切线的判定和性质
圆的切线的性质及判定定理

圆的切线的性质及判定定理圆的相切的定义:直线和圆只有一个公共点,即圆心到直线的距离等于半径,这条直线叫圆的切线。
切线的性质定理:圆的切线垂直于经过切点的半径。
推论1:经过圆心且垂直于切线的直线必经过切点;推论2:经过切点且垂直于切线的直线必经过圆心。
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
直线与圆的位置关系:相离:直线和圆没有公共点,即圆心到直线的距离大于半径;相交:直线和圆有两个公共点,即圆心到直线的距离小于半径,这条直线叫圆的割线;相切:直线和圆只有一个公共点,即圆心到直线的距离等于半径,这条直线叫圆的切线。
圆内接四边形的性质与判定定理圆内接四边形的概念:如果一个多边形的所有顶点都在一个圆上,这个多边形就叫做圆内接多边形,这个圆就是多边形的外接圆。
圆内接四边形的性质:圆内接四边形对角互补;圆内接四边形的外角等于它的内角的对角。
圆内接四边形的判定:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。
推论:如果一个四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。
方法总结:1、在解决与圆内接四边形有关的问题时,要注意观察图形,分清四边形的外角和内对角的位置,正确应用性质.2、当两圆相交时,常常通过连结两圆的公共弦,构建出圆内接四边形,进一步解决问题.圆周角定理圆周角的定义:顶点在圆上,它们的两边在圆内的部分分别是圆的弦•一条弧所对的圆周角等于它所对的圆心角的一半。
圆心角定理:圆心角的度数等于它所对弧的度数。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
圆周角的特点:(1) 角的顶点在圆上;(2) 角的两边在圆内的部分是圆的弦.圆周角和圆心角相对于圆心与直径的位置关系有三种:A A A解题规律:解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理.。
切线的判定和性质

例 如图,△ABC 内接于大⊙O ,∠B =∠C ,小⊙O 与AB 相切于点D .求证:AC 是小圆的切线.分析 AC 与小⊙O 的公共点没有确定,故应过O 作AC 的垂线段OE .再证明OE 等于小圆半径,用“到圆心的距离等于半径的直线是圆的切线”来判定AC 是小圆的切线. 证明 连结OD ,作OE ⊥AC 于E . ∵∠B =∠C ,∴AB=AC .又AB 与⊙O 小相切于D ,∴OD ⊥AB . ∵OE ⊥AC ,∴OD=OE .即小⊙O 的圆心O 到AC 的距离等于半径,所以AC 是小圆的切线. 说明:(1)本题为证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.)之一;(2)本题为基本题型,但应用到切线的性质和判定;(3)本题为教材110页例4的变形题.例 (大连市,l 999)阅读:“如图△ABC 内接于⊙O ,∠CAE=∠B . 求证:AE 与⊙O 相切于点A . 证明:作直径AF ,连结FC ,则∠ACF =90°.∴ ∠AFC+∠CAF =90°. ∵∠B =∠AFC . ∴ ∠B+∠CAF =90°. 又∵ ∠CAE=∠B ,∴ ∠CAE+∠CAF =90°. 即AE 与⊙O 相切于点A .问题:通过阅读所得到的启示证明下题(阅读题中的结论可以直接应用).问题:通过阅读所得到的启示证明下题(阅读题中的结论可以直接应用).如图,已知△ABC 内接于⊙O .P 是CB 延长线上一点,连结AP .且PA 2=PB ·PC . 求证:PA 是⊙O 的切线. 证明:∵PA 2=PB ·PC ,∴PAPBPC PA . 又∵ ∠P=∠P ,∴△PAB ∽△PCA .∠PAB=∠C . 由阅读题的结论可知,PA 是⊙O 的切线. 说明:(1)此题的阅读材料来源于教材第117页B 组第1题;(2)应用“连半径证垂直”证明切线.例 (西宁,1999)已知:如图,Rt △ABC 中,∠C=90°,以AB 为直径的⊙O 交斜边AB 于E ,OD ∥AB . 求证:(1)ED 是⊙O 的切线;(2)2 DE 2=BE ·OD证明:(1)连结OE 、CE ,则CE ⊥AB . 在Rt △ABC 中,∵OA=OC ,OD ∥AB ,∴D 为BC 的中点,∴DE=CD , 又∵OC=OE ,OD=OD ,∴△COD ≌△EOD ,∴∠OED=∠OCD=90°,∴ED 是⊙O 的切线.(2)在Rt △ABC 中,CE ⊥AB ,∴△CBE ∽△ABC ,∴CB 2=BE ·AB , ∵OD 为△ABC 的中位线,∴AB=2OD ,BC=2ED ,∴(2ED )2=BE ·2OD 即2 DE 2=BE ·OD说明:此题为综合题,主要应用切线的性质定理、判定定理、射影定理、中位线定理等知识.BC典型例题四例 (北京市西城区试题,2002)已知:AB 为⊙O 的直径,P 为AB 延长线上的一个动点,过点P 作⊙O 的切线,设切点为C.(1)当点P 在AB 延长线上的位置如图1所示时,连结AC ,作APC ∠的平分线,交AC 于点D ,请你测量出CDP ∠的度数;(2)当点P 在AB 延长线上的位置如图2和图3所示时,连结AC ,请你分别在这两个图中用尺规作APC ∠的平分线(不写做法,保留作图痕迹),设此角平分线交AC 于点D ,然后在这两个图中分别测量出CDP ∠的度数;猜想:CDP ∠的度数是否随点P 在AB 延长线上的位置的变化而变化?请对你的猜想加以证明.解:(1)测量结果:︒=∠45CDP . (2)作图略.图2中的测量结果:︒=∠45CDP . 图3中的测量结果:︒=∠45CDP .猜想:︒=∠45CDP 为确定的值,CDP ∠的度数不随点P 在AB 延长线上的位置的变化而变化.证法一:连结BC .∵ AB 是⊙O 的直径, ∴ ︒=∠90ACB .∵ PC 切⊙O 于点C ,∴ A ∠=∠1.∵ PD 平分APC ∠,.454,3,21432︒=∠=∠∴∠+∠=∠∠+∠=∠∠=∠∴CDP A CDP∴ 猜想正确. 证法二:连结OC .∵ PC 切⊙O 于点C ,.901.︒=∠+∠∴⊥∴CPO OC PC∵ PD 平分APC ∠,.45)1(212.121,31.3,.212︒=∠+∠=∠+∠=∠∴∠=∠∴∠+∠=∠∠=∠∴=∠=∠∴CPO A CDP A A A OC OA CPO∴ 猜想正确.典型例题五例 (北京市崇文区,2002)已知:ABC∆≌C B A '''∆,3,5,90==︒='''∠=∠AC AB B C A ACB ,对应边AC 与C A ''重合,如图(1).若将C B A '''∆沿CB 边按箭头所示方向平移,如图(2),使边AB 、B A ''相交于点D ,边C A ''交AB 于点E ,边AC 交B A ''于点F ,以C C '为直径在五边形CF C DE '内作半圆O ,设C B '的长为x ,半圆O 的面积为y .1.求y 与x 的函数关系式及自变量x 的取值范围; 2.连结EF ,求EF 与半圆O 相切时的x 的值.解:1.∵ ABC ∆≌C B A '''∆,3,5,90==︒='''∠=∠AC AB B C A ACB ,,4,.4x C B BC C C x C B BC -='-='∴='∴=∴ππππ28)24(2122+-=-=∴x x x y .以C C '为直径在五边形内作半圆,依题意,在运动过程中C A ''、AC 与⊙O 始终相切,故只需考虑AB 与⊙O 相切的特殊位置,以确定x 的最小值.当C B A '''∆沿CB 边按箭头所示方向平移时, ∵ ABC ∆≌C B A '''∆, ∴ B B '∠=∠, ∴ B DB '∆是等腰三角形.又∵ ,,C O OC C B BC '=''=∴ .O B BO '=∴ O 是B B '的中点.∴ O 到BD 、D B ''的距离相等.∴ AB 与⊙O 相切时,B A ''必与⊙O 相切. 设切点分别为G 、H ,连结OG , 则有,,90B B BCA BGO ∠=∠︒=∠=∠ ∴ BOG ∆∽BAC ∆..5244324,xx BA BO AC OG --=-=∴ 解之得.1=x当1<x 或4≥x 时,不合题意,∴ 自变量x 的取值范围是41<≤x . 2.在C BE '∆和FC B '∆中,⎪⎩⎪⎨⎧︒='∠='∠'=''∠=∠,90,,CF B E C B C B C B B B ∴ C BE '∆≌FC B '∆.,90,//.︒='∠'='∴C FC FC C E FC C E∴ 四边形CF C E '为矩形. 当EF 与⊙O 相切时,C C C E '='21. ).4(2143,43,43tan x x x C E BC AC C B C E B -=∴='∴==''=解之得.58=x典型例题六例 已知如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 交BC 于D ,过D 作⊙O 的切线交AC 于E ,求证:AC DE ⊥.分析:因为DE 是⊙O 的切线,D 是切点,所以连OD ,得DE OD ⊥,因此本题的关键在于证明OD AC //. 证明 连结AD 、ODAB 为⊙O 的直径,AC AB =,BC AD ⊥∴.D 是BC 中点,O 是AB 的中点,OD ∴为BAC ∆的中位线,AC OD //∴DE 是切线,D 为切点,OD 是⊙O 的半径DE OD ⊥∴AC DE ⊥∴ 说明:连结OD 构成了“切线的性质定理”的基本图形,连结AD 构成了圆周角推论的基本图形.典型例题七例 如图,已知⊙O 中,AB 为直径,过B 点作⊙O 的切线,连线CO ,若OC AD //交⊙O 于D .求证:CD 是⊙O 的切线.分析:要证AD 是⊙O 的切线,只须证AD 垂直于过切点D 的半径,由此应想到连结OD .证明 连结OD OC AD // ,A COB ∠=∠∴及ODA COD ∠=∠ OD OA = ,OAD ODA ∠=∠∴ COD COB ∠=∠∴CO 为公共边,OB OD =COB ∆∴≌COD ∆.即ODC B ∠=∠ BC 是切线,AB 是直径, ︒=∠∴90B ,︒=∠90ODC , CD ∴是⊙C 的切线.说明:辅助线OD 构造于“切线的判定定理”与“全等三角形”两个基本图形,先用切线的性质定理,后用判定定理.典型例题八例 如图,以ABC ∆Rt 的一条直角边AB 为直径作圆斜边BC 于E ,F 是AC 的中点,求证:EF 是圆的切线.分析:连OE ,因为EF 过半径OE 的外端,要证EF 是切线,只需证︒=∠90OEF . 思路1 连OF ,证OAF ∆≌OEF ∆,则有︒=∠=∠90OAF OEF思路2 连AE ,则︒=∠90AEC ,证︒=∠+∠=∠+∠90OAE FAE OEA FEA 证明1 如图,连OF 、OE ,的中位线是中点为中点为ABC OF AB O AC F ∆⇒⎭⎬⎫B BC OF ∠=∠⇒⇒1//,32∠=∠ 又B OE OB ∠=∠⇒=3,即21∠=∠,OE OA =,OF OF = 所以OAF ∆≌OEF ∆有︒=∠=∠90OAF OEF 即EF OE ⊥, EF 过半径OE 的外端, 所以EF 是⊙O 的切线.证明2 如图,连结AE 、OE AB 是⊙O 直径︒=∠⇒90AEBFA FE AC F AEC =⇒⎭⎬⎫︒=∠⇒中点为9042314321∠+∠=∠+∠⇒⎭⎬⎫∠=∠⇒=∠=∠⇒OE OAEF OE ⊥⇒︒⇒90 FE 过半径OE 的外端 所以EF 是⊙O 的切线说明:这里的辅助线OE ,仍然想着构造“切线判定定理”的基本图形的作用.典型例题九例 如图,已知弦AB 等于半径,连结OB 并延长使.(1)求证AC 是⊙O 的切线; (2)请你在⊙O 上选取一点D ,使得 (自己完成作图,并给出证明过程)证明:(1)即是⊙O 的切线.(2)①作BO 延长线交⊙O 于D ,连接AD ,,所以D 点为所求. ②如图,在圆上取一点使得,连结,所以点也为所求.说明:证明一条直线是圆的切线,通常选择:(1)到圆心的距离等于圆的半径的直线是圆的切线;(2)经过半径的外端并且垂直于这条半径的直线是圆的切线.而涉及切线问题时,应灵活运用切线的性质,通常连结切点和圆心.题目的第(2)问是分类讨论问题,当题目中的图形未给定时,作图时,应将所有符合条件的图形作出,再分别解答.典型例题十例 已知:直线AB 经过⊙O 上的点C ,并且CB CA OB OA ==,.求证:直线AB 是⊙O 的切线.证明 连结OC .∵CB CA OB OA ==,,∴OC 是等腰三角形OAB 底边AB 上的中线. ∴.OC AB ⊥∴AB 是⊙O 的切线.说明:本题考查切线的判定,解题关键是作出辅助线,易错点是把求证的结论“AB 是⊙O 的切线”.作为条件使用,造成推理过程中的逻辑混乱.典型例题十一例 如图,AB 是⊙O 直径,弦AB CD //,连AD ,并延长交⊙O 过点B 的切线于E ,作AC EG ⊥于G .求证:.CG AC =证明 连结BC 交AE 于F 点...21,32.31,//BF AF CD AB =∴∠=∠∴∠=∠∠=∠∴BE 为⊙O 切线,...54,21.9051,9042.EF AF EF BF BE AB =∴=∴∠=∠∠=∠︒=∠+∠︒=∠+∠∴⊥∴AB 为直径,∴.AC BC ⊥..//,CG AC BC EG AC EG =∴∴⊥说明: 本题主要考查切线的性质,解题关键是作辅助线.典型例题十二例 如图,AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点,AD 交⊙O 于点E ,AC AB AD ,5,4==平分BDA ∠.(1)求证:CD AD ⊥.(2)求AC .证明 (1)连OC .CD 切⊙O 于C ,∴.CD OC ⊥..//.32,21.31,CD AD AD OC OC OA ⊥∴∴∠=∠∴∠=∠∠=∠∴=解 (2)连BC .AB 是⊙O 的直径,∴︒=∠90ACB .ABC ADC ∆∴∠=∠︒=∠,21,90 ∽.ACD ∆∴.AD AC AC AB =即.52.45=∴=AC ACAC 说明:在题目条件中若有切线,常常要作出过切点的半径.利用三角形相似的知识求出线段的长.典型例题十三例 (北京朝阳区试题,2002)已知:在内角不确定的ABC ∆中,AC AB =,点E 、F 分别在AB 、AC 上,BC EF //,平行移动EF ,如果梯形EBCF 有内切圆, 当21=AB AE 时,322sin =B ; 当31=AB AE 时,23sin =B (提示:43223=); 当41=AB AE ,54sin =B . (1)请你根据以上所反映的规律,填空:当51=AB AE 时,B sin 的值等于_________; (2)当nAB AE 1=时(n 是大于1的自然数),请用含n 的代数式表示=B sin ___________,并画出图形、写出已知、求证和证明过程。
圆切线的性质及判定

圆切线的性质及判定一.切线的判定方法:⑴.切线的定义:与圆有唯一公共点的直线叫做圆的切线。
⑵.到圆心的距离等于半径的直线是圆的切线⑶.经过半径的外端,并且垂直于这条半径的直线是圆的切线。
二.辅助线规律:(1)直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证直线与半径垂直简称:“有点,连接,证垂直”。
即当条件中已知直线与圆有公共点时,利用“⑶.经过半径的外端,并且垂直于这条半径的直线是圆的切线”证明。
(2)当直线与圆并没明确有公共点时,辅助线的作法是“过圆心向直线作垂线”,再证圆心到直线的距离等于半径简称:“无点,作垂线,证(等于)半径”。
即当条件没有告诉直线与圆有公共点时,利用“(2)到圆心的距离等于半径的直线是圆的切线;”证明。
三.例题讲析:例1. 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB求证:直线AB是⊙O的切线。
例2. 如图,已知OA=OB=5厘米,AB=8厘米,⊙O的直径为6厘米求证:AB与⊙O相切例3. 如图,已知AB是⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°.求证:DC是⊙O的切线。
例4. 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分∠DAB。
例5. 已知:AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于AD求证:DC是⊙O的切线。
例6. 如图,A是⊙O外一点,连OA交⊙O于C,过⊙O上一点P作OA的垂线交OA于F,交⊙O于E,连结PA,若∠FPC=∠CPA.求证:PA是⊙O的切线例7. 如图,AB=AC,以AB为直径的⊙O交BC于D,DE⊥AC于E求证:DE与⊙O相切例8. 如图,已知AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=EB,E点在BC上。
求证:PE是⊙O的切线。
四.练习:1、如图7,AB为⊙O直径,PA、PC为⊙O的切线,A、C为切点,∠BAC=30°(1)求∠P大小。
数学教案-切线的判定和性质

数学教案-切线的判定和性质一、教案简介本教案旨在帮助学生掌握切线的判定和性质。
通过本教案的学习,学生将了解如何判断一条直线是否为曲线的切线,并掌握切线的性质,如切点、切线方向等。
本教案适用于高中数学教学中切线相关知识的教学。
二、教学目标1.了解判定一条直线为曲线的切线的几何条件;2.掌握切线的性质,如切点、切线方向等;3.运用所学知识解决相关问题。
三、教学重点1.切线的判定几何条件;2.切线的性质。
四、教学内容和方法1. 切线的判定切线是曲线与该曲线上的某一点之间相切的直线。
切线的判定可以通过以下几何条件来进行判断:•条件1:直线过曲线上的一点;•条件2:直线与曲线相交于该点。
2. 切线的性质性质1:切点切线与曲线相交的点称为切点。
性质2:切线的方向切线上的两点在曲线上对应的两点连线的斜率等于切线的斜率。
性质3:切线的斜率切线的斜率等于曲线在切点处的导数。
3. 相关问题的解决将学生分成小组进行练习,解决如下问题:1.已知函数y=x3−2x2−3x+2,求曲线y=x3−2x2−3x+2上切线方程的斜率和截距;2.已知函数$y = \\sqrt{x}$,求曲线$y = \\sqrt{x}$上切线方程的斜率和截距。
五、教学步骤1.导入:通过引入一个实际生活中的例子,如汽车与曲线的切线,引起学生的兴趣,并提出问题:“如何判断一条直线是否为曲线的切线?切线有哪些性质?”;2.讲解:通过讲解切线的判定条件和性质,帮助学生理解切线的概念和相关知识;3.实例演示:通过解析具体的数学问题,讲解切线的判定和性质的应用;4.练习:将学生分成小组,进行相关问题的练习;5.总结:对本节课的主要内容进行总结,并强调切线的重要性和应用价值;6.作业布置:布置相关作业,巩固所学知识。
六、教学评估1.练习题的完成情况;2.学生对切线的判定和性质的理解情况;3.教学过程中的讨论和思考问题的情况。
七、教学延伸1.利用电子白板或数学软件进行切线的绘制和切线方程的计算,帮助学生更加直观地理解切线的概念和性质;2.结合实际问题,让学生应用切线的知识解决实际问题,提高学生对数学知识的应用能力。
切线的判定与性质

56°
O
C F
B
2、如图,△ABC中,∠A的平分线 AD交BC于D,⊙O过点A,且和BC切 于D,和AB,AC分别交于E,F. 求证:EF∥BC A
1 2 O 4 D
E 3 B
F
C
O r
l
A
1、判断: (1)过半径的外端的直线是圆的切线(×) (2)与半径垂直的的直线是圆的切线(×)
(3)过半径的端点与半径垂直的直线是圆的 切线(×)
O l r A O r l O r l
A
A
判定直线与圆相切有哪些方法?
切线的判定方法有三种: •①直线与圆有唯一公共点; •②直线到圆心的距离等于该圆的半径; •③切线的判定定理.即 经过半径的外端并且垂直这条半径的 直线是圆的切线.
D
A E O C B
例1与例2的证法有何不同?
O A C B D A O B
E
C
(1)如果已知直线经过圆上一点,则连结这点和圆
心,得到辅助半径,再证所作半径与这直线垂直.
简记为:有交点,连半径,证垂直.
(2)如果已知条件中不知直线与圆是否有公共点,
则过圆心作直线的垂线段,再证垂线段长等于半
径长.简记为:无交点,作垂直,证半径.
C
A
B
∠CAB的顶点及两边与圆的 位置关系是什么? C 顶点在圆 上,一边与圆 相交,另一边 与圆相切的角 叫做弦切角。 A B AC是弦切角∠CAB所夹的弧。
如图,说出图中所有的弦切角及其所夹 的弧。 弦切角∠CAD夹 ⌒ 的弧是AD B 弦切角∠CAB夹 的弧是ADB · E D O
弦切角∠CAE夹 的弧是ADE
点,则连接半径,应用
切线的பைடு நூலகம்质定理得到垂 直关系,从而应用勾股 定理计算。
切线的概念、切线的判定和性质课件

24.2.2切线的判定、性质和切线长定理

例2.已知:O为∠BAC平分线上一点,OD⊥AB 于D,以O为圆心,OD为半径作⊙O。 求证:⊙O与AC相切。 证明:过O作OE⊥AC于E。 ∵ AO平分∠BAC,OD⊥AB ∴ OE=OD A ∵ OD是⊙O的半径 ∴ AC是⊙O的切线。
D O E
B
C
例1与例2的证法有何不同?
D O A E A C O B
2. 常用的添辅助线方法? ⑴直线与圆的公共点已知时,作出过公共点的半 径,再证半径垂直于该直线。(连半径,证垂直) ⑵直线与圆的公共点不确定时,过圆心作直线的 垂线段,再证明这条垂线段等于圆的半径。(作垂 直,证半径)
3.切线长和切线长定理。 4.三角形的内切圆,三角形的内心
作业: 1.《书本》P101 第4、5、6题 2.《优化设计》P52~53
切线的判定和切线长定理
观察与思考
问题2:砂轮转动时,火花 问题1:下雨天,转动的雨伞 是沿着砂轮的什么方向 上的水滴是顺着伞的什么方 飞出去的? 向飞出去的?
想一想 过圆0内一点作直线,这条直线与圆有什 么位置关系?过半径OA上一点(A除外)能 作圆O的切线吗?过点A呢?
切线的判定定理 经过半径的外端并且垂直 于这条半径的直线是圆的切线。
A
O
B
如图,P是 ⊙O外一点, PA,PB是 ⊙O的两条 切线,我们 P 把线段PA, PB叫做点P 到⊙O的切 线长。
经过圆外一点作圆的切线,这点和切点之间 的线段的长,叫做这点到圆的切线长。
A
O
P
B
切线和切线长是两个不同的概念, 切线是直线,不能度量; 切线长是线段的长,这条线段的两个端点 分别是圆外一点和切点,可以度量。
A 3.以I为圆心,ID为半径作⊙I。
切线的性质和判定

┐
l
2、直线和圆相切 3、直线和圆相交
d = r
d < r
.o d r ┐
l
.O d r ┐
l
O
l
A
O l A
上图中直线是不是圆的切线?
切线的判定定理
经过半径的外端,并且垂直于 这条半径的直线是圆的切线.
∵AB是⊙O的直径,直线 CD经过A点,且CD⊥AB, ∴ CD是⊙O的切线.
这个定理实际上就是:
A
B
O
C
D
已知AB是直径,BC是切线,AC交圆 O于点D,点E是BC的中点。 求证:DE是圆O 的切线
D C E B
A
●
O
作业:
课本101 3、4、10Leabharlann 学案第二课时内容B
●
O
直线和圆相切。 的另一种说法。
d=r
C
A
D
切线的判定方法(三种):
①直线与圆有唯一公 共点; ②直线到圆心的距离 等于该圆的半径 ③切线的判定定理.
直线AB经过圆O上的C,并且 OA=OB,AC=BC 求证:直线AB是圆O 的切线
O
A
B
C
2.如图,已知:OA=OB=5,
AB=8,以O为圆心,以3为半径 的圆与直线AB 相切吗?为什么?
O
A
C
B
练习1
AB=AC,∠C=45°,
以AB为直径作⊙O ,
求证:AC是⊙O的切线
B
O
C
A
切线的性质定理
圆的切线垂直于 经过切点的半径
推理 格式
.
O
切点
∵L是⊙ O 的切线
∴OA⊥L
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切线的判定和性质
1. 引言
在数学中,切线是研究曲线的一个重要概念。
切线可以描述曲线在某一点上的局部行为,并有着独特的性质。
本文将介绍切线的判定方法,以及切线的一些重要性质。
2. 切线的判定方法
2.1 直观判定法
直观上,我们可以将切线理解为与曲线在某一点相切且只在该点上与曲线相交一次的直线。
从几何的角度来看,我们可以通过观察曲线在某一点的附近形状来判定该点是否存在切线。
2.2 解析判定法
除了直观的方法,我们还可以通过解析的方法来判定切线的存在。
对于给定的曲线,我们可以求得其导数,并通过导数的性质来进行判定。
切线的斜率等于曲线在该点的导数值。
因此,如果曲线在某一点的导数存在且不为无穷大,那么该点存在切线。
具体而言,我们可以通过以下步骤来判定切线的存在:
1.求得曲线的导数。
2.计算曲线在给定点处的导数值。
3.判断导数值是否为有限数值。
如果导数值存在且不为无穷大,则该点存在切线。
3. 切线的性质
切线作为曲线的局部近似,具有一些重要的性质,下面将介绍其中的几个性质。
3.1 切线与曲线的关系
切线与曲线相切于该点,因此,切线与曲线在该点处具有相同的斜率。
这意味着切线可以用来近似曲线在该点的局部变化趋势。
3.2 切线的方程
对于给定曲线上的点P(x0, y0),过该点的切线的方程可以表示为:
y - y0 = m(x - x0)
其中,m为曲线在点P处的斜率。
3.3 切线的唯一性
切线与曲线相交于该点且只在该点上相交一次,因此切线是唯一的。
换句话说,通过给定点且与曲线相切的直线只有一条。
3.4 切线的性质总结
综上所述,切线具有以下性质:
•切线与曲线在相切点处具有相同的斜率。
•切线的方程可以表示为 y - y0 = m(x - x0),其中m为曲线在相切点处的斜率。
•给定点且与曲线相切的切线是唯一的。
4. 总结
本文介绍了切线的判定方法和一些重要性质。
我们可以通过直观判定法或解析判定法来判断切线的存在,切线具有与曲线在相切点处相同的斜率,可以用来近似描述曲线的局部行为。
此外,切线的方程可以用 y - y0 = m(x - x0) 来表示,并且通
过给定点且与曲线相切的直线是唯一的。
切线作为研究曲线的重要工具,在数学和应用中具有广泛的应用。
参考文献:
•Stewart, J. (2007). Single Variable Calculus: Early Transcendentals (6th ed.). Belmont, CA: Brooks/Cole.。