,判断()y f x =的单调性,进而求出()y f x =的值域,判断()y f x =最大值的正负性,令()ln 2f x a x x n =-+=,显然知道n 的取值范围,(())()y f f x f n ==,利用()y f x =的单调性,结合已知()y f x =与(())y f f x =的值域相同,可以得到ln 2a a a a ≤-+,构造函数()ln 22g a a a a =-+,2,a a Z ≥∈,求导,判断单调性,再判断(2),(3),(4),(5)g g g g 的正负性,结合单调性,最后求出a 的最小值. 【详解】'()ln 2()=1a a x f x a x x f x x x-=-+⇒-=,当x a >时,'()0f x <,函数()f x 单调递减,当0x a <<时,'()0f x >,函数()f x 单调递增,故max ()()ln 2f x f a a a a ==-+,又当0,()x f x →→-∞,所以函数()f x 的值域为(,ln 2]a a a -∞-+,令'()ln 2()ln 11ln ,t a a a a t a a a =-+⇒=+-='1,()0a a Z t a >∈∴>因此()t a 是单调递增函数,因此当2,a a Z ≥∈时, ()(2)2ln 20t a t ≥=>,令()ln 2f x a x x n =-+=由上可知:ln 2n a a a ≤-+, (())()y f f x f n ==,由上可知函数(n)f 在0x a <<时,单调递增,在x a >时,单调递减,要想(())()y f f x f n ==的值域为(,ln 2]a a a -∞-+,只需ln 2a a a a ≤-+,即ln 220a a a -+≥,设()ln 22g a a a a =-+,2,a a Z ≥∈,'()ln 1g a a =-,所以当3,a a Z ≥∈时,函数()g a 单调递增,(2)2ln 240,(3)3ln 340g g =-<=-<, (4)4ln 460,(5)5ln 580g g =-<=->,所以a 的最小值是5,故本题选A.【点睛】本题考查了两函数值域相同时,求参问题,求出每个函数的单调性,结合一个函数的值域情况,确定参数的取值范围是解题的关键. 13.8 【解析】 【分析】画出不等式组表示的平面区域,结合图形求得最优解,再计算目标函数的最小值. 【详解】画出不等式组10202x y x y x -+≤⎧⎪-≥⎨⎪≤⎩表示的平面区域,如图阴影部分所示,由图形知,当目标函数z =2x +3y 过点A 时,z 取得最小值;由1020x y x y -+=⎧⎨-=⎩,求得A (1,2);∴z =2x +3y 的最小值是2×1+3×2=8. 故答案为8. 【点睛】本题考查了线性规划的应用问题,解题时常用“角点法”,其步骤为:①由约束条件画出可行域,②求出可行域各个角点的坐标,③将坐标逐一代入目标函数,④验证求出最优解. 14.240 【解析】 【分析】先求出甲、乙连号的情况,然后再将剩余的4张票分给其余4个人即可. 【详解】甲、乙分得的门票连号,共有2255210A =⨯=种情况,其余四人没人分得1张门票,共有4424A =种情况,所以共有1024240⨯=种. 故答案为240. 【点睛】本题考查两个原理的应用和排列数的计算,考查应用所学知识解决问题的能力,属于基础题. 153【解析】【分析】设切点为N ,连接ON ,过2F 作2F A MN ⊥,垂足为A ,由三角形中位线定理和圆切线的性质,结合双曲线的定义,可以得到,a b 的关系,再结合22c a b =+,最后求出双曲线的离心率. 【详解】设切点为N ,连接ON ,过2F 作2F A MN ⊥,垂足为A ,如下图:由圆的切线性质可知:1ON F M ⊥,ON a =,由三角形中位线定理可知:22AF a =,21AF F M ⊥,在12Rt AF F ∆中,2211222AF F F AF b =-=,在2Rt AF M ∆中,12F MF ∠4π=,所以2MA a =,222F M a =,由双曲线定义可知:122F M F M a -=, 即22222b a a a +-=,所以2b a =,而22c a b =+223c a b a +=,因此3ce a==3【点睛】本题考查了双曲线的离心率,运用双曲线的定义、平面几何的相关知识是解题的关键. 16.25【解析】 【详解】设m 的起点为坐标原点,因为||2m =,所以设m 的终点坐标为(2,0),即(2,0)m =,设(,)n x y =,因为|2|4m n +=,所以2222(22)(2)16(1)4x y x y ++=⇒++=,21x -≤≤,||||(m n n x ++=+,而2222(1)423x y x x y ++=⇒++=,所以有||||72m n n ++=+≤==时,取等号,即1x =-时,取等号,即||||m n n ++的最大值为 【点睛】本题考查了平面向量模的公式,考查了两个向量模的和的最大值问题,利用向量的坐标表示、重要的基本不等式是解题的关键.17.(I )12;(II )b =【解析】 【分析】(I )由D 为BC 的中点可知:ABD ∆的面积为24sin AD B ,由三角形的面积公式可知21sin 24sin AD AB BD B B⋅⋅=,由正弦定理可得2sin sin 1BAD BDA ∠⋅∠=,最后求出sin sin BAD BDA ∠⋅∠的值;(II )已知2BD AB =,所以在ABD ∆中,由正弦定理可得sin sin BD ABBAD BDA=∠∠,所以sin 2sin BAD BDA ∠=∠,由(1)可知1sin sin 2BAD BDA ∠⋅∠=,所以sin 1BAD ∠=,1sin 2BDA ∠=,这样可以求出BAD ∠的大小,在直角ABD ∆中,利用AD =1sin 2BDA ∠=,可以求出2BD =,1AB =.2BC BD =,4BC =, 在ABC ∆中用余弦定理,可求出b 的值.【详解】(I )由ABC ∆的面积为22sin AD B 且D 为BC 的中点可知:ABD ∆的面积为24sin AD B ,由三角形的面积公式可知21sin 24sin AD AB BD B B⋅⋅=,由正弦定理可得2sin sin 1BAD BDA ∠⋅∠=,所以1sin sin 2BAD BDA ∠⋅∠=. (II )因为2BD AB =,所以在ABD ∆中,由正弦定理可得sin sin BD ABBAD BDA=∠∠,所以sin 2sin BAD BDA ∠=∠,由(1)可知1sin sin 2BAD BDA ∠⋅∠=,所以sin 1BAD ∠=,1sin 2BDA ∠=,∵(0,)BAD π∠∈,∴2BAD π∠=,在直角ABD ∆中,3AD =,1sin 2BDA ∠=所以2BD =,1AB =.∵2BC BD =,4BC =,在ABC ∆中用余弦定理,可得2222cos b a c ac B =+-1116214132=+-⨯⨯⨯= 13b =【点睛】本题考查了正弦定理、余弦定理的应用、三角形面积公式的应用,考查了数学运算能力. 18.(1)见解析;(2)3π【解析】 【分析】(1)结合图形的特点以及垂直关系得到AF ME ⊥,再由勾股定理证得AF EF ⊥,进而得到线面垂直;(2)建立空间坐标系得到两个面的法向量,利用向量夹角公式得到结果. 【详解】(1)证明:由题设知:AM ME ⊥又ME MF ⊥,=AM MF M ⋂;AM ,MF ⊂面AMFME ∴⊥面AMF ,AF ⊂面AMF ,AF ME ∴⊥,在矩形ABCD 中,4AD =,22AB =,E 、F 为中点224+2=18AE ∴=,22=2+2=6EF ,228212AF =+= 222AE EF AF ∴=+,AF EF ∴⊥,又ME ,EF ⊂面MEF ,∴ AF ⊥面MEF(2)AF ⊂面ABCE ,由(1)知面MFE ⊥面AFE ,且90AFE ︒∠= ∴以F 为原点,FE 为x 轴,FA 为y 轴建立如图的空间直角坐标系在Rt MFE ∆中,过M 作MN EF ⊥于N2ME =6EF =2MF =,222336MN ∴==, 26cos =26FN MF MFE =∠(也可用2MF FN FE =⋅) 0,3,0)A ∴(、)6E,、()0,0,0F 、2623M ⎝⎭面AFE 的一个法向量为=(00,1n ,)设面AME 的一个法向量为(),m x y z =,623EM ⎛=- ⎝⎭、()623,0AE =-,由=0=0EM m AE m ⎧⋅⎨⋅⎩即623036230x z x y ⎧=⎪⎨⎪-=⎩令1x =,则22y =,22z =,22=1,22m ⎛⎫∴ ⎪ ⎪⎝⎭,, 212cos ,212m n ∴==⨯, ,3m n π= ∴二面角M AE F --为3π【点睛】这个题目考查了空间中的直线和平面的位置关系,平面和平面的夹角.在证明面面垂直时,其常用方法是在其中一个平面内找两条相交直线和另一平面内的某一条直线垂直,或者可以通过建系的方法求两个面的法向量使得两个面的法向量互相垂直即可.求面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.19.(I )22162x y +=;(II【解析】 【分析】(Ⅰ)由题意得21||AB F B F B ==,通过平面几何的知识,可以得到212AF FF ⊥,根据||6OB =,离心率为3,结合222a b c =+,这样可以求出26a =,22b =,进而求出椭圆的标准方程;(II )直线与椭圆方程联立,可以得到一个一元二次方程,设()11,P x y 、()22,Q x y ,利用根与系数关系可以求出N 的坐标,以及PQ 的长度,求出直线ON 的方程,求出M 的坐标,求出MF 的长度表达式,求出 2||PQ MF 平方的表达式,用换元法、配方法,最后求出2||PQ MF 的最大值. 【详解】(I )连接2AF ,由题意得21||AB F B F B ==,所以BO 为12FAF ∆的中位线, 又因为12BO F F ⊥,所以212AF F F ⊥,且222||3b AF BO a ===又c e a ==,222a b c =+,得26a =,22b =, 故所求椭圆方程为22162x y +=.(II )联立22162(2)x y y k x ⎧+=⎪⎨⎪=-⎩,可得()222231121260k x k x k +-+-=. 设()11,P x y 、()22,Q x y ,则21221231k x x k +=+,212212631k x x k -=+,所以为()121224431ky y k x x k k -+=+-=+所以PQ 的中点N 坐标为22262,3131k k k k ⎛⎫- ⎪++⎝⎭,||PQ =因此直线ON 的方程为13y x k =-,从而点M 为13,k ⎛⎫- ⎪⎝⎭,2MF =,设()()2222222241||31k k PQ I MF k+==+,令231u k =+,则2(1)(2)83u u I u -+=216111322u u ⎛⎫=--- ⎪⎝⎭2161193416u ⎡⎤⎛⎫=---⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 因此当4u =,即1k =±时2||PQ MF【点睛】本题考查了椭圆标准方程、直线与椭圆的位置关系,以及椭圆弦长公式,考查了数学运算能力. 20.(I )35;(II )见解析;(Ⅲ)29S m = 【解析】 【分析】(Ⅰ)将从A ,B 这两个手机店售出的新款手机中分别随机抽取的1部手机记为甲和乙,记事件“甲手机为T 型号手机”为1M ,记事件“乙手机为T 型号手机”为2M ,分别求出()()12,P M P M 的值,根据相互独立事件的公式求出()12P M M ,最后利用对立事件概率公式求出抽取的2部手机中至少有1部为W 型号手机的概率;(Ⅱ)由表可知:W 型号手机销量超过T 型号手机销量的手机店共有2个,故X 的所有可能取值为:0,1,2,分别求出(0),(1),(2)P X P X P X ===的值,写出随机变量X 的分布列,并根据数学期望计算公式求出()E X ;(III )根据方差的性质和变量的关系即可求出方差2S 的值. 【详解】(Ⅰ)将从A ,B 这两个手机店售出的新款手机中分别随机抽取的1部手机记为甲和乙,记事件“甲手机为T 型号手机”为1M ,记事件“乙手机为T 型号手机”为2M , 依题意,有()11226123P M ==+,()293695P M ==+,且事件1M 、2M 相互独立. 设“抽取的2部手机中至少有1部为W 型号手机”为事件M , 则()12233()11355P M P M M =-=-⨯= 即抽取的2部手机中至少有1部为W 型号手机的概率为35 (Ⅱ)由表可知:W 型号手机销量超过T 型号手机销量的手机店共有2个,故X 的所有可能取值为:0,1,2 且0323351(0)10C C P X C ===,1233253(1)5C C P X C ===,5122333(2)10C C P X C === 所以随机变量X 的分布列为:故1336()012105105E X =⨯+⨯+⨯= (III )29S m =.【点睛】本题考查了相互独立事件的概率,离散型随机变量分布列、数学期望的计算,以及方差的性质,考查了数学运算能力.21.(I )见解析;(II )见解析【解析】【分析】(Ⅰ)运用零点法,把函数()f x 的解析式进行分段表示,然后利用导数,判断每段函数的单调性;(Ⅱ)由由(Ⅰ)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x<-.这样222222ln 2ln 3ln 23n n +++22211111123n <-+-+-222111123n n ⎛⎫=--+++ ⎪⎝⎭,注意到211(2,)(1)n n N n n n *>≥∈+,最后可以得出: 222222ln 2ln 3ln (1)(21)232(1)n n n n n -+++⋯+<+. 【详解】(Ⅰ)函数()f x 可化为ln ,()ln ,0x x a x a f x a x x x a --≥⎧=⎨--<<⎩, 当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小. 若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减,在(1,)+∞上递增,而()f x 在x a =处连续,所以当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增;当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(Ⅱ)由(Ⅰ)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x<-.所以 222222ln 2ln 3ln 23n n +++22211111123n <-+-+-222111123n n ⎛⎫=--+++ ⎪⎝⎭11112334(1)n n n ⎛⎫<--+++ ⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++. 【点睛】本题考查了利用导数研究分段函数的单调性,利用数列与函数的关系,判断数列的和求代数式之间的大小关系,放缩法是解题的关键.22.(Ⅰ)C: ()()22129x y -++= ;直线1l 的直角坐标方程30x y --= (Ⅱ)8【解析】【分析】(Ⅰ)由极坐标方程与直角坐标方程的互化公式可直接得出结果;(Ⅱ)先写出直线2l 的参数方程,代入曲线C 的普通方程,得到PM ,再由直线2l 的参数方程代入30x y --=,得到PN ,进而可得出结果.【详解】(Ⅰ)曲线2:2cos 4sin 4C ρρθρθ=-+的直角坐标方程为:22244x y x y +=-+; 即()()22129x y -++= ()1:cos sin 3l ρθθ-=的直角坐标方程为:30x y --=(Ⅱ)直线2l 的参数方程1x tcos y tsin αα=-+⎧⎨=⎩(t 为参数), 将其代入曲线C 的普通方程并整理得()24cos sin 10t t αα---=, 设,A B 两点的参数分别为12,t t ,则()124cos sin t t αα+=-因为M 为AB 的中点,故点M 的参数为()122cos sin 2t t αα+=-, 设N 点的参数分别为3t ,把1x tcos y tsin αα=-+⎧⎨=⎩代入30x y --=整理得34cos sin t αα=- 所以12342cos sin 82cos sin t t PM PN t αααα+⋅=⋅=-⋅=-. 【点睛】 本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可;本题也考查了参数的方法求弦长的问题,熟记参数方程即可求解,属于常考题型.23.(I )(,1][1,)-∞-+∞;(II )[1,2]-【解析】【分析】(Ⅰ)利用零点法,进行分段,然后求解不等式的解集;(Ⅱ)根据[2,4]x ∈,进行分类,当[2,3]x ∈时,原不等式等价于|2|33|2|2ax x x ax x -+-≤+⇔-≤,即22a x-≤,这样可以求出a 的取值范围; 当(3,4]x ∈时,原不等式等价于|2|33|2|6ax x x ax -+-≤+⇔-≤这样可以求出a 的取值范围,综上所述求出a 的取值范围.【详解】(I )当4a =时,原不等式即|42||42|8x x -++≥,即|21||21|4x x -++≥. 当12x ≥时,21214x x -++≥,解得1x ≥,∴1x ≥; 当1122x -≤≤时,12214x x -++≥,无解; 当12x ≤-时,12214x x ---≥,解得1x ≤-,∴1x ≤-; 综上,原不等式的解集为(,1][1,)-∞-+∞(II )由()|3|3f x x x +-≤+得|2||3|3ax x x -+-≤+(*)当[2,3]x ∈时,(*)等价于|2|33|2|2ax x x ax x -+-≤+⇔-≤ 即22a x -≤,所以2222a x x -+≤≤+恒成立,所以813a -≤≤ 当(3,4]x ∈时,(*)等价于|2|33|2|6ax x x ax -+-≤+⇔-≤即48ax -≤≤,所以48a x x-≤≤恒成立,所以12a -≤≤ 综上,a 的取值范围是[1,2]-【点睛】本题考查了解绝对值不等式,以及不等式恒成立时,求参数的取值范围问题,进行分类讨论是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄冈中学2019年自主招生(理科实验班)预录考试
数学模拟试题

一、 选择题(每小题5分,共30分)
1. 方程023xxx实根个数为( )
A 1 B 2 C 3 D 4
2.6,231,23122baba则( )
A 3 B 4 C 5 D 6
3.已知一个六边形六个内角都是1200,连续四条边长依次是1,3,3,2则该六
边形的周长是( )
A 13 B 15 C 14 D 16

4.实数a,b满足111a22bba,说法:(1)a=b, (2)a=-b, (3)ab=1,
(4)ab=-1中正确的有( )个
A 1 B 2 C 3 D 4
5
.如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A'的坐标为(a,b),

则点A的坐标为( )
A.(a,b) B.(a,1b) C.(a,1b) D.(a,2b)


6.如图,两圆相交于A、B两点,过点B的直线与两圆分别交于C,D两点.若⊙O1半径为5,
⊙O2的半径为2,则AC:AD为( )
A.52:3 B.3:52 C.1:52 D.2:5
二、填空题(每小题5分,共40分)
7.若a,b都是正实数,0111baba,则33baab
8.不论m为任何实数,抛物线1222mmmxxy的顶点都在一条直线上,
则这条直线的解析式是

9.甲从A地到B地,乙从B地到A地,甲,乙同时出发相向匀速而行,经t小
时相遇于C地,相遇后二人继续前进,甲又用了4小时到达B地,乙又用了9
小时到达A地,则t=

10.75的小数部分是a,75的小数部分是b,则ab-2a+3b-12=

11.设aax1,则24xx=
12.如果一个三位数,百位数字与个位数字都大于十位数字,则称这个三位数为
“凹数”,从所有三位数中任取一个三位数是“凹数”的概率是

13.化简:baababaaabbbbaba21b
14.同心圆半径分别为6,8,AB为小圆的弦,CD为大圆的弦,且ABCD为矩形,
圆心在矩形ABCD内,当矩形ABCD面积最大时,矩形ABCD的周长为

三、解答题(15、16题各12分,17、18题各13分,共50分)
15.一号列车从甲站开往乙站,一小时后二号列车从乙站开往甲站,二号列车每
小时比一号列车多行10千米,两列车刚好在甲乙两站中点处相遇。若二号列车
从甲站开往乙站,开出一小时后,一号列车从乙站开往甲站,要求两车仍在甲乙
两站中点处相遇,那么一号列车速度每小时要增加28千米,求甲乙两地路和一
号列车速度。
16.如图,梯形ABCD中,AB∥DC,∠ABC =900,AB=2,BC=4,tan∠ADC=2
(1)求证:DC=BC
(2)E是梯形ABCD内一点,连结DE,CE,将△DCE绕点C顺时针旋转900得△
BCF,已知CE=2BE,∠BEC=1350,求cos∠BFE的值

17.如图,已知AB为⊙O的直径,C为⊙O上一点.延长BC至D,使CD=BC,
CE⊥AD于E,BF交⊙O于F,AF交CE于P.
求证:PE=PC.

P
O
A
E

F
B

D
C
18.设抛物线2y=x2-12x+33被直线y=mx+b截得的弦长是抛物线y=-x2 被这条直
线截得的弦长的2倍.
(1)用m表示b.
(2)求m的范围.
(3)证明:在(2)的范围内时,这条直线必通过某个定点P,并求P的坐标.

相关文档
最新文档