物化实验 偶极矩的测定

合集下载

偶极矩介电常数的测定-物理化学实验

偶极矩介电常数的测定-物理化学实验

一、实验目的(1) 了解分子偶极矩与电性质的关系;(2) 掌握测定液体电容的基本原理和技术;(3) 学习测定液体电容的基本原理与技术;(4) 用溶液法测定乙酸乙酯的介电常数和偶极矩。

二、实验仪器试剂:乙酸乙酯、环己烷;仪器:阿贝折射仪、PGM-Ⅱ数字小电容测试仪-介电常数实验装置、比重管、电吹风、25cm3容量瓶。

三、实验原理1、偶极矩与摩尔极化度的关系分子中正、负电荷中心有重合的两种情况,一种是非极性分子,另一种是极性分子。

用偶极矩表示极性分子的大小,定义为:μ=q·d极化分为电子极化、原子极化和转向极化,极化程度可用摩尔极化度P来表示。

在静电场或低频电场中,摩尔极化度为三者之和:摩尔极化度P=P e + P a + Pμ在高频电场中极化分子的转向运动和分子骨架变形跟不上电场频率的变化,P转向=0,P原子的值约只有P电子的5%-10%,可略去,所以P高频=P电子,则:P低频=P高频+P转向。

由波尔兹曼分布证明:P转向=4/3πN A(P2/3kT)=4/9πN A(P2/kT)其中,P为分子的永久偶极矩;k为玻尔兹曼常数;T为热力学温度。

2、低频与高频电场下摩尔极化度的测定在实验测定中,为避免气态下进行实验,常以非极性溶液为溶剂,在无限稀的溶液中,极性溶质的摩尔极化度P∞B表示P低频,溶液的介电场数ε、密度ρ与溶质摩尔分数X B关系可近似用直线方程表示。

实验报告内容:一实验目的二实验仪器三实验原理四实验步骤五、实验数据和数据处理六实验结果七.分析讨论八.思考题再考虑到溶液的加和性,可导得:式中,εA、ρA、M A、分别表示溶剂的介电常数、密度和摩尔质量;M B为溶质的摩尔质量;K1和K2分别是上面两式的ε对X B和ρ对X B所得直线斜率有关的常数。

在稀溶液中,n与X B之间成直线关系:n=n A(1+K3X B)由此可得:式中,R∞B为无限稀溶液中溶质的摩尔折射度;nA为溶剂的折射率;K3为与P低频=limP B直线斜率有关的常数。

实验十五偶极矩的测定-2014年

实验十五偶极矩的测定-2014年
华南理工大学物理化学教研室,物理化学实验 15,葛华才 2014 年改写
实验十五 偶极矩的测定:Guggenheim 简化法
一、目的 测量极性液体 B(如乙酸乙酯)在非极性溶剂 A(如环己烷)中的稀溶液的介电常数和折光 率,根据 Guggenheim 简化公式,计算溶质分子的偶极矩。 二、设计任务 设计选用适合溶液法测量分子的偶极矩的溶质和溶剂;拟定溶液的配制 ( 建议浓度 wB:0.001~0.015 )。 三、原理 1912 年,Debye 提出偶极矩 p 的概念来量度分子极性的大小,其定义为: p=qd (2.15.1)
L
L-nL2

/wB
(1) 计算各溶液溶质的质量分数 wB。 (2) 作 nL~wB,L~wB 曲线,由曲线怎样得 nA 和A? A 能否由实验测量,怎样测量? (3) 计算各溶液的△值及△/wB 值。若用 nA、A 的数据怎样来计算△值? (4) 作△/wB ~ wB 曲线,用什么方法得 / wB w 平均值法? (5) 计算极性溶质分子的偶极矩 p(C.m)。 根据你所选 wB 浓度范围及所得结果 p,与其他同学的浓度及结果进行比较,你有什么 想法? 八、讨论 试分析本实验中误差的主要来源,如何改进? 实验测定的电容是线路分布与介质的电容之和,试分析对实验结果准确性的影响程度, 何时影响可化学实验 15,葛华才 2014 年改写
算值 nA。也可以直接测溶剂的折光率,或查表得到。 四、设计提示 (1) 选用溶剂和溶质时,主要考虑液体的什么性质? (2) 选择溶液浓度时,若某稀溶液(a),wB 在 0.001~0.015 之间;某稀溶液(b),其浓度是 稀溶液(a)的 10 倍左右,wB 在 0.01~0.15 之间。估计选用稀溶液(a)和稀溶液(b)的优缺点,并 选择其一做实验。 (3) nA 可以查表得公认值或直接测量值,也可以 nL 对 wB 作图,外推 wB→0 时,得计算 值 nA。 五、仪器和药品 电容器 1 只,介电常数测试仪 1 台,频率计 1 台,数字阿贝折光仪 1 台,超级恒温槽 1 台,电吹风 1 个,50mL 带塞磨口锥形瓶 4 支,50mL、20mL、l0mL 量筒各 1 个,胶头小吸 管 5 支,10ml 移液管 2 支。 分析纯药品:环己烷、乙酸乙醋、(氯苯、辛烷、丁醇、四氯化碳、氯仿)等。 六、步骤 1.配制溶液 (1) 选用溶剂 A 和溶质 B。 (2) 根据 wB 的范围选择溶液浓度。 (3) 控制溶液体积约 20mL。锥形瓶编号,烘干后称重,用量筒加溶剂 A(18mL 左右), 称重,用吸管加溶质 B(0.05~0.2mL),再称重。每次称重须准确至 0.0001g。配制过程须防止 液体挥发,及时盖好塞子。测量前一定要摇匀。 (4) 配制溶液除(3)以外,还可以准确量取纯液体,以该温度下的密度换算成质量;也可 以使用实验室事先配制的溶液, 测折光率, 从折光率与质量比的工作曲线上找到该溶液的质 量比。 2. 测量折光率 接通电源,调节恒温槽温度,将恒温水接入数字阿贝折光仪的保温套,用吸管分别吸取 溶液在数字折光仪上测量折光率 nL。为测量准确,应怎样加样,怎样读数? 3. 测量介电常数 将恒温水接人电容器夹套中,溶液的介电常数使用 PGM-II 小电容测试仪直接测定,如 图 2.15.1 所示。 (1) 按图 2.15.1a 接线,直接拨出测量池上外电极 C1 插头,打开电源,预热 5min。 (2) 用丙酮或乙醚清洗样品池及电极间隙(图 2.15.1b),用风筒吹干。按图 2.15.1a 接好, 待数值稳定后,按采零开关。将测试线接上“外电极 C1”插座,此时显示器显示稳定值即为 空气介质与系统分布的电容之和。 (3) 泼出 C1 插头,用移液管往样品杯内加入待测样品,重复(2)步骤,测定样品与系统 分布的电容之和。注意,注入第 2 个及以后样品时需先用风筒吹干样品杯及电容池。

物理化学-实验三十八:溶液法测定极性分子的偶极矩

物理化学-实验三十八:溶液法测定极性分子的偶极矩

实验三十八 溶液法测定极性分子的偶极矩一、实验目的1.测定氯仿在环已烷中的偶极矩,了解偶极矩与分子电性的关系。

2.了解Clansius-Mosotti-Debye 方程的意义及公式的使用范围。

3.掌握密度管的使用与电容的测定。

二、实验原理分子可近似看成由电子云和分子骨架(包括原子核和内层电子)组成。

非极性分子的正、负电荷中心是重合的,而极性分子的正、负电荷中心是分离的,其分离程度的大小与分子极性大小有关,可用“偶极矩”这一物理量来描述。

以q 代表正、负电荷中心所带的电荷量,d 代表正、负电荷中心之间的距离,则分子的偶极矩μ=q ·d (1)μ为矢量,其方向规定为从正电荷中心到负电荷中心。

极性分子具有的偶极矩又称永久偶极矩,在没有外电场时,由于分子的热运动,偶极矩指向各个方向的机会相同,故偶极矩的统计值为零。

但当有外电场存在时,偶极矩会在外电场的作用下沿电场方向定向排列,此时我们称分子被极化了,极化的程度可用分子的摩尔取向极化度取向P 来衡量。

除摩尔取向极化度取向P 外,在外电场作用下,极性分子和非极性分子都会发生电子云对分子骨架的相对移动和分子骨架的变形,这种现象称为变形极化,可用摩尔变形极化度变形P 来衡量。

显然,变形P 由电子极化度电子P 和原子极化度原子P 组成。

所以,对极性分子而言,分子的摩尔极化度P 由三部分组成,即P =取向P +电子P +原子P (2)当处在交变电场中,根据交变电场的频率不同,极性分子的摩尔极化度P 可有以下三种不同情况:(1)低频下(<1010秒―1)或静电场中,P =取向P +电子P +原子P ;(2)中频下(1012秒―1~1014秒―1)(即红外频率下),由于极性分子来不及沿电场取向,故取向P =0,此时P =变形P =电子P +原子P ;(3)高频下(>1015秒―1)(即紫外频率和可见光频率下),极性分子的取向运动和分子骨架变形都跟不上电场的变化,此时取向P =0,原子P =0,P =电子P 。

物化实验报告 稀溶液测定偶极矩

物化实验报告 稀溶液测定偶极矩

稀溶液测定偶极矩(结构化学得好好学阿)一、实验目的1. 掌握溶液法测定偶极矩的主要实验技术2. 了解偶极矩与分子电性质的关系3. 测定乙酸乙酯的偶极矩二、实验原理1.偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。

由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。

前者称为非极性分子,后者称为极性分子。

1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是qd =→μ ①式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→μ是一个矢量,其方向规定为从正到负。

因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。

通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。

极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。

所以偶极矩的统计值等于零。

若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。

这时称这些分子被极化了。

极化的程度可以用摩尔转向极化度P μ来衡量。

P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。

kT 9μπN 4P A μ=②式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。

这称为诱导极化或变形极化。

用摩尔诱导极化度P 诱导来衡量。

显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此a e P P P +=诱导 ③如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。

当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。

偶极矩的测定实验报告

偶极矩的测定实验报告

偶极矩的测定实验报告一、实验目的本实验的目的是通过测量分子的介电常数和偶极矩,来掌握偶极矩的测定方法,了解分子间相互作用力及其对物理和化学性质的影响。

二、实验原理1. 偶极矩偶极矩是描述分子极性的物理量,它是由电荷分布不均匀引起的。

在外电场作用下,带电粒子会发生位移,从而产生偶极矩。

偶极矩大小与分子内部原子之间距离、键长、键角以及原子电负性等因素有关。

2. 介电常数介电常数是描述介质中电场效应强弱程度的物理量。

当外电场作用于介质时,介质中存在着一个由分子团所组成的局部场。

这个局部场会使得外加电场在分子团周围产生扭曲,并且在空间上存在着一定程度上的非均匀性。

因此,在局部场内,外加电场与被扭曲后形成的局部场不完全重合,这就导致了一个相对位移。

这种相对位移所引起的感应电荷称为极化电荷,极化电荷的大小与外加电场强度成正比,与介质的介电常数成反比。

3. 测量偶极矩的方法测量偶极矩的方法有很多种,其中最常用的是测量分子在外电场中受到的力和扭矩。

根据库仑定律,带电粒子在外电场中受到的力与粒子所带电荷量和外加电场强度成正比。

而分子在外电场中所受到的扭矩则是由其偶极矩和外加电场强度决定。

通过测量分子所受到的力和扭矩,可以求出其偶极矩。

4. 测量介质的介电常数测量介质的介电常数通常采用平行板法或圆柱形法。

平行板法是将两块平行金属板夹住待测物质,在两块平行板之间形成一个均匀、稳定的静态电场,并且通过改变待测物质厚度、面积以及两块平行板之间距离等因素来控制静态电场强度。

通过测量两块平行板之间所加入的能够使得电场强度变化的电荷量,以及两块平行板之间的距离和面积等因素,可以计算出介质的介电常数。

三、实验步骤1. 实验装置:偶极矩测定装置、介质测定装置、数字万用表、计算机等。

2. 实验前准备:清洗实验器具,检查仪器是否正常工作。

3. 测量样品的介电常数:(1)将两块平行金属板夹住待测物质,并且通过改变待测物质厚度、面积以及两块平行板之间距离等因素来控制静态电场强度。

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩、实验目的(1)掌握溶液法测定偶极矩的主要实验技术(2)了解偶极矩与分子电性质的关系(3)测定正丁醇的偶极矩二、实验原理2.1偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及层电子)所构成。

由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。

前者称为非极性分子,后者称为极性分子。

1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是卩qd (1)式中,q是正负电荷中心所带的电量;d为正负电荷中心之间的距离;卩是一个矢量,其方向规定为从正到负,的数量级是10-3°Cm通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。

极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。

所以偶极矩的统计值等于零。

若将极性分子置于均匀的电场E中,则偶极矩在电场的作用下,趋向电场方向排列。

这时称这些分子被极化了。

极化的程度可以用摩尔转向极化度P卩来衡量。

R与永久偶极矩卩的平方成正比,与绝对温度T成反比。

(2)(6)4 nN A A 巳-9kF式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;A 为分子 的永久偶极矩。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架 的相对移动,分子骨架也会发生形变。

这称为诱导极化或变形极化。

用摩尔诱导摩尔极化度P 与介电常数c 之间的关系式。

极化度P 诱导来衡量。

显然, P 诱导可分为两项,即电子极化度 P e 和原子极化度因此诱导=p e + P a(3)如果外电场是交变场, 极性分子的极化情况则与交变场的频率有关。

当处于频率小于101O H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度 P 是转向极化、电子极化和原子极化的总和。

A+ P e +R(4)介电常数实际上是在107HZ 一下的频率测定的,测得的极化度为 P A+ P e +P a 。

偶极矩的测定实验报告

偶极矩的测定实验报告偶极矩的测定实验报告引言:偶极矩是描述分子极性的物理量,对于研究分子的结构和性质具有重要意义。

本实验旨在通过测量分子的偶极矩来探究其分子极性,并通过实验数据分析得出准确的偶极矩数值。

实验材料与方法:实验中使用的材料为一台高精度电子天平、一台高精度电容测量仪和一些具有不同分子极性的化合物样品。

首先,我们将样品放置在电子天平上进行称量,确保每个样品的质量准确。

然后,我们将样品放入电容测量仪中,通过电容的变化来测量样品的偶极矩。

实验步骤:1. 将电容测量仪连接到电源,并进行校准,确保测量的准确性。

2. 将待测样品放入电容测量仪的测量室中,注意避免样品与测量室壁或其他物体接触。

3. 开始测量前,先将电容测量仪的读数归零,确保测量的基准准确。

4. 打开电容测量仪的电源开关,开始进行测量。

5. 每次测量前,先等待一段时间,让样品与测量室达到热平衡。

6. 记录每次测量的电容读数,并计算出对应的偶极矩数值。

7. 重复以上步骤,对不同样品进行测量,得到一系列的偶极矩数值。

实验结果与讨论:通过实验测量得到的一系列偶极矩数值可以用来比较不同化合物的分子极性。

在本实验中,我们选取了苯酚和苯胺作为样品进行测量。

根据实验数据,我们发现苯酚的偶极矩数值较大,而苯胺的偶极矩数值较小。

这是因为苯酚分子中含有氧原子,氧原子的电负性较高,使得苯酚分子呈现一定的极性。

而苯胺分子中的氮原子电负性较低,分子极性较小。

实验结果与理论相符,进一步验证了偶极矩的测定方法的准确性。

通过实验测量得到的偶极矩数值可以为分子结构的研究提供重要参考。

结论:本实验通过测量不同化合物的偶极矩,探究了分子的极性特性。

实验结果表明,苯酚分子具有较大的偶极矩,而苯胺分子具有较小的偶极矩。

这与分子结构和化学性质的理论预期相符,进一步验证了偶极矩的测定方法的可靠性。

通过本次实验,我们不仅了解了偶极矩的概念和测定方法,还深入探讨了分子极性与化学性质之间的关系。

物理化学实验报告_偶极矩

物理化学实验报告_偶极矩实验目的:1.掌握测定非极性和极性溶液中溶质和溶剂的溶解度的方法;2.掌握通过溶解度来计算偶极矩的方法,并了解溶液中溶质与溶剂相互作用的规律。

实验仪器:1.偶极矩仪2.显微镜3.恒温水槽4.称量仪器实验原理:偶极矩是描述分子极性的参数,它的大小与分子内部键的极性以及分子形状有关。

偶极矩的大小可以通过测量分子在电场中受力的大小得到。

实验步骤:1.首先准备两个容器,一个用来测定非极性溶液的偶极矩,另一个用来测定极性溶液的偶极矩。

2.在非极性溶液容器中放入适量的溶剂,用秤量仪器称量它的质量,并记录下来。

3.向非极性溶液中加入少量溶质,并充分搅拌,直到达到饱和状态,用显微镜观察溶质是否完全溶解。

4.如果溶质没有完全溶解,则继续加入少量溶质,重复步骤3,直到溶质完全溶解。

5.测量非极性溶液在电场中所受的力的大小,并记录下来。

6.重复以上步骤,测量极性溶液的偶极矩。

实验结果:非极性溶液的质量为10g,溶质完全溶解之后,测量到的力为5N;极性溶液的质量为8g,溶质完全溶解之后,测量到的力为8N。

实验数据处理:根据实验原理,偶极矩与电场力的关系为:偶极矩=电场力/电场强度。

假设电场强度为1N/C,非极性溶液的偶极矩为5/1=5D,极性溶液的偶极矩为8/1=8D。

讨论与分析:1.从实验结果可以看出,极性溶液的溶解度比非极性溶液大,这是因为极性溶液中分子之间的相互作用力较强,溶解度较高。

2.实验结果与实际情况也符合,一般非极性溶液的溶解度较低,而极性溶液的溶解度较高。

3.通过测量溶液的偶极矩可以判断溶质与溶剂的相互作用力大小以及溶剂分子的极性程度。

结论:通过实验测定了非极性和极性溶液的偶极矩,并得出了结论:偶极矩与溶解度呈正相关关系,极性溶液的溶解度较高。

实验结果与理论相符,验证了溶质与溶剂相互作用的规律。

偶极矩的测定实验报告

偶极矩的测定实验报告1. 引言在物理学中,偶极矩是描述分子或物体极性的重要物理量。

测定偶极矩的实验对于研究分子结构和相互作用具有重要意义。

本实验旨在通过测定液体中溶质分子的偶极矩,探究偶极矩的测定方法和实验原理。

2. 实验原理在外电场作用下,偶极矩会受到力矩的作用,使分子发生取向。

根据电场力矩的大小和方向,可以计算出分子的偶极矩大小。

实验中常用的测定偶极矩的方法主要有电滚筒法和导电性法。

2.1 电滚筒法电滚筒法通过测量溶液在外电场下的旋转速度来测定偶极矩。

当溶质分子具有偶极矩时,溶液会发生旋转,旋转速度与偶极矩成正比。

2.2 导电性法导电性法是通过测量溶液的电导率来间接计算偶极矩。

溶液中的溶质分子会影响溶液的电导率,电导率与偶极矩成正比。

3. 实验步骤3.1 实验准备1.准备实验所需的溶液和试剂。

2.检查实验仪器的正常工作状态。

3.2 电滚筒法测定1.将待测溶液倒入电滚筒中。

2.设置电场强度并记录旋转速度。

3.重复实验多次,取平均值。

3.3 导电性法测定1.测量纯溶剂的电导率作为参考。

2.依次加入不同浓度的溶质,测量电导率。

3.计算不同浓度下的电导率变化。

4.根据电导率变化计算偶极矩。

4. 数据处理与分析4.1 电滚筒法测定结果实验测得不同溶液的旋转速度如下: 1. 溶液A:10 rpm 2. 溶液B:15 rpm 3.溶液C:20 rpm根据电滚筒法的原理,可以计算出溶液A、B、C对应的偶极矩大小分别为1.0 D、1.5 D、2.0 D。

4.2 导电性法测定结果实验测得不同浓度下的溶液电导率如下: 1. 纯溶剂:10 S/m 2. 0.1 mol/L溶质浓度:12 S/m 3. 0.2 mol/L溶质浓度:14 S/m 4. 0.3 mol/L溶质浓度:16 S/m根据导电性法的原理,可以计算出溶质的偶极矩大小与溶质浓度的关系。

5. 结论根据实验结果,我们成功测定了不同溶液中溶质分子的偶极矩大小。

实验二十九 偶 极 矩 的 测 定

实验二十九 偶 极 矩 的 测 定一、实验目的1.了解偶极矩与分子电性质的关系;2.掌握溶液法测定偶极矩的实验技术。

二、基本原理分子的结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。

由于其空间构型不同,其正、负电荷中心可以是重合的,也可以是不重合的,前者称为非极性分子,后者称为极性分子。

1912年德拜(Debye)提出“偶极矩”的概念来度量分子极性的大小,如图29-1所示,其定义是:d q ⋅=→μ (29-1)式中q 是正、负电荷中心所带的电荷量,d 为正、负电荷中心之间的距离。

图29-1 电偶极矩示意图 →μ是一个向量,通常规定其方向从正到负。

因分子中原子间距离的数量级为10-10米,电荷的数量级为10-20 库仑,所以偶极矩的数量级是10-30 库·米。

(1 Debye = 10-10 电量静电单位·厘米=3.33564×10-30 库·米)。

分子偶极矩的单位一般采用Debye 。

分子的偶极矩可以是分子本身所固有的,也可以是分子在外电场作用下分子的正负电荷中心变化而引起的。

前者称为分子的永久偶极矩,记作μ0,后者称为诱导偶极矩,记作μI 。

极性分子具有永久偶极矩,而非极性分子则没有永久偶极矩。

无论是非极性分子还是极性分子,在电场作用下都会产生出一个与电场方向反平行的诱导偶极矩μI ,这一效应称为分子的诱导极化。

实验表明诱导偶极矩的平均值μI 与分子所在位置的有效电场强度F 成正比。

μI = αI · F (29-2)αI 称为分子的诱导极化率或变形极化率,它等于单位场强度(F =1)下诱导极化产生的平均偶极矩,是一个由分子本性决定的常数。

诱导偶极矩的产生有两方面的原因:一方面是分子中的电子云在外电场作用下发生相对于分子骨架的变形,这是主要的;另一方面是原子核构成的分子骨架在外电场作用下发生变形(主要是键角变动)。

因此,αI 可认为由两部分组成:αI = αE + αA (29-3) αE 称为电子极化率,αA 称为原子极化率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理化学基础实验(上)实验十二:偶极矩的测定Experiment 12: The measurement of themoment of dipole化学与材料科学学院材料科学与工程系Department of Materials Science & Engineering,School of Chemistry and Materials Science张付瑞Furui ZhangPB11206281zhfree@2013/10/23摘要:电介质在外场中极化使分子(极性分子与非极性分子)产生变形极化,而我们用偶极矩来衡量这种极化程度。

偶极矩的测量对预测测量对象的结构是非常有效和重要的,比如用来探讨甲酰胺的结构与性能【1】。

本实验通过测量不同浓度溶液的电容、折射率和密度来推导出无限稀溶液的P∞和R∞,从而计算得到偶极矩。

关键词:变形极化偶极矩环己烷正丁醇Abstract:The deformation polarization may occur to dielectric polarized by the outfield and we us the dipole moment to express the degree of this polarization. The measurement of the dipole moment is really effective and important to portend the structures of materials, for instance, the dipole moment can be used to explore the structure and characteristics of formamide[1].This experiment procure the dipole moment calculated by P∞and R∞which deducted by the statics of the capacitance and refractive index and density of solution with different concentration.Keywords:deformation polarization; dipole moment; cyclohexane; formamide; 前言 Introduction偶极矩的测量在电化学中属于基础而重要的一项技能,可以通过测量偶极矩来判别产物是对称性还是非对称性,从而对我们的判断给予重要的区分。

并且在物理上,原子的偶极对其性质的研究也有很大帮助【2】。

所以,本实验作为测量偶极矩的基础实验,对我们了解物质结构有很大帮助。

并且实验通过测量宏观实际量来推算出理想状态下无穷量,从而计算偶极矩,是很好的思路,也有助于我们拓宽实验思维。

实验部分 Experiment一. 简要原理 Recapitulative Rationale对于由溶剂1和溶剂2组成的溶液体系,根据Hedestrand (Z. Phys. Cnem.,2438(1929))的理论,其介电常数、折射率、摩尔极化度以及密度均和浓度成线性关系,即:ε = ε1 (1 + α X 2 ) (1)n = n 1 (1 + γ X 2 ) (2)ρ = ρ1 (1 +β X 2 ) (3)P = X 1 P 1 + X 2 P 2 (4)式中X 1、X 2分别为溶剂和溶质的摩尔分数,ε、ρ、P 、n ;ε1、ρ1、P 1、n 1;ε2、ρ2、P 2、n 2分别为溶液、溶剂和溶质的介质常数、密度、摩尔极化度和折射率,α、β、γ为常数。

由此可得:112111121102221232ρβ-⋅+ε-ε+ρ⋅+εαε===−→−∞∞M M M )(P lim P P X (5) 1221121112212102226212ρρβ)n (r M n M M n n R lim R R X ++-⋅+-===−→−∞∞ (6) 这样我们用交变频率为1000HZ 的交流电桥测出电容池中各浓度下溶液的电容,用此电容除以真空下电容池的电容即得介电常数。

用阿贝折射仪测出可见光下各溶液的折射率,再用分析天平测出各溶液的密度代入(1)-(4)式,可定出α、β、γ,再代入(5)、(6)式算出P ∞和R ∞,再由式 T R P )(0128.0∞∞-=μ算出分子的永久偶极矩μ。

T R P )(0128.0∞∞-=μ的来源如下:如将电介质置于交变电场中,则其极化和电场变化的频率有关。

交变电场的频率小于1010秒-1时,极性分子的摩尔极化度P 中包含了电子原子和取向的贡献。

当频率增加到1012-1014秒-1时(即红外场),电场的交变周期小于分子偶极矩的松弛时间,极性分子的取向运动跟不上电场的变化,这时极性分子来不及沿电场取向,故P O = 0。

当交变电场的频率进一步增加到大于1015秒-1高频场(可见光和紫外)时,分子的取向和分子骨架的变形都跟不上电场的变化,这时P O = 0、P A = 0、P = P E 。

这时ε = n 2,n 为介质的折射率,这时的摩尔极化度称为摩尔折射度RρM n n R P ⋅+-==2122E (7) 因为P A 只有P E 的10%左右,一般可以略去,或按P E 10%修正。

由(21)式可得:2121A E 210)()49(T P P P N K --=πμ (8) 略去P A 由(22)(23)式可得:2121210)()49(T R P N K -=πμ (9) T R P )(0128.0-=μ (10)由(25)计算E 内忽略了分子间相互作用项F 4,故用无限稀的P ∞、R ∞计算μ,T R P )(0128.0∞∞-=μ (11) ------------------------------------------------------------------------------------------------二. 试剂与仪器 Reagents & Implements仪器 implements :阿贝折射仪一台 CCJ -1型精密电容测量仪一台分析天平一台 超级恒温槽一台干燥器一只 容量瓶(25毫升)6只电吹风一只 震动原理密度测量仪一台电容池1只试剂 reagents :正丁醇(分析纯) 环已烷(分析纯)------------------------------------------------------------------------------------------------三.实验简要步骤Experimental Process⑴将50mL 容量瓶编号为1-5,分别将容量瓶放在电子天平上,去皮后量取大约20mL的环己烷,准确记录环己烷的质量。

⑵通过计算分别求出0%、1%、5%、10%和15%(摩尔分数)的环己烷溶液中应该加入正丁醇的体积,准确量取后分别加入1-5 号容量瓶中,摇匀。

操作时应注意防止溶质、溶剂的挥发以及吸收水汽。

为此溶液配好后应迅速盖上瓶盖并置于干燥器中。

(3)用阿贝折射仪测出溶液的折射率。

测定时各样品需加样三次,每次取三个数据,最后取平均值。

(4)利用电容测量仪测量C环‘和C0’:ε环= C 环/ Co = 2.023-0.0016 ( t-20 )C’环= C 环+ CdC’o = Co + Cd式中t 为(℃),解上述方程组,可得Co、Cd。

(5)加溶液电容的测定:重复测定时,要去掉电极间的溶液,还要用电吹风将二极间的空隙吹干,然后再加入该浓度溶液,恒温数分钟,测出电容值。

两次测定数的差值应小于0.05PF,否则要重新测量。

测得的电容减去Cd 后才是该溶液对应的电容值。

【实验中所用仪器猜测接口接触不良,导致导线位置稍微弯曲改变将引起0pf-4pf之间的变化,即示数从7pf到12pf间跳动,并且不同区间有不同稳定值,由于①②的测量结果均为9pf左右,故后面的三组均取了示数为9.**的数据。

因为溶液不足的缘故,没有重新测量。

】 ------------------------------------------------------------------------------------------------四. 实验结果分析 Analysis of the results数据处理与推导见附件二:得到如下结果∞P =38.70578∞R =22.33688T R P )(0128.0∞∞-=μ=0.89398 Debye与理论值1.66D 【3】相去很远,误差分析见下。

但是一样说明正丁醇是极性的,可以推测出它的结构非对称,引起电子云的分布不均,从而导致偶极矩的产生。

------------------------------------------------------------------------------------------------五. 误差分析 Analysis of the deviation相对误差计算:ω=|μ-μ理论|/μ理论=46.15%因为测量过程中电容误差很大,故怀疑为电容测量仪器接触不良而引起的∞P 不准确。

参考其他同学的∞P 约为75-80左右,并且比对其β与γ均相差不大,即εsolvent 和α相差很大导致了结果的不理想。

从而推理出电容测量结果线性关系不正确,并且数值上也有误(同组同学测量的电容值均为6pF-7pF 左右)。

即就本人此次试验而言,最大的误差在于电容的测量,怀疑为电容器上端连接的导线接触不良导致示数大幅度变化而带来的较大误差。

其他误差:①有机溶剂的挥发使实验过程中测量对象的浓度与配制时不同,从而影响结果准确性。

②电容测量过程中每次更换溶液会有残留,很难完全吹干,因为正丁醇的沸点为117.73摄氏度,并且稀溶液中的依数性将导致溶剂沸点升高,也增加了残留的可能性。

③每次更换溶液需要打开电容器,这将导致每次的导线位置,弯曲程度都不相同,这将影响分布电容Cd,即所求的Cd与后来溶液电容测量的Cd不是完全相等的,这也会带来误差。

(这也是引起本人此次实验结果偏差大的相关因素之一,即接触不良时更容易体现出导线的位置弯曲程度不同。

)------------------------------------------------------------------------------------------------ 六.思考题Meditative question测量中为什么溶液的浓度不能太高(如20%)?答:因为理论推导时忽略了分子间的相互作用F4,如果所配制的溶液浓度太高,将导致单位体积内分子数较多,从而无法忽略它们之间的相互作用力,即外推出无限稀情况下的∞P与∞R不尽合理。

相关文档
最新文档