一元基本初等函数

合集下载

5.2.1基本初等函数的导数 课件高二下学期数学人教A版(2019)选择性必修第二册

5.2.1基本初等函数的导数 课件高二下学期数学人教A版(2019)选择性必修第二册
当 < 0时,随着增加, ′ 越来越小, = 2 减少得越来越慢;
当 > 0时,随着增加, ′ 越来越大, = 2 增加得越来越快;
若 = 2 表示路程关于时间的函数,则 ′ =2x可解释为某物体做变
速运动,它在时刻瞬时速度为2x。
新知学习
一、基本初等函数的求导公式
练习:求下列函数的导数.
π

1
x2

(1)y=x5;(2)y= ;(3)y=lg x;(4)y=5x;(5)y=cos2-x.
x


1


[解] (1)∵y=x5=x 5,∴y′=-5x 6
=





=


= , ∴ ′ =



1
(3)∵y=lg x,∴y′=xln 10.
=
∆( +∆+)
1
=
,
+∆+

∆→0 ∆
1

= ∆→0
+∆+
所以 ′ =
=
1
2
知识梳理
基本初等函数的导数公式
知识梳理
说明:上面的方法中把x换x0即为求函数在点x0处的导数.
1. 函数f(x)在点x0处的导数 f ( x0 ) 就是导函数f (x ) 在x= x0处的函数值,
(3)利用导数研究曲线的切线方程.
用了哪些方法
方程思想、待定系数法.
可能出错的地方: 不化简成基本初等函数


所以 ′ =


=
∆→0 ∆ ∆→0
1=1
若 = 表示路程关于

第二章 一元函数的导数和微分

第二章 一元函数的导数和微分

第二章 一元函数的导数和微分微分学是微积分的重要组成部分,它的基本概念是导数与微分,其中导数反映出函数相对于自变量的变化而变化的快慢程度,而微分则指明当自变量有微小变化时,函数值变化的近似值.第一节 导数的概念在科学研究和工程技术中,常常遇到求变量的变化率的问题。

例如,物体作匀速直线运动时,其速度为物体在时刻t 0到t 的位移差s (t )-s (t 0) 与相应的时间差t -t 0的商00()()--s t s t v =t t .如果物体作变速直线运动,则上面的公式就不能用来求物体在某一时刻的瞬时速度了.不过,我们可先求出物体从时刻t 0到t 的平均速度,然后假定t →t 0,求平均速度的极限00()()lim→--t t s t s t t t ,并以此极限作为物体在t 0时刻的瞬时速度.从数学角度来看,00()()--f x f x x x 叫做函数y =f (x )在x 0与x 的差商,而把x →x 0时,该差商的极限值(如果存在的话)叫做函数f (x )在x 0处的导数.一般说来,工程技术中一个变量相对于另一个变量的变化率问题,可以化成求导数的问题进行处理.一、导数的定义定义 设函数y =f (x )在U (x 0)内有定义.如果极限00()()lim→--x x f x f x x x存在,则称该极限值为f (x )在点x 0处的导数,记为000()()()lim→-'=-x x f x f x f x x x , (2-3-1)此时也称函数f (x )在点x 0可导.函数f (x )在点x 0处的导数还可记为0d d =y x x x ;0d ()d =f x x x x ;0'=y x x .导数f ′(x 0)可以表示为下面的增量形式00000()()()limlim ∆→∆→+∆-∆'==∆∆x x f x x f x yf x x x. (2-3-2)如果(2-3-1)式和式(2-3-2)中右边的极限不存在,则称f (x )在点x 0不可导.当00()()lim→--x x f x f x x x = ∞时,我们通常说函数y = f (x )在点x 0处的导数为无穷大.如果函数y =f (x )在开区间(a ,b )内的每一点处都可导,则称f (x )在此开区间(a ,b )内可导.这时,∀x ∈(a ,b ),对应着f (x )的一个确定的导数值,这是一个新的函数关系,称该函数为原来函数f (x )的导函数,记为f ′(x ),y ′,d ()d f x x ,d d yx等,此时 0()()()lim ∆→+∆-'=∆x f x x f x f x x, x ∈(a ,b ).显然,f (x )在点x 0∈(a ,b )的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值:00()()''==f x f x x x .为方便起见,我们简称函数的导函数为导数.由函数y =f (x )在点x 0处的导数f ′(x 0)的定义可知,它是一种极限:000()()()lim→-'=-x x f x f x f x x x ,而极限存在的充要条件是左、右极限都存在且相等.因此f ′(x 0)存在(即f (x )在点x 0可导)的充要条件应是下面的左、右极限00()()lim -→--x x f x f x x x ,000()()lim +→--x x f x f x x x 都存在且相等.我们将这两个极限分别称为函数f (x )在x 0处的左导数和右导数,记为f ′-(x 0)和f ′+(x 0),即000()()()lim --→-'=-x x f x f x f x x x ,000()()()lim ++→-'=-x x f x f x f x x x或写成增量形式:0000()()()lim --∆→+∆-'=∆x f x x f x f x x,0000()()()lim ++∆→+∆-'=∆x f x x f x f x x.定理1 函数y =f (x )在点x 0可导的充要条件是f ′-(x 0)及f ′+(x 0)存在且相等.该定理实际上是第一章第四节中定理2的推论. 例1 函数f (x )=|x |在点x =0处是否可导? 解 因为(0)(0)sgn()∆-+∆-==∆∆∆x f x f x x x,所以0(0)lim sgn()1++∆→'=∆=x f x ,0(0)lim sgn()1--∆→'=∆=-x f x ,由于f ′+(0)≠f ′-(0),因此f (x )=|x |在x =0处不可导.例2 研究函数,0,()ln(1),0<⎧=⎨+≥⎩x x f x x x 在点x =0处的可导性.解 易知f (x )在点x =0处连续,而0()(0)(0)lim ++→-'=x f x f f x0ln(1)0lim +→+-=x x x1lim ln(1)1+→=+=xx x , 00()(0)0(0)lim lim 1---→→--'===x x f x f x f x x, 由于f ′+(0)=f ′-(0)=1,故f (x )在点x =0处可导,且f ′(0)=1.例3 求函数f (x )=C ,x ∈(-∞,+∞)的导数,其中C 为常数.解 00()()()limlim 0∆→∆→+∆--'===∆∆x x f x x f x C Cf x x x, 即(C )′=0.通常说成:常数的导数等于零.例4 设y =x n ,n 为正整数,求y ′.解 0()lim ∆→+∆-'∆n nx x x x y =x12210lim(C ()())---∆→+∆++∆ n n n n x =nxxx x 1-=n nx ,即 (x n )′=nx n -1.特别地,n =1时,有(x )′=1. 例5 设y =sin x ,求y ′.解 0sin()sin limx x x xy x∆→+∆-'=∆022cos sin22limx x x x x∆→+∆=∆ 022cos 22lim cos x x x x x x∆→∆+∆⋅==∆即 (sin x )′=cos x .例6 设y =cos x ,x ∈(-∞,+∞),求y ′.解 0cos()cos limx x x xy x∆→+∆-'=∆02sin()sin 22limx x x x x∆→∆∆-+=∆ 02sin()22limsin x x x x x x∆→∆∆-⋅+==-∆, 即 (cos x )′=-sin x .例7 设y =a x ,x ∈(-∞,+∞),a >0,求y ′. 解 注意到u →0时,e u -1~u ,从而00(1)lim lim x x x x x x x a a a a y x x+∆∆∆→∆→--'==∆∆ln 00e 1ln limlim ln x a xx x x x x aa a a a x x∆∆→∆→-∆===∆∆, 即(a x )′=a x ln a (a >0).特别地 (e x )′=e x . 例8 设y =log a x ,x ∈(0,+∞),a >0且a ≠1,求y ′.解 00log (1)log ()log limlima a a x x xx x xx y xx∆→∆→∆++∆-'==∆∆00111lim log (1)lim log e =ln x x a a x x x x x x x a∆∆→∆→∆=+=,即 (log a x )′=1ln x a. 特别地 1(ln )x x'=.例9 设y =x 3,求y ′|x =2.解 因为 y ′=(x 3)′=3x 3-1=3x 2, 所以 y ′|x =2 =3x 2|x =2 =3×22=12.下面我们讨论可导与连续的关系.定理2 若y =f (x )在点x 0可导,则f (x )在点x 0必连续. 证 因为f (x )在点x 0可导,即000()()lim()x x f x f x f x x x →-'=-存在.由无穷小量与函数极限的关系得000()()()f x f x f x x x α-'=+-,其中α→0(x →x 0),于是0000()()()()()f x f x f x x x x x α'-=-+-故 [][]00000lim ()()lim ()()()0x x x x f x f x f x x x x x α→→'-=-+-=.即f (x )在点x 0连续.例10 研究函数1sin ,0,()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩ 在点x =0处的连续性和可导性.解 因为1lim ()lim sin0(0)x x f x x f x→→===, 所以f (x )在点x =0处连续,但是0001sin 0()(0)1lim lim limsin 0x x x x f x f x x x x→→→--==- 不存在,故f (x )在点x =0处不可导.此例说明“连续不一定可导”,连续只是可导的必要条件. 二、导数的几何意义连续函数y =f (x )的图形在直角坐标系中表示一条曲线,如图2-1所示.设曲线y =f (x )上某一点A 的坐标是(x 0,y 0),当自变量由x 0变到x 0+Δx 时,点A 沿曲线移动到点B (x 0+Δx ,y 0+Δy ),直线AB 是曲线y =f (x )的割线,它的倾角记作β.从图形可知,在直角三角形AB C 中,tan CB y AC x β∆==∆,所以yx∆∆的几何意义是表示割线AB 的斜率.图2-1当Δx →0时,B 点沿着曲线趋向于A 点,这时割线AB 将绕着A 点转动,它的极限位置为直线AT ,这条直线AT 就是曲线在A 点的切线,它的倾角记作α.当Δx →0时,既然割线趋近于切线,所以割线的斜率yx∆∆=tan β必然趋近于切线的斜率tan α,即 00()lim tan x yf x xα∆→∆'==∆.由此可知,函数y =f (x )在x 0处的导数f ′(x 0)的几何意义就是曲线y =f (x )在对应点A (x 0,y 0)处的切线的斜率.曲线y =f (x )在点A (x 0,y 0)的切线方程可写成:(1) f ′(x 0)存在,切线方程为y -f (x 0)= f ′(x 0)(x -x 0);(2) f (x )在点x 0处连续,f ′(x 0)=∞,则切线方程为x =x 0.例11 求过点(2,0)且与曲线y =1x 相切的直线方程. 解 显然点(2,0)不在曲线y =1x上.由导数的几何意义可知,若设切点为(x 0,y 0),则y 0=1x ,且所求切线的斜率k 为 02011()x x k xx ='==-, 故所求切线方程为020011(2)y x x x -=--. 又切线过点(2,0),所以有020011(2)x x x -=--. 于是得x 0=1,y 0=1,从而所求切线方程为y -1= -(x -1),即y =2-x .例12 在曲线32y x =上求一点,使该点处的曲线的切线与直线y =3x -1平行. 解 在32y x =上的任一点M (x ,y )处切线的斜率k 为32()k y x ''===而已知直线y =3x -1的斜率k 1=3.令k =k 13=,解之得x =4,代入曲线方程得 3248y ==.故所求点为(4,8).三、函数四则运算的求导法定理3设函数u =u (x ),v =v (x )在点x 处可导,k 1,k 2为常数,则下列各等式成立: (1) [k 1u (x )+k 2v (x )]′=k 1u ′(x )+k 2v ′(x ); (2) [(u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );(3) 2()()()()()()()u x u x v x u x v x v x v x '''⎡⎤-=⎢⎥⎣⎦[v (x )≠0]. 证 仅以(3)为例进行证明.记g (x )=()()u x v x ,且v (x )≠0,则01()()()lim()()x u x x u x g x x v x x v x ∆→⎡⎤+∆'=-⎢⎥∆+∆⎣⎦ 01()()()()lim()()()()x u x x u x v x x v x v x u x v x v x x x x ∆→+∆-+∆-⎡⎤=-⎢⎥+∆∆∆⎣⎦ 0001()()()()lim()lim ()lim ()()x x x u x x u x v x x v x v x u x v x v x x x x ∆→∆→∆→+∆-+∆-⎡⎤=-⎢⎥+∆∆∆⎣⎦ 2()()()()()u x v x u x v x v x ''-=.定理中的(1)式和(2)式均可推广至有限多个函数的情形.读者不难自行完成. 例13 设52434y x x =-+,求y ′.解 52(434)y x x ''=-+52(4)(3)(4)x x '''=-+4206x x =-.例14 设y =x 3cos x sin x ,求y ′.解 3(c o s s i n )y x x x''= 333()cos sin (cos )sin cos (sin )x x x x x x x x x '''=++232323cos sin sin cos x x x x x x x =-+.例15 设y =tan x ,求y ′.解 sin (tan )()cos xy x x'''== 2(sin )cos sin (cos )cos x x x x x''-=2222cos sin 1cos cos x x x x+==,即 (tan x )′=21cos x=sec 2x =1+tan 2x . 类似可得2221(cot )csc (1cot )sin x x x x'=-=-=-+. 例16 设y =sec x ,求y ′.解 在定理3的(3)中,取u (x )≡1,则有21()()()v x v x v x ''⎛⎫=- ⎪⎝⎭. 于是y ′=(sec x )′=21(cos )cos cos x x x ''⎛⎫=- ⎪⎝⎭2sin sec tan cos xx x x==,即 (sec x )′=sec x tan x .类似可得 (csc x )′=-csc x cot x .第二节 求导法则一、复合函数求导法定理1(链导法) 若u =φ(x )在点x 处可导,而y =f (u )在相应点u =φ(x )处可导,则复合函数y =f (φ(x ))在点x 处可导,且d d d d d d y y u x u x=⋅,或记为 [f (φ(x ))]′=f ′(φ(x ))·φ′(x ). (2-2-1)证 因为y =f (u )在u 的导数0()limu yf u x∆→∆'=∆存在,所以()yf u xα∆'=+∆,其中α→0(Δu →0), 故 ()y f u x x α'∆=∆+∆,从而 00limlim ()x x y u u f u x x x α∆→∆→∆∆∆⎛⎫'=+ ⎪∆∆∆⎝⎭000()limlim lim x x x u uf u x xα∆→∆→∆→∆∆'=+∆∆.又u =φ(x )在点x 处可导,故φ(x )必在点x 处连续,因此Δx →0时必有Δu →0.于是000lim()()lim lim x u x y uf u x x xϕα∆→∆→∆→∆∆''=+∆∆()()(())()f u x f x x ϕϕϕ''''==,而[]0lim(())x yf x xϕ∆→∆'=∆,定理证毕.例1 设f (x )=x μ,μ ∈R ,x >0,求f ′(x ). 解 由于x μ=e μln x ,x >0.令u =μln x ,则x μ系由y =e u 及u =μln x 复合而成.d(e )d(ln )()d d u x f x u xμ'=⋅ln 11e e u x x x xμμμμμ-===, 即 (x μ)′=μx μ-1,μ∈R ,x >0.例2 设y =e -x ,求y ′.解 令u = -x ,则y =e u ,从而d d d d(e )d()d d d d d u y y u x x u x u x-=⋅=⋅ e (1)e u x -=-=-.即 (e -x )′= -e -x .对复合函数的分解熟练后,就不必再写出中间变量,而可按下列各题的方式进行计算.例3 设1sin1y x=+,求y ′. 解 21111cos()cos 11(1)1y x x x x''==++++. 例4设y =y ′.解2)x y '''==22(e )x x '=222e ()x x x '=⋅22e 2x x x =⋅22x x=.例5设ln(y x =,求y ′. 解ln(y x x '⎡⎤''==+⎣⎦21⎡⎤'==⎢⎢⎣=.二、反函数求导法定理2 设函数y =f (x )与x =φ(y )互为反函数,f (x )在点x 可导,φ(y )在相应点y 处可导,且d ()0d xy yϕ'=≠,则 d 1d d d x y yx=,或1()()f x y ϕ'='. 简单地说成:反函数的导数是其直接函数导数的倒数.证 由x =φ(y )=φ(f (x ))及y =f (x ),x =φ(y )的可导性,利用复合函数的求导法,得1=φ′(f (x ))f ′(x )=φ′(y )f ′(x ),故 1(),()0()f x y y ϕϕ''=≠'. 例6 设y =arcsin x ,求y ′. 解 由定理2及x =sin y 可知11(sin )cos y y y y '====' 这里记号(sin )y y '表示求导是对变量y 进行的.由上式得(arcsin )x '=.同理可得:(arccos )x '=,21(arctan )1x x '=+,21(arccot )1x x-'=+. 三、参数方程求导法若方程x =φ(t )和y =ψ(t )确定y 与x 间的函数关系,则称此函数关系所表达的函数为由参数方程(),(),x t y t ϕψ=⎧⎨=⎩t ∈(α,β) (2-2-2) 所确定的函数.下面我们来讨论由参数方程所确定的函数的导数.设t =φ-1(x )为x =φ(t )的反函数,在t ∈(α,β)中,函数x =φ(t ),y =ψ(t )均可导,这时由复合函数的导数和反函数的导数公式,有111d (())(())(())d y x x x x ψϕψϕϕ---'''⎡⎤==⎣⎦ 11()(())()()t x t t ψψϕϕϕ-''=='' (φ′(t )≠0). 于是由参数方程(2-2-2)所确定的函数y =y (x )的导数为d d ()d d d ()d yy t t x x t tψϕ'=='(φ′(t )≠0). (2-2-3) 例7 设33cos ,sin ,x a t y a t ⎧=⎨=⎩求d d yx .解 3232(cos )d 3sin cos tan d (sin )3cos (sin )t t a t y a t tt x a t a t t '===-'-(2n t π≠,n 为整数).例8 设2223,13,1at x t aty t ⎧=⎪⎪+⎨⎪=⎪+⎩ -∞<t <+∞,求d d yx.解 222222223()d 6(1)6213d 3(1)61()1t taty at t at tt at x a t at t t '+-+===+--'+ (t ≠±1).例9 求极坐标方程r =e a θ(0<θ<π/4,a >1)所确定的函数y =y (x )的导数.解 由极坐标与直角坐标的关系,得cos e cos ,sin e sin ,a a x r y r θθθθθθ⎧==⎨==⎩故 (e cos )d e sin +e cos sin cos d (e sin )e cos e sin cos sin a a a a a a y a a x a a θθθθθθθθθθθθθθθθθθ'+==='--.例10 求椭圆cos ,sin x a t y bt =⎧⎨=⎩在t =π/4处的切线方程和法线方程.解 d (sin )cot d (cos )yb t bt x a t a '==-',所以在椭圆上对应于t =π/4的点处的切线和法线的斜率为4d cot d 4t=ybbk x a a ππ==-=-切,a kb =法.切线方程和法线方程分别为bx +ay =和ax -by =a 2-b 2).四、隐函数求导法如果在含变量x 和y 的关系式F (x ,y )= 0中,当x 取某区间I 内的任一值时,相应地总有满足该方程的惟一的y 值与之对应,那么就说方程F (x ,y )=0在该区间内确定了一个隐函数y =y (x ).这时y (x )不一定都能用关于x 的表达式表示.例如方程e y +xy -e -x =0和y =cos(x +y )都能确定隐函数y =y (x ).如果F (x ,y )=0确定的隐函数y =y (x )能用关于x 的表达式表示,则称该隐函数可显化.例如x 3+y 5-1=0,解出y =,就把隐函数化成了显函数.若方程F (x ,y )=0确定了隐函数y =y (x ),则将它代入方程中,得F (x ,y (x ))≡0.对上式两边关于x 求导(若可导),并注意运用复合函数求导法则,就可以求出y ′(x )来. 例11 求方程y =cos(x +y )所确定的隐函数y =y (x )的导数.解 将方程两边关于x 求导,注意y 是x 的函数,得y ′= -sin(x +y )(1+y ′),即 sin()1sin()x y y x y -+'=++ , 1+sin(x +y )≠0. 例12 求由方程e y +xy -e -x = 0所确定的隐函数y = y (x )的导数.解 将方程两边关于x 求导,得e y y ′+y +xy ′+e -x =0,故 e exy y y x -+'=-+ (x +e y ≠0). 在计算幂指函数的导数以及某些乘幂、连乘积、带根号函数的导数时,可以采用先取对数再求导的方法,简称对数求导法.它的运算过程如下:在y =f (x )(f (x )>0)的两边取对数,得ln y =ln f (x ).上式两边对x 求导,注意到y 是x 的函数,得y ′=y (ln f (x ))′.例13 求2242(2)(1)(1)x y x x +=+++的导数. 解 先在两边取对数,得242ln 2ln(2)ln(1)ln(1)y x x x =+-+-+.上式两边对x 求导,注意到y 是x 的函数,得3242442211y x x x y x x x '=--+++, 于是 3242442211x x x y y x x x ⎛⎫'=-- ⎪+++⎝⎭,即22342242(2)442(1)(1)211x x x x y x x x x x ⎛⎫+'=-- ⎪+++++⎝⎭.例14 设()()v x y u x =,u (x )>0,其中u (x ),v (x )均可导,求y ′.解 两边取对数得ln y =v (x )ln u (x ),两边对x 求导,得()()ln ()()()y u x v x u x v x y u x '''=+, 于是 ()()()()()ln ()()v x v x u x y u x v x u x u x '⎛⎫''=+ ⎪⎝⎭. 特别地,当()()u x v x x ==时,()(1ln )x x x x x '=+.例15 求y =x sin x (x >0)的导数.解 两边取对数得ln y =sin x ln x .两边对x 求导,得sin cos ln y x x x y x'=+. 于是 sin sin cos ln x x y x x x x ⎛⎫'=+ ⎪⎝⎭. 第三节 函数的微分一、微分的概念定义1 设函数y =f (x )在U (x 0)内有定义,若∃A ∈R ,使Δy =A Δx +o (Δx ) (2-3-1)成立,则称函数y =f (x )在点x 0处可微分(简称可微),线性部分A Δx 称为f (x )在x 0处的微分,记为d y =A Δx (其中Δx =x -x 0),A 称为微分系数.定义中的式(2-3-1)可写为0000000()()()()()lim lim 0x x x x f x f x A x x f x f x A x x x x →→⎛⎫----=-= ⎪--⎝⎭, (2-3-2) 即式(2-3-1)成立的充要条件为 000()()limx x f x f x A x x →-=-. 于是便有下面的定理.定理1 函数y =f (x )在点x 0可微的充要条件是函数y =f (x )在点x 0可导.当f (x )在点x 0处可微时,必有d y =f ′(x 0)Δx . 该定理说明函数的可微性与可导性是等价的.函数y =f (x )在任意点x 的微分,称为函数的微分,记为d y =f ′(x )Δx . (2-3-3)例1 设y =x ,求d y .解 因为y ′=(x )′=1,所以d y =1×Δx =Δx .为方便起见,我们规定:自变量的增量称为自变量的微分,记为d x =Δx .于是式(2-3-3)可记为d y =f ′(x )d x . (2-3-4)例2 求y =sin x 当x =π/4,d x =0.1时的微分.解 d y =(sin x )′d x =cos x d x .当x =π/4,d x =0.1时,有d cos 0.10.07074y π=⨯=≈. 在几何上,y =f (x )在x 0处的微分d y =f ′(x 0)d x 表示曲线y =f (x )在点M (x 0,f (x 0))处切线MT 的纵坐标相应于Δx 的改变量PQ (见图2-2),因此d y =Δx tan α.图2-2二、微分的运算公式1.函数四则运算的微分设u =u (x ),v =v (x )在点x 处均可微,则有d(Cu )=C d u (C 为常数),d(u +v )=d u +d v ,d(uv )=u d v +v d u ,2d()=,0u vdu udv v v v -≠. 这些公式由微分的定义及相应的求导公式立即可证得.2.复合函数的微分若y =f (u )及u =φ(x )均可导,则复合函数y =f (φ(x ))对x 的微分为d y =f ′(u )φ′(x )d x . (2-3-5)注意到d u =φ′(x )d x ,则函数y =f (u )对u 的微分为d y =f ′(u )d u . (2-3-6)将(2-3-6)式与(2-3-4)式比较可知,无论u 是自变量还是另一个变量的可微函数,微分形式d y =f ′(u )d u 保持不变.此性质称为一阶微分的形式不变性.由此性质,我们可以把导数记号d d y x ,d d y u等理解为两个变量的微分之商了,因此,导数有时也称微商.用微商来理解复合函数的导数以及求复合函数的导数就方便多了.例3 设y =d y .解 记u =a 2+x 2,则yd du y y u u '==.又 d u =u ′x d x =2x d x ,故d 2d y x x x ==.为了读者使用的方便,我们将一些基本初等函数的导数和微分对应列表如下.表2-1第四节 高阶导数与高阶微分一、高阶导数若函数y =f (x )在U (x )内可导,其导函数为f ′(x ),且极限0()()lim x f x x f x x∆→''+∆-∆ 存在,则称该极限值为函数f (x )在点x 处的二阶导数,记为f ″(x ), 22d d y x,y ″等. 函数y =f (x )的二阶导数f ″(x )仍是x 的函数,如果它可导,则f ″(x )的导数称为原函数f (x )的三阶导数,记为()f x ''',33d d y x,y '''等. 一般说来,函数y =f (x )的n -1阶导数仍是x 的函数,如果它可导,则它的导数称为原来函数f (x )的n 阶导数,记为()()n f x ,d d n n y x,()n y 等.通常四阶和四阶以上的导数都采用这套记号,而不用“′”.一阶、二阶和三阶导数则采用“′”的记号.由以上叙述可知,求一个函数的高阶导数,原则上是没有什么困难的,只需运用求一阶导数的法则按下列公式计算()(1)()n n y y -'= (n =1,2,…)或写成11d d d d d d n n-n n y y x x x -⎛⎫= ⎪⎝⎭,()(1)()(())n n f x f x -'=. 如果函数y =f (x )在区间I 上有直到n 阶的连续的导数,我们使用记号f (x )∈C n (I )来表示. 例1 设y =x n ,n 为正整数,求它的各阶导数.解 1()n n y x nx -''==,12()(1)n n y nx n n x --'''==-,……()(1)(1)k n k y n n n k x -=--+ ,……()(1)321!n y n n n =⨯-⨯⨯⨯⨯= ,(1)()()(!)0n n y y n +''===.显然,y =x n 的n +1阶以上的各阶导数均为0.例2 设y =sin x ,求它的n 阶导数()n y .解 cos sin()2y x x π'==+,()cos()sin(2)22y y x x ππ''''==+=+⨯,设 ()sin()2k y x k π=+⋅,则 (1)()()cos()sin (1)22k k y y x k x k +ππ⎡⎤'==+=++⎢⎥⎣⎦.由数学归纳法,知()(sin )sin()2n nx x =+π,n =1,2,….由此式我们可得到y =cos x 的高阶导数公式:()(1)1(cos )(sin )sin()cos()22n n n nx x x x --=-=-+π=+π,即 ()(cos )cos()2n nx x =+π,n =1,2,….例3 设y =ln(1+x ),求()n y .解 11y x '=+,211()()1(1)y y x x '''''===-++,2312()(1)(1)y y x x '⎡⎤''''''==-=⎢⎥++⎣⎦,运用数学归纳法可知()1(1)!(1)(1)n n n n y x --=-+,n =1,2,3,….例4 设y =a x (a >0),求()n y .解 ()ln x x y a a a ''==,2(ln )ln x x y a a a a '''==.设 ()ln k x k y a a =,则 ()(1)1ln ln k x k x k+y a a a a +'==.故 ()()ln x n x n a a a =, n =1,2,….特别地,有 ()(e )e x n x =, n =1,2,….对于高阶导数,有下面的运算法则:设函数u =u (x )和v =v (x )在点x 处都具有直到n 阶的导数, 则u (x )±v (x ),u (x )v (x )在点x 处也具有n 阶导数,且(u ±v )(n )=u (n )±v (n ), (2-4-1)()()(1)(2)(1)()2!n n n n n n u v u v n u v u v ---'''⋅=⋅+⋅⋅++ ()(1)(1)!n n n n k uv k --++ =()()0C n i n i i ni u v -=⋅⋅∑, (2-4-2) 其中u (0)=u ,v (0)= v ,(1)(1)C !i n n n n i i --+= .(2- 4-2)式称为莱布尼茨(Leibniz)公式,将它与二项展开式对比,就很容易记住. (2-4-1)式由数学归纳法易证.(2-4-2)式证明如下:当n =1时,由(uv )′=u ′v +uv ′知公式成立.设当n =k 时公式成立,即()()()()(1)(2)()(1)C 2!kk i k i i k k k k k i k k y u v u v ku v u v uv ---=-'''=⋅⋅=++++∑ .两边求导,得(1)(1)()()(1)k k k k k y u v u v k u v u v ++-''''⎡⎤⎡⎤=+++⎣⎦⎣⎦(1)(2)()(1)(1)2!k k k k k k u v u v u v uv --++''''''⎡⎤⎡⎤+++++⎣⎦⎣⎦1(1)()10C k i k i i k i u v ++-+==⋅⋅∑,即n =k +1时公式(2-4-2)也成立,从而(2-4-2)成立.例5 设y =x 2·e 2x ,求y (20).解 设u =e 2x ,v =x 2,则u (i )=2i ·e 2x (i =1,2,…,20),v ′=2x ,v ″=2,v (i )=0 (i =3,4,…,20).代入莱布尼茨公式,得y (20)=(x 2·e 2x )(20)202219218220192e 202e 22e 22!x x x x x ⋅=⋅⋅+⋅⋅⋅+⋅⋅⋅20222e (2095)x x x =⋅⋅++.例6 设e x +y -xy =1,求y ″(0).解 方程两边对x 求导,得(1+y ′)e x +y -y -xy ′=0.上式两边再对x 求导,得(1+y ′)2e x +y +y ″e x +y -2y ′-xy ″=0.令x =0,可得y =0,y ′(0)= -1,将这些值代入上式得y ″(0)= -2.例7已知cos,sin,x a ty b t=⎧⎨=⎩求22ddyx.解d(sin)coscot d(cos)siny b t b t bt x a t a t a'==-=-'.注意dcotdy btx a=-,x=a cos t仍是参数方程,所以仍须用参数方程求导法则,从而22d d cot()d d ddd(cos)dby ty at xxx a tt'⎛⎫- ⎪⎝⎭=='2321csc cscsinb bt ta a t a=⋅⋅=-⋅-.*二、高阶微分对于函数y=f(x),类似于高阶导数可以定义高阶微分.设f(x)有直至n阶的导数,自变量的增量仍为d x,则二阶微分定义为d2y=d(d y)=d(f′(x)d x)=d(f′(x))d x=f″(x)d x·d x=f″(x)d x2;三阶微分定义为d3y=d(d2y)=d(f″(x)d x2)=d(f″(x))d x2=f'''(x)d x d x2=f'''(x)d x3;一般地,定义n阶微分为d n y=d(d n-1y)=f(n)(x)d x n. (2-4-3) 以上公式中的x都是自变量,d x n表示n个d x的乘积(n=2,3,4,…).对于复合函数来说,二阶及二阶以上的微分已不再具有公式(2-4-3)的形式了.例如,设y=f(u),u=φ(x),且都具有相应的可微性,则d y=f′(u)d u,而d2y=d(f′(u)d u)=d(f′(u))d u+f′(u)d(d u)=f″(u)d u2+f′(u)d2u. (2-4-4)这是因为d u不再是固定的了,它依赖于自变量x,即d u=φ′(x)d x.(2-4-4)式说明高阶微分已不再具有形式不变性了.这是高阶微分与一阶微分的重要区别之一.例8 设y=x sin x,求d2y.解d y=(x sin x)′d x=(sin x+x cos x)d x;d2y=d(d y)=(sin x+x cos x)′d x2=(cos x+cos x-x sin x)d x2=(2cos x-x sin x)d x2.例9设u=u(x),v=v(x)均有二阶导数,y=u(x)v(x),求d2y.解d y=y′d x=[u(x)v(x)]′d x=[u′(x)v(x)+u(x)v′(x)]d xd 2y =d(d y )=d [(u ′(x )v (x )+u (x )v ′(x ))d x ]=[u ′(x )v (x )+u (x )v ′(x )]′d x 2=[u ″(x )v (x )+2u ′(x )v ′(x )+ u (x )v ″(x )]d x 2.第五节 微分中值定理本节介绍微分学中有重要应用的反映导数更深刻性质的微分中值定理.定理1 [罗尔(Ro lle)定理] 若f (x )∈C ([a ,b ]),f (x )在(a ,b )内可导,且f (a )=f (b ),则∃ξ∈(a ,b )使得f ′(ξ)=0.证 由f (x )∈C ([a ,b ])知f (x )在[a ,b ]上必取得最大值M 与最小值m .若M >m ,则M 与m 中至少有一个不等于f (x )在区间端点的值.不妨设M ≠f (a ).由最值定理,∃ξ∈(a ,b ),使f (ξ)=M .又0()()()lim 0x f x f f xξξξ++∆→+∆-'=≤∆,0()()()lim 0x f x f f x ξξξ--∆→+∆-'=≥∆, 故 f ′(ξ)=0.若M =m ,则f (x )在[a ,b ]上为常数,故(a ,b )内任一点都可成为ξ,使f ′(ξ)=0. 罗尔定理的几何意义是:若y =f (x )满足定理的条件,则其图像在[a ,b ]上对应的曲线弧AB 上一定存在一点具有水平切线,如图2-3所示.图2-3定理2[拉格朗日(L ag r ang e)中值定理] 若f (x )∈C ([a ,b ]),f (x )在(a ,b )内可导,则∃ξ∈(a ,b )使得f (b )-f (a )=f ′(ξ)(b -a ). (2-5-1)证 考虑辅助函数Φ(x )=f (x )-λx (其中λ待定),为了使Φ(x )满足定理1的条件,令Φ(a )=Φ(b )得 λ=()()f b f a b a--, 即 Φ(x )=f (x )-()()f b f a b a --x . 于是由定理1,∃ξ∈(a ,b ),使Φ′(ξ)=0,即f (b )-f (a )=f ′(ξ)(b -a ).如图2-4所示,连结曲线弧 AB 两端的弦AB ,其斜率为()()f b f a b a--.因此,定理的几何意义是:满足定理条件的曲线弧 AB 上一定存在一点具有平行于弦AB 的切线.图2-4显然,罗尔定理是拉格朗日中值定理的特殊情形.式(2-5-1)称为拉格朗日中值公式,显然,当b <a 时,式(2-5-1)也成立.设x 和x +Δx 是(a ,b )内的两点,其中Δx 可正可负,于是在以x 及x +Δx 为端点的闭区间上有f (x +Δx )-f (x )=f ′(ξ)Δx ,其中ξ为x 与x +Δx 之间的某值,记ξ = x +θΔx ,0<θ<1,则f (x +Δx )-f (x )=f ′(x +θΔx )Δx (0<θ<1). (2-5-2)(2-5-2) 式称为有限增量公式.推论1 若函数f (x )在区间I 上的导数恒为零,则f (x )在区间I 上为一常数. 证 x 1,x 2∈I ,x 1<x 2,在[x 1,x 2]上应用定理2,得f (x 2)-f (x 1) =f ′(ξ)(x 2-x 1),ξ∈(x 1,x 2).由于f ′(ξ)=0,故f (x 2)=f (x 1).由x 1,x 2的任意性可知,函数f (x )在区间I 上为一常数.在第一节我们知“常数的导数为零”,推论1就是其逆命题.由推论1立即可得以下结论. 推论2 若∀x ∈I ,f ′(x )=g ′(x ),则在I 上f (x )=g (x )+C (C 为常数).例1 求证arcsin x +arccos x =π2,x ∈[-1,1]. 证 令f (x )=arcsin x +arccos x ,则f ′(x )=,x ∈(-1,1).由推论1得f (x )=C ,x ∈(-1,1).又 因f (0)=π2,且f (±1)= π2. 故 f (x )=arcsin x +arccos x =π2,x ∈[-1,1].例2 证明不等式arc tan x 2-arc tan x 1≤x 2-x 1(其中x 1<x 2).证 设f (x )=arc tan x ,在[x 1,x 2]上利用拉格朗日中值定理, 得 arc tan x 2-arc tan x 1=211ξ+(x 2-x 1),x 1<ξ<x 2. 因为211ξ+≤1,所以 arc tan x 2-arc tan x 1≤x 2-x 1.例3 设函数f (x )=x (x -2)(x -4)(x -6),说明方程f ′(x )=0在(-∞,+∞)内有几个实根,并指出它们所属区间.解 因为f ′(x )是三次多项式,所以方程f ′(x )=0在(-∞,+∞)内最多有3个实根.又由于f (0)=f (2)=f (4)=f (6)=0,f (x )在区间[0,2],[2,4],[4,6]上满足罗尔定理的条件.故 ξ1∈(0,2),ξ2∈(2,4),ξ3∈(4,6),使f ′(ξ1)=0,f ′(ξ2)=0,f ′(ξ3)=0.即方程f ′(x )=0在(-∞,+∞)内有3个实根,分别属于区间(0,2),(2,4),(4,6).例4 若f (x )>0在[a ,b ]上连续,在(a ,b )内可导,则∃ξ∈(a ,b ),使得()()ln()()()f b f b a f a f ξξ'=-. 证 原式即()ln ()ln ()()()f f b f a b a f ξξ'-=-. 令φ(x )=ln f (x ),有 φ′(x )=()()f x f x '.显然φ(x )在[a ,b ]上满足拉格朗日中值定理的条件,在[a ,b ]上应用定理可得所证. 下面再考虑由参数方程x =g (t ),y =f (t ),t ∈[a ,b ]给出的曲线段,其两端点分别为A (g (a ),f (a )),B (g (b ),f (b )).连结A ,B 的弦AB 的斜率为()()()()f b f ag b g a -- (见图2-5),而曲线上任何一点处的切线斜率为d ()d ()x f t y g t '='.图2-5若曲线上存在一点C [对应参数t =ξ∈(a ,b )],在该点曲线的切线与弦AB 平行,则可得()()()()()()f b f a fg b g a g ξξ'-='-.定理3[柯西(CaUchy )中值定理] 若f (x ),g (x )∈C ([a ,b ])均在(a ,b )内可导,且g ′(x )≠0,则∃ξ∈(a ,b )使得()()()()()()f b f a fg b g a g ξξ'-='-.证 由g ′(x )≠0和拉格朗日中值定理得g (b )-g (a )=g ′(η)(b -a )≠0, η∈(a ,b ).由此有g (b )≠g (a ),考虑辅助函数Φ(x )=f (x )-λg (x )(λ待定).为使Φ(x )满足罗尔中值定理的条件,令Φ(a )=Φ(b ),得λ=()()()()f b f ag b g a --.取λ的值如上,由罗尔定理知∃ξ∈(a ,b ),使Φ′(ξ)=0,即()()()()0()()f b f a fg g b g a ξξ-''-=-,即()()()()()()f b f a fg b g a g ξξ'-='-. 由此定理得证.显而易见,若取g (x )≡x ,则定理3成为定理2,因此定理3是定理1,2的推广,它是这三个中值定理中最一般的形式.例5 设函数f (x )在[x 1,x 2]上连续,在(a ,b )内可导,且x 1·x 2>0,证明∃ξ∈(x 1,x 2),使112212()()()()x f x x f x f f x x ξξξ-'=--.证 原式可写成122121()()()()11f x f x x x f f x x ξξξ-'=--. 令φ(x )=()f x x ,ψ(x )=1x.它们在[x 1,x 2]上满足柯西中值定理的条件,且有 ()()x x ϕψ''=f (x )-xf ′(x ). 应用柯西中值定理即得所证.第六节 泰勒公式在本章前面已知道,如果f (x )在点x 0处可微,则f (x )=f (x 0)+f ′(x 0)(x -x 0)+o (x -x 0).此式表明:对于任何在x 0处有一阶导数的函数,在U (x 0)内能用关于(x -x 0)的一个一次多项式来近似表示它,多项式的系数就是该函数在x 0处的函数值和一阶导数值,这种近似表示的误差是比(x -x 0)高阶的无穷小.于是,人们猜想:如果函数f (x )在点x 0处有n 阶导数,则可以用一个关于(x -x 0)的n 次多项式来近似表示f (x ),该多项式的系数仅与函数f (x )在点x 0的函数值和各阶导数值有关,这种近似表示的误差是比(x -x 0)n 高阶的无穷小.泰勒(Tayl o r)对这个猜想进行了研究,并得到了下面的结论.定理1(泰勒中值定理) 若f (x )在U (x 0)内具有n +1阶导数,则∀x ∈U (x 0),有f (x )=()000()()()!k nk n k f x x x R x k =-+∑, (2-6-1) 其中R n (x )=o ((x -x 0)n ),且(1)1000(())()()(1)!n n n f x x x R x x x n θ+++-=-+, 0<θ<1. (2-6-2)公式(2-6-1)称为f (x )在点x 0的n 阶泰勒公式,式中R n (x )称为余项.式(2-6-2)表示的余项称为拉格朗日余项,而R n (x )=o ((x -x 0)n )称为皮亚诺(Peano)余项.()000()()()!k nk n k f x P x x x k ==-∑称为n 阶泰勒多项式.运用泰勒多项式近似表示函数f (x )的误差可由余项进行估计.例如,若∀x ∈U (x 0),有|f (n +1)(x )|≤M ,则可得误差估计式10()()()(1)!n n n M R x f x P x x x n +=-≤-+.特别地,当公式(2-6-1)中的x 0=0时,通常称为麦克劳林(MaclaUrin)公式,即f (x )=∑nk =0f (k )(0)k !xk +Rn (x ), (2-6-3)其中 (1)1()()(1)!n n n f x R x x n θ++=+,0<θ<1.很显然,拉格朗日中值公式是带拉格朗日余项的零阶泰勒公式,泰勒中值定理也是拉格朗日中值定理的推广.例1 求f (x )=e x 的n 阶麦克劳林公式.解 f (k )(x )=e x ,f (k )(0)=1(k =0,1,2,…).e x=21()2!!nn x x x o x n +++++. 其拉格朗日余项为1e ()(1)!xn n R x x n θ+=+,θ∈(0,1).例2 求f (x )=sin x 的n 阶麦克劳林公式.解 f (k )(x )=πsin()2x k +⋅ (k =0,1,2,…),故()0,2(0)(1),21k jk jf k j =⎧=⎨-=+⎩ (j=0,1,2,…). 取n =2m ,得sin x =352112(1)()3!5!(21)!m m m x x x x o x m ---+-+-+- .其拉格朗日余项为212(21)πsin 2()(21)!m m m x R x x m θ++⎡⎤+⎢⎥⎣⎦=+21cos (1)(21)!mm x xm θ+=-+, θ∈(0,1). 类似地有cos x =242211(1)()2!4!(2)!mm m x x x o x m +-+-+-+ , 其拉格朗日余项为12221cos ()(1)(22)!m m m x R x x m θ+++=-+, θ∈(0,1).例3 求f (x )=ln(1+x )的n 阶麦克劳林展开式. 解 ()1(1)!()(1)(1)k k kk fx x --=-+ ,(k =1,2,…), 故f (k )(0)=(-1)k -1(k -1)! (k =1,2,…,n ).又 f (0)=0,f (n +1)(ξ)1!(1)(1)n n ξ+=-+, 其中,ξ在0与x 之间.于是,当x ∈(-1,+∞)时,ln(1+x )=234111(1)(1)2!3!4!(1)(1)nn n nn x x x x x x n n ξ+-+-+-++-+-++ , 其中ξ在0与x 之间.利用泰勒公式可以求极限.例4 求极限2240cos e limx x x x -→-.解 利用泰勒公式,有cos x =2441()2!4!x x o x -++, 2222421e1()2!2!2!x x x o x -⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭,于是 24421cos e ()12x x x o x --=-+. 所以244244001()cos e 112limlim 12x x x x o x x x x -→→-+-==-. 第七节 洛必达法则本节我们将利用微分中值定理来考虑某些重要类型的极限.由第二章我们知道在某一极限过程中,f (x )和g (x )都是无穷小量或都是无穷大量时,f (x )/g (x )的极限可能存在,也可能不存在.通常称这种极限为不定式(或待定型),并分别简记为00或∞∞. 洛必达(L’H ospital)法则是处理不定式极限的重要工具,是计算00型、∞∞型极限的简单而有效的法则.该法则的理论依据是柯西中值定理.一、型不定式 定理1设f (x ),g (x )满足: (1) 0lim x x →f (x )=0,0lim x x →g (x )=0;(2)在U ︒(x 0)内可导,且g ′(x )≠0; (3) 0limx x →()()f xg x ''存在(或为∞), 则 0limx x →()()f xg x = 0lim x x →()()f x g x ''. 证 由于极限0limx x →()()f xg x 与f (x )和g (x )在x =x 0处有无定义没有关系,不妨设f (x 0)=g (x 0)=0.这样,由条件(1)、(2)知f (x )及g (x )在U (x 0)连续.设x ∈U (x 0),则在[x ,x 0]或[x 0,x ]上,柯西中值定理的条件得到满足,于是有00()()()()()()()()f x f x f x fg x g x g x g ξξ'-=='-, 其中ξ在x 与x 0之间.令x →x 0(从而ξ→x 0),上式两端取极限,再由条件(3)就得到limx x →()()f x g x =0lim x ξ→()()f g ξξ''= 0lim x x →()()f xg x '', 对于当x →∞时的型不定式,洛必达法则也成立. 推论1 f (x ),g (x )满足 (1)lim x →∞f (x )=0,lim x →∞g (x )=0;(2) 当|x |>X 时可导,且g ′(x )≠0; (3) limx →∞()()f xg x ''存在(或为∞), 则 ()()limlim()()x x f x f x g x g x →∞→∞'='. 证 令t =1x,则x →∞时t →0,从而 01lim ()lim ()0t x f f x t →→∞==,1lim ()lim ()0x x g g x t→∞→∞==. 由定理1,得2002111()()()()()lim lim lim lim 111()()()()()x t t x f f f x f x t t t g x g x g g t t t→∞→→→∞'-'===''-. 显然,若lim ()()f xg x ''仍为00型不定式,且f ′(x ),g ′(x )满足定理条件,则可继续使用洛必达法则而得到()()()limlim lim ()()()f x f x f xg x g x g x '''==''',且仍然可以依此类推.例1 求33221216lim 248x x x x x x →-+--+.解 32322222121631263lim lim lim 248344642x x x x x x x x x x x x x →→→-+-===--+---.例2 求πarctan 2lim x x x→+∞-. 解 2221πa r c t a n 12l i m l i m l i m 1111x x x x xx x x x→+∞→+∞→+∞--+===+-. 二、∞∞型不定式定理2设f (x ),g (x )满足 (1) 0lim x x →f (x )=∞,0lim x x →g (x )=∞;(2) 在U ︒(x 0)内可导,且g ′(x )≠0;(3) 0limx x →()()f xg x ''存在(或为∞), 则 00()()limlim()()x x x x f x f x g x g x →→'='. 该定理也是应用柯西中值定理来证明的,因过程较繁,故略. 推论2若f (x ),g (x )满足 (1) lim x →∞f (x )=∞,lim x →∞g (x )=∞;(2) 当|x |>X 时可导,且g ′(x )≠0; (3) limx →∞()()f xg x ''存在(或为∞), 则 ()()limlim ()()x x f x f x g x g x →∞→∞'='. 例3 求ln limax xx →+∞ (α>0).解 11l n 1l i m l i m l i m 0a a a x x xxx x a x a x-→+∞→+∞→+∞===. 例4 求lim eax x x →+∞ (α>0).解 1lim lim e e a a x xx x x ax -→+∞→+∞=.若0<α≤1,则上式右端极限为0;若α>1,则上式右端仍是∞∞型不定式,这时总存在自然数n 使n -1<α≤n ,逐次应用洛必达法则直到第n 次有1lim lim e ea a x x x x x ax -→+∞→+∞== (1)(1)lim 0e a nxx a a a n x n -→+∞--+= (次). 故 lim 0eax x x →+∞= (α>0).例5 求π2tan limtan 3x xx →.。

一元基本初等函数

一元基本初等函数

一元基本初等函数一元基本初等函数是指由常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数以及其线性组合组成的函数族。

在高中数学课程中,我们将这一族函数作为基础知识,并围绕其展开一系列的学习。

一、常数函数常数函数,又称恒等函数,是最基本的一元函数之一。

它的函数表达式为:f(x) = c,其中c是一个常数。

常数函数的图像为一条水平直线,与x轴平行。

在计算中,常数函数经常被用作比较、判断以及对称等方面。

二、幂函数幂函数是指形如 f(x) = x^n 的函数,其中n是一个常数。

幂函数的图像形状随着n的取值不同而变化。

当n为正偶数时,幂函数的图像呈现出下凸的形状;当n为正奇数时,幂函数的图像呈现出上凸的形状;当n为负数时,幂函数的图像亦呈现出一个特殊的形态。

幂函数在计算机图形学、财务与经济学等领域有着广泛应用。

三、指数函数指数函数的一般形式为:f(x) = a^x,其中a大于0且不等于1。

指数函数的图像呈现出一个单调递增的形态,曲线在原点处经过(0,1)的点。

指数函数在生物学、物理学、金融学等领域应用极为广泛。

四、对数函数对数函数是指形如 f(x) = loga(x) 的函数,其中a是一个大于0且不等于1的常数。

对数函数一般使用换底公式将不同底数的对数互相换算。

对数函数的图像与指数函数的图像呈现出一种镜像关系。

对数函数在计算机科学、化学、微积分等领域有着广泛应用。

五、三角函数三角函数包括正弦函数、余弦函数、正切函数、余切函数等。

它们与三角形学的关系极为密切,被广泛应用于各种科学领域当中。

三角函数的图像呈现出周期性的波动形态,是其独特的特点之一。

六、反三角函数反三角函数是指对应三角函数的反函数,包括反正弦函数、反余弦函数、反正切函数、反余切函数等。

在计算机科学、工程学、物理学等领域都有广泛的应用。

综上所述,一元基本初等函数在数学领域中有着广泛的应用。

我们应当掌握其函数的基本特点,并在具体问题中恰当地运用各种函数进行相关计算。

三大基本初等函数

三大基本初等函数

第一讲:三大基本初等函数一、一元二次函数:()()0442222≠-+⎪⎭⎫ ⎝⎛+=++==a a b ac a b x a c bx ax x f y 01性质:以0>a 为例:(1)开口向上;(2)对称轴:ab x 2-=; (3)单调性:在⎥⎦⎤ ⎝⎛-∞-a b 2,↓;在⎪⎭⎫⎢⎣⎡+∞-,2a b ↑ (4)定义域:R ;值域:⎪⎪⎭⎫⎢⎣⎡+∞-,442a b ac ; (5)()x f 零点个数:∆。

02最值:()()02≠++==a c bx ax x f y 在[]n m ,上的最值:(三点一轴) ()()()⎪⎩⎪⎨⎧+>-+≤-=22,22,max n m a b m f n m a b n f x f , 注:比较对称轴与区间的中点的大小,两种情况;()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤-≤⎪⎭⎫ ⎝⎛-<-=n a b n f n a b m a b f m a b m f x f 2,2,22,min 注:比较对称轴与区间两个端点的大小关系,三种情况。

典型例题:例1:已知函数()122--=x x x f ,求()x f 在区间[]1,+t t 上的最大值()t M 与最小值()t N 。

答案:()⎪⎩⎪⎨⎧>-≤--=21,221,1222t t t t t t M ; ()⎪⎩⎪⎨⎧>--≤≤-<-=1,1210,20,222t t t t t t t N 变式:求()()t N t M -?例2:已知函数()4212a ax x x f -++-=在区间[]1,0上最大值为2,求a 的值。

解析:法一:分类讨论求最值;法二:利用最大值只可能在两端点或对称轴处取得,求出a ,再检验。

答案:6310-=或a 练习:已知函数()()32log 221+-=ax x x f (1)已知()x f 定义域为R ,求a 的取值范围;(2)已知()x f 值域为R ,求a 的取值范围;(3)()x f 在[)+∞-∈,1x 上有意义,求a 的取值范围;(4)()x f 的值域为(]1,-∞-,求a 的值。

【课件】5.2.1 基本初等函数的导数 5.2.2 导数的四则运算法则人教A版选择性必修第二册

【课件】5.2.1 基本初等函数的导数  5.2.2 导数的四则运算法则人教A版选择性必修第二册

31
[思路探究] (1)先求导,列方程求解. (2)先求导,由条件可知 1,2 是导函数的两个零点.
32
(1)B (2)f (x)=2x3-9x2+12x [(1)∵f (x)=x2a+x 3,∴f ′(x)= ax2+x2+3-322ax2=3xa2-+a3x22.∵f ′(1)=12,∴3a4-2 a=12,
(2)积的导数
①[f (x)g(x)]′=__f_′_(x_)_g_(x_)_+__f _(x_)_g_′(_x_); ②[cf (x)]′=_c_f _′(_x_) .
10
(3)商的导数
gfxx′=
f′xgx-fxg′x [gx]2
(g(x)≠0).
11
1.判断正误(正确的打“√”,错误的打“×”)
解得 a=4.故选 B.
33
(2)因为 f ′(x)=3ax2+2bx+c,f ′(1)=0,f ′(2)=0,
3a+2b+c=0,
f (1)=5,所以12a+4b+c=0, a+b+c=5,
a=2,
解得b=-9, c=12.
故函数 f (x)的解析式是 f (x)=2x3-9x2+12x.]
34
15
4.设函数 f (x)在(0,+∞)内可导,且 f (ex)=x+ex,则 f ′(1)= ________.
2 [法一:令 ex=t(t>0),则 x=ln t.∵f (ex)=x+ex,∴f (t)=ln t+t,∴f ′(t)=1t +1,∴f ′(1)=1+1=2.
法二:对函数两边同时求导,得 f ′(ex)=1+ex,令 x=0,得 f ′(e0) =f ′(1)=1+e0=2.]
三次函数求导问题 由于三次函数的导数是二次函数,因此将导数的计算与二次函数 的图象和性质结合起来就很容易理解了.这类题目比较受学生的青 睐,解题时应回顾二次函数的单调性、最值、图象的对称轴、二次项 系数对图象的影响等.

基本初等函数的图像与性质

基本初等函数的图像与性质
生活、生产和学习其他知识必须具备的能
力。以函数的图像为载体,重点考查函数
的性质等有关知识。数形结合是重要的数
学思想,并且是高考考查的重点。
知识梳理一
一、中学基本初等函数
1.一元一次函数
3.指数函数
2.一元二次函数
4.对数函数
5.幂函数
7.绝对值函数
6.三角函数
8.分式函数
9.根式函数
10.三次函数
② 画图:把题目中涉及的基本条件在图像中反映 出来,特别是一些特殊点、特殊线以及图像的 变化规律等。
③ 求解:根据题目所要求的结论结合图像特点直 观判断、分析并求解,即数形结合综合求解。
数形结合思想
• 1.数形结合的思想方法也是一种重要的数学策略, 它包括两个方面:“以形助数”和“以数助形”. “以形助数”即是借助形的生动性和直观性来阐 明数之间的联系,它是以“形”为手段,以“数” 为目的,如应用函数的图象来直观地说明函数的 性质,应用数轴直观表达不等式组的解 集. “以数助形”是借助于数的精确性和规范严密性 来阐明形的某些属性,它是以“数”为手段,以 “形”为目的,如二分法确认方程根的分布,曲 线方程可以精确地阐明曲线的几何性质.
2 2 4 x x 0, x 4 x 0, x 0, 解析 方法一 x 0, x2 4x x2 2 x 2 4 x
0 x 4, x 0, 2 x 4. x 2或x 0,
典型例题2(图像法)
以上10种基本初等函数的图像要会画。
知识梳理二
二、基本初等函数的图像的变换 1.平移变换:水平平移和竖直平移
2.对称变换:关于x轴、y轴和原点对称
3.翻折变换: y | f ( x) | 与 y f ( x ) 图像画法 4.伸缩变换:主要指的是三角函数中的周期变换和 振幅变换

02初等函数及数列极限的概念

02初等函数及数列极限的概念
并称该支反函数为反双曲余弦的主支。
通常所说的反双曲余弦函数即指此主支。
类似于上面的作法, 可以得到 arth x , arcth x , arsech x , arcsch x 的表达式.
第二章 极限
本章学习要求:
了解数列极限的概念, 会用《 N》语言描述数列的 极限。正确理解 和 N 的含义。
双曲余弦函数的 定义域为 (, )
双曲余弦函数 在(, 0)内单调减少 在[0, )内单调增加
双曲余弦函数是偶函数
y
y = cth x
1
O y = th x
x
1
双曲正切、双曲余切的图形
双曲正切函数 定义域为 (, )
双曲正切函数 是单调增加的且有界
| th x | 1
4
x1 x
1 2
1 2n

,
有界 (可取 M 1 ). 2
(2) { (1)n1}: 1, 1, 1, 1,, (1)n1,
x2n
–1
0
x 2 n 1
x
1
{(1)n1}不单调, 但有界 (可取 M 1 ).
(3)
1

(1)n n

:
x3
••

(••x•2n•-•1••(•••
*
•••)•
x2n
••• •••)•

x4


1 103

1 102n
1
0
1
1
102n
y y f (x) M
yM
I (
O
) x
M y M
数列的有界性的定义
若 M 0, 使得 | xn | M , n N 成立, 则称数列{xn} 有界. 否则称{xn} 是无界的.

基本初等函数导数公式推导过程

基本初等函数导数公式推导过程

基本初等函数导数公式推导过程初等函数导数公式是微积分的基础,被广泛应用于物理、数学、化学等学科的研究和实践中。

对于不同的函数,其导数公式也各不相同,如一元函数、二元函数、多元函数等。

本文将从定义、基本准则以及特殊函数等方面来探讨基本初等函数导数公式的推导过程。

首先,我们来看一下函数的导数的定义。

函数的导数指的是函数的变化率,也就是函数在给定点处的斜率。

考虑函数f(x)在某一点x0处的导数,它可以由f(x)的定义域内的x与x0的变化量Δx的比值定义。

也就是,当Δx的取值趋近于0时,就可以将函数f(x)的导数表示为:f(x0)=limΔx→0[f(x0+Δx)-f(x0)]/Δx我们还需要熟悉基本初等函数导数公式的推导准则,其中有三条基本原则:1、连加性原则:若f(x)=u(x)+v(x),则f(x)=u(x)+v (x);2、连乘性原则:若f(x)=u(x)* v(x),则f(x)=u(x)* v(x)+ u(x)* v(x);3、链式法则:若y=f(x),则y=f(x)* x,其中x=1。

这三条基本准则可以帮助我们有效地推导各种复杂的基本初等函数的导数公式。

下面我们将重点讨论一元函数的导数公式推导过程。

首先,我们需要了解一些基本的一元函数,如常数函数、线性函数、二次函数、幂函数、指数函数和对数函数等等。

对于常数函数f(x)=c,其导数f(x)=0。

这一特性可以根据定义以及连加性原则很容易证明。

而线性函数f(x)=ax+b的导数,则可以由定义以及连乘性原则得出f(x)=a。

这一公式无论何时都适用。

而关于二次函数f(x)=ax2+bx+c的导数,也可以通过连乘性原则来推导。

利用定义重新表示二次函数,可以写成f(x)=u(x)v(x),其中u(x)=ax,v(x)=x+b/a。

根据连乘性原则,则可以得到f(x)=u(x)v(x)+u(x)v(x)=ax+b。

对于幂函数f(x)=xn,其导数f(x)=nxn-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元基本初等函数
一元基本初等函数是指可以用有限次加、减、乘、除、幂、指数、对数、三角函数、反三角函数等基本运算和函数组合得到的函数。

这些函数在数学中具有重要的地位,被广泛应用于各个领域。

其中,最基本的一元基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数。

这些函数都有着独特的性质和特点,可以用来描述各种数学问题。

常数函数是指在定义域内取定一个常数值的函数,它的图像是一条水平直线。

常数函数在数学中被广泛应用于各种问题中,如常数函数可以用来描述物体的位置、速度、加速度等。

幂函数是指以自变量为底数,以常数为指数的函数,它的图像是一条曲线。

幂函数在数学中被广泛应用于各种问题中,如幂函数可以用来描述物体的体积、面积等。

指数函数是指以常数为底数,以自变量为指数的函数,它的图像是一条曲线。

指数函数在数学中被广泛应用于各种问题中,如指数函数可以用来描述物体的增长、衰减等。

对数函数是指以常数为底数,以自变量为指数的函数的反函数,它的图像是一条曲线。

对数函数在数学中被广泛应用于各种问题中,
如对数函数可以用来描述物体的衰减、增长等。

三角函数是指正弦函数、余弦函数、正切函数等函数,它们的图像都是一条曲线。

三角函数在数学中被广泛应用于各种问题中,如三角函数可以用来描述物体的周期性运动等。

反三角函数是指正弦函数、余弦函数、正切函数等函数的反函数,它们的图像也是一条曲线。

反三角函数在数学中被广泛应用于各种问题中,如反三角函数可以用来描述物体的角度等。

一元基本初等函数在数学中具有重要的地位,被广泛应用于各个领域。

通过对这些函数的研究和应用,可以更好地理解和解决各种数学问题。

相关文档
最新文档