栈和队列的应用的实验原理
堆栈模拟队列实验报告

一、实验目的通过本次实验,加深对堆栈和队列数据结构的理解,掌握堆栈的基本操作,并学会利用堆栈模拟队列的功能。
通过实验,培养学生的编程能力和问题解决能力。
二、实验内容1. 实现一个顺序堆栈,包括初始化、判断是否为空、入栈、出栈等基本操作。
2. 利用两个顺序堆栈实现队列的功能,包括入队、出队、判断队列是否为空等操作。
3. 通过实例验证模拟队列的正确性。
三、实验原理队列是一种先进先出(FIFO)的数据结构,而堆栈是一种后进先出(LIFO)的数据结构。
本实验通过两个堆栈来实现队列的功能。
当元素入队时,将其压入第一个堆栈(称为栈A);当元素出队时,先从栈A中依次弹出元素并压入第二个堆栈(称为栈B),直到弹出栈A中的第一个元素,即为队首元素。
四、实验步骤1. 定义堆栈的数据结构,包括堆栈的最大容量、当前元素个数、堆栈元素数组等。
2. 实现堆栈的基本操作,包括初始化、判断是否为空、入栈、出栈等。
3. 实现模拟队列的功能,包括入队、出队、判断队列是否为空等。
4. 编写主函数,创建两个堆栈,通过实例验证模拟队列的正确性。
五、实验代码```c#include <stdio.h>#include <stdlib.h>#define MAX_SIZE 100typedef struct {int data[MAX_SIZE];int top;} SeqStack;// 初始化堆栈void InitStack(SeqStack S) {S->top = -1;}// 判断堆栈是否为空int IsEmpty(SeqStack S) {return S->top == -1;}// 入栈int Push(SeqStack S, int x) {if (S->top == MAX_SIZE - 1) { return 0; // 堆栈已满}S->data[++S->top] = x;return 1;}// 出栈int Pop(SeqStack S, int x) {if (IsEmpty(S)) {return 0; // 堆栈为空}x = S->data[S->top--];return 1;}// 队列的入队操作void EnQueue(SeqStack S, SeqStack Q, int x) { Push(S, x);}// 队列的出队操作int DeQueue(SeqStack S, SeqStack Q, int x) { if (IsEmpty(Q)) {while (!IsEmpty(S)) {int temp;Pop(S, &temp);Push(Q, temp);}}if (IsEmpty(Q)) {return 0; // 队列为空}Pop(Q, x);return 1;}int main() {SeqStack S, Q;int x;InitStack(&S);InitStack(&Q);// 测试入队操作EnQueue(&S, &Q, 1);EnQueue(&S, &Q, 2);EnQueue(&S, &Q, 3);// 测试出队操作while (DeQueue(&S, &Q, &x)) {printf("%d ", x);}return 0;}```六、实验结果与分析1. 通过实例验证,模拟队列的入队和出队操作均正确实现了队列的先进先出特性。
数据结构栈和队列实验报告

数据结构栈和队列实验报告实验报告:数据结构栈和队列一、实验目的1.了解栈和队列的基本概念和特点;2.掌握栈和队列的基本操作;3.掌握使用栈和队列解决实际问题的方法。
二、实验内容1.栈的基本操作实现;2.队列的基本操作实现;3.使用栈和队列解决实际问题。
三、实验原理1.栈的定义和特点:栈是一种具有后进先出(LIFO)特性的线性数据结构,不同于线性表,栈只能在表尾进行插入和删除操作,称为入栈和出栈操作。
2.队列的定义和特点:队列是一种具有先进先出(FIFO)特性的线性数据结构,不同于线性表,队列在表头删除元素,在表尾插入元素,称为出队和入队操作。
3.栈的基本操作:a.初始化:建立一个空栈;b.入栈:将元素插入栈的表尾;c.出栈:删除栈表尾的元素,并返回该元素;d.取栈顶元素:返回栈表尾的元素,不删除。
4.队列的基本操作:a.初始化:建立一个空队列;b.入队:将元素插入队列的表尾;c.出队:删除队列表头的元素,并返回该元素;d.取队头元素:返回队列表头的元素,不删除。
四、实验步骤1.栈的实现:a.使用数组定义栈,设置栈的大小和栈顶指针;b.实现栈的初始化、入栈、出栈和取栈顶元素等操作。
2.队列的实现:a.使用数组定义队列,设置队列的大小、队头和队尾指针;b.实现队列的初始化、入队、出队和取队头元素等操作。
3.使用栈解决实际问题:a.以括号匹配问题为例,判断一个表达式中的括号是否匹配;b.使用栈来实现括号匹配,遍历表达式中的每个字符,遇到左括号入栈,遇到右括号时将栈顶元素出栈,并判断左右括号是否匹配。
4.使用队列解决实际问题:a.以模拟银行排队问题为例,实现一个简单的银行排队系统;b.使用队列来模拟银行排队过程,顾客到达银行时入队,处理完业务后出队,每个顾客的业务处理时间可以随机确定。
五、实验结果与分析1.栈和队列的基本操作实现:a.栈和队列的初始化、入栈/队、出栈/队以及取栈顶/队头元素等操作均能正常运行;b.栈和队列的时间复杂度均为O(1),操作效率很高。
数据结构实验报告-栈和队列的应用

《数据结构》第五次实验报告学生姓名学生班级学生学号指导老师雷大江重庆邮电大学计算机学院一、实验内容1) 利用栈深度优先进行迷宫求解。
用数组表示迷宫建立栈,利用栈实现深度优先搜索2) 利用队列宽度优先进行迷宫求解。
用数组表示迷宫建立队列,利用队列实现宽度优先搜索二、需求分析利用栈的结构,走过的路入栈,如果不能走出栈,采用遍历法,因此栈内存储的数据就是寻一条路径。
当到达了某点而无路可走时需返回前一点,再从前一点开始向下一个方向继续试探。
因此,压入栈中的不仅是顺序到达的各点的坐标,而且还要有从前一点到达本点的方向,即每走一步栈中记下的内容为(行,列,来的方向)。
三、详细设计(1)基本代码struct item{int x ; //行int y ; //列} ;item move[4] ;(2)代码栈构造函数:void seqstack::Push(int x,int y,int d) //入栈{if(top>=StackSize-1)throw"上溢";top++;data[top].d=d;data[top].x=x;data[top].y=y;}寻找路径:int seqstack::findpath(int a,int b){item move[4]={{0,1},{1,0},{0,-1},{-1,0}};//定义移动结构int x, y, d, i, j ;Push(a,b,-1); //起点坐标入栈while(top!=-1){d=data[top].d+1;x=data[top].x;y=data[top].y;Pop(); //出栈while (d<4) //方向是否可以移动{i=x+move[d].x ; j=y+move[d].y ; //移动后坐标if(Map[i][j]==0) //是否能移动 {Push(x,y,d); //移动前坐标入栈x=i;y=j;Map[x][y]= -1 ;if(x==m&&y==n) //判断是否为终点坐标 {Push(x,y,-1);return 1 ;}else d=0 ;}else d++ ;}}return 0;}(3)伪代码a)栈初始化;b)将入口点坐标及到达该点的方向(设为-1)入栈c)while (栈不空){栈顶元素=(x , y , d)出栈 ;求出下一个要试探的方向d++ ;while (还有剩余试探方向时){ if (d方向可走)则 { (x , y , d)入栈 ;求新点坐标 (i, j ) ;将新点(i , j)切换为当前点(x , y) ;if ( (x ,y)= =(m,n) ) 结束 ;else 重置 d=0 ;}else d++ ;}}(4)时间复杂程度时间复杂程度为O(1)2.3 其他在运行时可选择是否自己构造地图,实现函数如下:void creatmap() //自创地图函数{for(int i=1;i<9;i++){for(int j=1;j<9;j++)Map[i][j]=0;}Map[8][9]=1;printmap();cout<<"请设置障碍物位置:(x,y)。
数据结构栈和队列实验报告

数据结构栈和队列实验报告数据结构栈和队列实验报告1.实验目的本实验旨在通过设计栈和队列的数据结构,加深对栈和队列的理解,并通过实际操作进一步掌握它们的基本操作及应用。
2.实验内容2.1 栈的实现在本实验中,我们将使用数组和链表两种方式实现栈。
我们将分别实现栈的初始化、入栈、出栈、判断栈是否为空以及获取栈顶元素等基本操作。
通过对这些操作的实现,我们可将其用于解决实际问题中。
2.2 队列的实现同样地,我们将使用数组和链表两种方式实现队列。
我们将实现队列的初始化、入队、出队、判断队列是否为空以及获取队头元素等基本操作。
通过对这些操作的实现,我们可进一步了解队列的特性,并掌握队列在实际问题中的应用。
3.实验步骤3.1 栈的实现步骤3.1.1 数组实现栈(详细介绍数组实现栈的具体步骤)3.1.2 链表实现栈(详细介绍链表实现栈的具体步骤)3.2 队列的实现步骤3.2.1 数组实现队列(详细介绍数组实现队列的具体步骤)3.2.2 链表实现队列(详细介绍链表实现队列的具体步骤)4.实验结果与分析4.1 栈实验结果分析(分析使用数组和链表实现栈的优缺点,以及实际应用场景)4.2 队列实验结果分析(分析使用数组和链表实现队列的优缺点,以及实际应用场景)5.实验总结通过本次实验,我们深入了解了栈和队列这两种基本的数据结构,并利用它们解决了一些实际问题。
我们通过对数组和链表两种方式的实现,进一步加深了对栈和队列的理解。
通过实验的操作过程,我们也学会了如何设计和实现基本的数据结构,这对我们在日后的学习和工作中都具有重要意义。
6.附件6.1 源代码(附上栈和队列的实现代码)6.2 实验报告相关数据(附上实验过程中所产生的数据)7.法律名词及注释7.1 栈栈指的是一种存储数据的线性数据结构,具有后进先出(LIFO)的特点。
栈的操作主要包括入栈和出栈。
7.2 队列队列指的是一种存储数据的线性数据结构,具有先进先出(FIFO)的特点。
栈和队列的操作实验小结

栈和队列的操作实验小结一、实验目的本次实验旨在深入理解和掌握栈和队列这两种基本数据结构的基本操作,包括插入、删除、查找等操作,并通过实际操作加深对这两种数据结构特性的理解。
二、实验原理栈(Stack):栈是一种后进先出(Last In First Out,LIFO)的数据结构,即最后一个进入栈的元素总是第一个出栈。
在计算机程序中,栈常常被用来实现函数调用和递归等操作。
队列(Queue):队列是一种先进先出(First In First Out,FIFO)的数据结构,即第一个进入队列的元素总是第一个出队。
在计算机程序中,队列常常被用来实现任务的调度和缓冲等操作。
三、实验步骤与结果创建一个空栈和一个空队列。
对栈进行入栈(push)和出栈(pop)操作,观察并记录结果。
可以发现,栈的出栈顺序与入栈顺序相反,体现了后进先出的特性。
对队列进行入队(enqueue)和出队(dequeue)操作,观察并记录结果。
可以发现,队列的出队顺序与入队顺序相同,体现了先进先出的特性。
尝试在栈和队列中查找元素,记录查找效率和准确性。
由于栈和队列的特性,查找操作并不像在其他数据结构(如二叉搜索树或哈希表)中那样高效。
四、实验总结与讨论通过本次实验,我更深入地理解了栈和队列这两种数据结构的基本特性和操作。
在实际编程中,我可以根据需求选择合适的数据结构来提高程序的效率。
我注意到,虽然栈和队列在某些操作上可能不如其他数据结构高效(如查找),但它们在某些特定场景下具有无可替代的优势。
例如,在实现函数调用和递归时,栈的特性使得它成为最自然的选择;在实现任务调度和缓冲时,队列的特性使得它成为最佳选择。
我也认识到,不同的数据结构适用于解决不同的问题。
在选择数据结构时,我需要考虑数据的特性、操作的频率以及对时间和空间复杂度的需求等因素。
通过实际操作,我对栈和队列的实现方式有了更深入的理解。
例如,我了解到栈可以通过数组或链表来实现,而队列则可以通过链表或循环数组来实现。
数据结构栈和队列实验报告

num=Pop(top);
printf("%d",num);
}
printf("\n");
}
void Push(LinkStack *top,DataType x) /*压栈操作*/
i--;
}
q->rear->next=p;
q->rear=p;
}
void PutQ(LinkQueue *q,int i,int t)
{
int j=t-i-1;
p=q->front->next;
while(j){printf(" ");j--;}
scanf("%d",&t);
top=(LinkStack*)malloc(sizeof(LinkStack));
IniStack(top);
while(num!=0){
Push(top,num%t);
num=num/t;
}
printf("转化后的数为:");
数据结构栈和队列实验报告
(以下写实验内容、分析与程序清单、调试报告等)
一、 实验目的
1.掌握栈这种数据结构特性及其主要存储结构,并能在现实生活中灵活运用。
2.掌握队列这种数据结构特性及其主要存储结构并能在现实生活中灵活运用。
}
}
return 0;
栈与队列实验报告总结

栈与队列实验报告总结实验报告总结:栈与队列一、实验目的本次实验旨在深入理解栈(Stack)和队列(Queue)这两种基本的数据结构,并掌握其基本操作。
通过实验,我们希望提高自身的编程能力和对数据结构的认识。
二、实验内容1.栈的实现:我们首先使用Python语言实现了一个简单的栈。
栈是一种后进先出(LIFO)的数据结构,支持元素的插入和删除操作。
在本次实验中,我们实现了两个基本的栈操作:push(插入元素)和pop(删除元素)。
2.队列的实现:然后,我们实现了一个简单的队列。
队列是一种先进先出(FIFO)的数据结构,支持元素的插入和删除操作。
在本次实验中,我们实现了两个基本的队列操作:enqueue(在队尾插入元素)和dequeue(从队头删除元素)。
3.栈与队列的应用:最后,我们使用所实现的栈和队列来解决一些实际问题。
例如,我们使用栈来实现一个算术表达式的求值,使用队列来实现一个简单的文本行编辑器。
三、实验过程与问题解决在实现栈和队列的过程中,我们遇到了一些问题。
例如,在实现栈的过程中,我们遇到了一个“空栈”的错误。
经过仔细检查,我们发现是因为在创建栈的过程中没有正确初始化栈的元素列表。
通过添加一个简单的初始化函数,我们解决了这个问题。
在实现队列的过程中,我们遇到了一个“队列溢出”的问题。
这是因为在实现队列时,我们没有考虑到队列的容量限制。
通过添加一个检查队列长度的条件语句,我们避免了这个问题。
四、实验总结与反思通过本次实验,我们对栈和队列这两种基本的数据结构有了更深入的理解。
我们掌握了如何使用Python语言实现这两种数据结构,并了解了它们的基本操作和实际应用。
在实现栈和队列的过程中,我们也学到了很多关于编程的技巧和方法。
例如,如何调试代码、如何设计数据结构、如何优化算法等。
这些技巧和方法将对我们今后的学习和工作产生积极的影响。
然而,在实验过程中我们也发现了一些不足之处。
例如,在实现栈和队列时,我们没有考虑到异常处理和性能优化等方面的问题。
实验报告——栈和队列的应用

实验报告——栈和队列的应用第一篇:实验报告——栈和队列的应用实验5 栈和队列的应用目的和要求:(1)熟练栈和队列的基本操作;(2)能够利用栈与队列进行简单的应用。
一、题目题目1.利用顺序栈和队列,实现一个栈和一个队列,并利用其判断一个字符串是否是回文。
所谓回文,是指从前向后顺读和从后向前倒读都一样的字符串。
例如,a+b&b+a等等。
题目2.假设在周末舞会上,男士们和女士们进入舞厅时,各自排成一队。
跳舞开始时,依次从男队和女队的队头上各出一人配成舞伴。
若两队初始人数不相同,则较长的那一队中未配对者等待下一轮舞曲。
现要求写一算法模拟上述舞伴配对问题,并实现。
题目3.打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
每台打印机具有一个队列(缓冲池),用户提交打印请求被写入到队列尾,当打印机空闲时,系统读取队列中第一个请求,打印并删除之。
请利用队列的先进先出特性,完成打印机网络共享的先来先服务功能。
题目4.假设以数组Q[m]存放循环队列中的元素, 同时设置一个标志tag,以tag == 0和tag == 1来区别在队头指针(front)和队尾指针(rear)相等时,队列状态为“空”还是“满”。
试编写与此结构相应的插入(enqueue)和删除(dlqueue)算法。
题目5.利用循环链队列求解约瑟夫环问题。
请大家从本组未讨论过的五道题中选择一道,参照清华邓俊辉老师MOOC视频及课本相关知识,编写相应程序。
选择题目3:打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
二、程序清单//Ch3.cpp #include #include #include“ch3.h” template void LinkedQueue::makeEmpty()//makeEmpty//函数的实现{ LinkNode*p;while(front!=NULL)//逐个删除队列中的结点{p=front;front=front->link;delete p;} };template bool LinkedQueue::put_in(T&x){//提交命令函数if(front==NULL){//判断是否为空front=rear=new LinkNode;//如果为空,新结点为对头也为对尾front->data=rear->data=x;if(front==NULL)//分配结点失败return false;} else{rear->link=new LinkNode;//如不为空,在链尾加新的结点rear->link->data=x;if(rear->link==NULL)return false;rear=rear->link;} return true;};template bool LinkedQueue::carry_out()//执行命令函数 { if(IsEmpty()==true)//判断是否为空{return false;} cout<data<LinkNode*p=front;front=front->link;//删除以执行的命令,即对头修改delete p;//释放原结点return true;};void main()//主函数 { LinkedQueue q;//定义类对象char flag='Y';//标志是否输入了命令const int max=30;//一次获取输入命令的最大个数while(flag=='Y')//循环{ int i=0;char str[max];//定义存储屏幕输入的命令的数组gets(str);//获取屏幕输入的命令while(str[i]!=''){q.put_in(str[i]);//调用提交命令函数,将每个命令存入队列中i++;}for(int j=0;j<=i;j++){if(q.IsEmpty()==true)//判断是否为空,为空则说明没有可执行的命令{cout<cin>>flag;continue;//为空跳出for循环为下次输入命令做好准备}q.carry_out();//调用执行命令的函数,将命令打印并删除}三、程序调试过程中所出现的错误无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
栈和队列的应用的实验原理
栈和队列是计算机科学中常用的数据结构,广泛应用于各个领域。
它们的应用是基于它们提供的先进先出(FIFO)和后进先出(LIFO)的特性,常见的应用包括图像处理、编译器设计、网络通信协议等等。
一、栈的应用实验原理:
1. 表达式求值:栈常用于进行表达式求值。
例如,中缀表达式需要转化为后缀表达式进行计算,这时候可以使用栈来存储运算符,依次进行计算,直到得到结果。
2. 函数调用:栈被广泛用于函数调用。
每当一个函数被调用时,相关的参数、返回地址以及局部变量等信息都被存储在栈中。
当函数执行完毕后,这些信息会从栈中被弹出。
3. 缓冲区管理:在操作系统中,栈被用于管理缓冲区。
当程序需要往缓冲区存储数据时,数据会被放入栈中。
当需要读取数据时,数据会从栈中被弹出。
4. 进制转换:栈也可以用于进制转换。
例如,将一个十进制数转换为二进制数,可以通过依次除以2并将余数入栈,最后依次出栈可以得到二进制数。
二、队列的应用实验原理:
1. 操作系统进程调度:在操作系统中,队列常常被用于进程调度算法。
例如,采用先来先服务(FCFS)算法的操作系统中,进程按照到达的顺序排队,依次执行。
2. 消息队列:在网络通信中,队列被广泛应用于消息的传输。
发送方将消息放
入队列中,接收方从队列中取出消息进行处理。
3. 缓存管理:队列也被用于缓存管理。
当需要读取数据时,先从缓存中读取,如果缓存中没有数据,则从磁盘中读取。
而队列可以用于缓存数据的读取顺序。
4. 广度优先搜索:队列是实现广度优先搜索(BFS)算法的重要数据结构。
在搜索过程中,从起始状态开始,依次将所有相邻的未访问节点加入队列,直到广度优先搜索完成。
以上是栈和队列在实际应用中的一些实验原理,它们的应用涉及到多个领域,都是通过利用栈和队列提供的先进先出和后进先出的特性来实现功能。
通过合理地应用这些数据结构,可以提高程序运行的效率和性能。
同时,栈和队列也是算法设计和数据结构课程中重要的基础知识,对于进一步学习和理解其他高级数据结构和算法有着重要的启发作用。