微生物的化学诱变技术

微生物的化学诱变技术
微生物的化学诱变技术

微生物的化学诱变

化学诱变:利用化学物质对微生物进行诱变,引起基因突变或真核生物染色体的畸变称为化学诱变。化学诱变的物质很多,但只有少数几种效果明显,如烷化剂、吖啶类化合物等。

复合处理及其协同效应:诱变剂的复合处理常有一定的协同效应,增强诱变效果,其突变率普遍比单独处理的高,这对育种很有意义。复合处理有几类:同一种诱变剂的重复使用,两种或多种诱变剂先后使用,两种或多种诱变剂同时使用。

定向培育和驯化:定向培育是人为用某一特定环境条件长期处理某一微生物群体,同时不断将他们进行移种传代,以达到累积和选择合适的自发突变体的一种古老的育种方法。由于自发突变的变异频率较低,变异程度较轻,故变异过程均比诱变育种和杂交育种慢得多。

微生物化学诱变的操作过程

化学诱变剂的剂量主要决定于其浓度和处理时间。

化学诱变剂都具毒性,其中90%以上是致癌物质或极毒药品,使用时要格外小心,移取液体时绝对禁止直接用口吸,避免与皮肤直接接触,不仅要注意自身安全,也要防止污染环境,造成公害。

一、碱基类似物

用于诱发突变的碱基类似物有5-BU、5-FU、BUdr、5-IU等他们是胸腺嘧啶的结构类似物,AP、6-MP是腺嘌呤的结构类似物。最常用是5-BU和AP。

当将这类物质加入到培养基中,在繁殖过程中可以掺入到细菌DNA分子中,不影响DNA的复制。它们的诱变作用是取代核酸分子中碱基的位置,再通过DNA的复制,引起突变,困此,也叫掺入诱变剂。显然这一类诱变剂要求微生物细胞必顿处在代谢的旺盛期,才能获得最佳的诱变效果。

(一)碱基类似物的诱变机制

正常的碱基存在着同分异构体,互变异构现象在嘧啶分子中以酮式和烯醇式的形式出现,而嘌呤分子中以氨基和亚氨基互为变构的形式出现、一般互变异构现象在碱基类似物中比正常DNA碱基中频率更高。

5-BU导致A:T碱基对转换为G:C碱基。

2-氨基嘌呤也可以诱发DNA分子中A:T-G:C或G:C-A:T的转换。

(二)碱基类似物的诱变处理方法(以5-BU为例)

1.单独处理

将微生物液体培养到对数期,离心除去培养液,加入生理盐水或缓冲液,饥饿培养8~10 h,消耗其体内的贮存物质、将5-BU加入到经饥饿培养的培养液中,处理浓度为25~40 μg/mL,温合均匀,取0.1~0.2 mL菌悬液加入到琼脂培养基上涂布培养。在适宜温度下,使之在生长过程中诱变处理。培养后挑取单菌落,进行筛选。如果是处理真菌、放线菌孢子,则要提高5-BU的浓度,常处理浓度为0.1 mg/mL。

2.与辐射线复合处理

据报道,如果菌体先用5-BU等碱基类似物进行处理,使它们首先渗入到DNA分子中,然后用辐射线照射,诱变效果会比单独使用射线要好。因此碱基类似物也是一种辐射诱变的增敏剂,从而提高突变率。

二、烷化剂

(一)烷化剂的作用机制

烷化剂分单功能烷化剂和双功能或多功能烷化剂两大类。前者仅一个烷化基团,对生物毒性小,诱变效应大。后者具有两个或多个烷化基团,毒性大,致死率高,诱变效应较差。主要原因是双功能烷化剂含有硫芥、氮芥。

烷化剂主要是通过烷化基团使DNA分子上的碱基及磷酸部分烷化,DNA复制时导致碱基配对错误而引起突变,碱基中容易发生烷化作用的是嘌呤类。其中鸟嘌呤N7是最易起反应的位点,几乎可以和所有烷化剂起烷化作用;此外,DNA分子中比较多的烷化位点是鸟嘌呤O6和胸腺嘧啶O4,这些可能都是引起突变的主要位点。其次引起烷化的位点是鸟嘌呤N3、腺嘌呤N2,腺嘌呤N7和胞嘧啶N3。这些位点引起碱基置换的仅占烷化作用的10%左右。因此,由这些位点改变所引起的突变仅是少数。

烷化剂也能造成磷酸和核糖之间的共价键断裂,而造成突变。

(二)烷化剂的性质

溶液烷化剂的性质比较活泼,不太稳定,在水溶液中容易发生分解。它们大部分半衰期很短,其长短与温度、溶液pH关系很大。因此,化学诱变剂要现用现配还要避光。配制烷化剂时,要采用合适的缓冲液。千万要注意烷化剂有毒!!!!

(三)常用的烷化剂

亚硝基胍(NTG):黄色晶体物质,性质不稳定,容易光解,黄色变为绿色时,诱变效应际低。有超诱变剂之称,常用缓冲溶液有磷酸缓冲液和Tri缓冲液。

诱变处理方法:

①用一定值的磷酸缓冲液或Tri缓冲液洗制成菌悬液。②NTG母液:配制需加助溶剂甲酰胺或丙酮少许,然后加缓冲液,其比例为缓冲液9 mL:NTG丙酮溶液l mL,浓度为NTG 1 mg/mL;使用时取母液0.2 mL + 菌悬液1.8 mL,NTG终浓度为100 μg/ mL。一般随菌种不同而异,细菌一般为100~1000 μg/ mL,放线菌、真菌为l000-3000 μg/ mL。③放线菌在生长适宜的温度下培养,(细菌30~35℃、真菌25~28℃、放线菌30~32℃)处理若干时间,一般细菌20~60 min,孢子90~120 min。④终止反应。冷的生理盐水50倍稀释处理,或经过离心洗涤处理,作一定稀释度分离于平皿。如果是细菌,把后培养基按一定浓度加入到菌体沉淀物中,振荡培养1.5~2 h,经2~3次细胞分裂,再涂平皿。

处理完毕后,马上把接触过NTG的器皿用NaOH浸泡处理。

NTG除以上直接以溶液处理外,还可以按以下方法诱变处理。⑴摇瓶振荡处理:在接菌后的培养基中加入5~10 μg/mL NTG.并加几滴吐温60或吐温80,使成乳化状(注意吐温对该菌生长是否有影响);⑵在平皿上生长过程处理:如果将NTG、琼脂和菌体混合制成平板,NTG浓度为10~50 μg/mL。或将琼脂培养基制成平板.然后将NTG和菌

体混合涂抹平板,此时NTG浓度为10~20 μg/mL。

经后培养的培养液,除部分进行平皿分离外,剩余的培养液可以加入适量的药物,保存于冰箱内数天。如日本有人把经过NTG处理后的大肠杆菌培养液,用50%甘油(最终浓度为12.5%)于-40℃、-80℃保存。在以后数天内随时可取出融化,稀释分离,突变体死亡很少。

据报道,无论是用辐射处理,还是用化学诱变剂处理后的菌悬液或后增养液,浸在冰浴中2~3 h,试验的重复性很好。认为在大肠杆菌、枯草杆菌和放线菌等可以采取这一措施来提高诱变效果。

NTG是一种强烈致癌物质,操作时要带橡皮手套,穿工作服,带口罩,用称量瓶称量,最好在通风橱中进行。凡接触过NTG的器皿必须及时、单独处理。可用大量自来水冲洗或用1~2 N的NaOH浸泡过夜后再用大量自来水洗净。

2.甲基磺酸乙酯(简称EMS)

甲基磺酸乙酯是磺酸酯类中诱变效果较好的一种烷基化合物,外观呈粉末状或无色液体,难溶于水,不稳定,易水解成无活性物质。

EMS的诱变处理方法:

① EMS 母液的配制:为了安全和防止失效,配制前将需用的器皿,置冰箱内预冷,然后在冰浴中进行配制。取0.5ml EMS原液,加入到10 mL pH7.2磷酸缓冲液中,加盖,并轻轻转动试管。由于在水溶液中易失效,故尽可能低温保藏,并要现用现配。

②取新鲜的菌体,经前培养至对数期,离心洗涤,用缓冲液制成8 mL菌悬液(107~108/mL)。对于丝状菌孢子,则前培养至萌动期,悬液含106/mL。

③取EMS母液2mL,加入到8mL的菌悬液中。在适宜温度下处理一定时间(根据预实验结果确定)。处理的最终浓度为0.l mol/L。对于真菌孢子,则为0.2~0.5 mol/L。

④EMS处理一定时间后,用50倍生理盐水稀释或加入一定量的2% NaS2O3溶液或多次离心、洗涤,以终止反应。

EMS是剧毒的诱变剂,在整个诱变过程,包括配制药品、操作处理、保存等都要严守安全,不能接触皮肤,所有接触过EMS的器皿,单独用大量水冲洗洗涤,或用10% NaS2O3溶液浸泡过夜,再用清水冲洗干净。

三、脱氨剂

亚硝酸是一种常用的诱变剂。毒性小,不稳定,易挥发,其钠盐易在酸性缓冲液中产生NO和NO2。

(一)亚硝酸的诱变机制:脱去碱基中的氨基变成酮基,引起转换而发生变异。A→H,C→U,G→X。A:T→G:C和G:C→A:T。亚硝酸的诱变也可以发生回复突变。

亚硝酸除了脱氨基作用外,还可引起DNA交联作用,DNA复制,从而导致突变。

(二)亚硝酸的处理方法

1.试剂的配制

(1)称8.2克乙酸钠溶于适量水中,加入6.0克冰乙酸,然后转移到100 mL的容量瓶中,用少量水洗涤烧杯2到3次,洗液并入容量瓶中,再定容到刻度线即可。

(2)1 mol每升的醋酸作为缓冲液:取 6.12g醋酸+蒸馏水至100 mL。将NaAc(CH3COONa)溶液徐徐加入到刚才配制的溶液中混匀,然后调节pH到4.5为止。

(3)0.6 mol每升的亚硝酸钠溶液:4.14g亚硝酸钠+蒸馏水到100 mL

(4)0.7mol每升的磷酸氢二钠溶液:9.94g磷酸氢二钠+蒸馏水到100 mL

上述是所需溶液的配制方法,注意以上溶液使用前均需要灭菌。

2.处理方法

取孢子悬液1 mL,pH4.5醋酸缓冲液2ml及亚硝酸钠溶液l mL,最后处理浓度为0.025 mol/L;25~26℃保温10~20 min,加入的磷酸氢二钠溶液20 mL,使其下降至pH 6.8左右,以终止反应。稀释分离于平板。

如果是处理细菌,亚硝酸最后浓度以0.05 mol/L。

在亚硝酸处理菌体或孢子时要严格控制好温度,否则会影响诱变效果。

四、移码诱变剂

移码诱变剂与DNA相互结合引起碱基增添或缺失而造成突变。它们主要包括吖啶黄、吖啶橙、ICR-171、ICR-191等。移码诱变剂对噬菌体有强烈的诱变作用,诱发细菌、放线菌的质粒脱落比其他诱变剂效果更为显著。如某些产生抗生素的放线菌。用处理后,发现产量明显下降,主要就是由于控制抗生素合成的质粒脱落造成的。

吖啶黄的性质和使用方法:

淡黄色晶体,微溶于热水,溶于乙醇和乙醚,不稳定,见光易分解。

使用时,先用少许乙醇溶解,配成一定浓度的母液。通常处理方法是特它们加入培养基中,使最后浓度为10~50 μg/mL,混合后制成平板,适温培养,在生长过程中处理。另外还可将吖啶黄加人到培养液中,浓度为10~20 μg/mL,在适温条件下,振荡培养过程中处理。

五、羟化剂【以羟胺为例】

羟胺的简称HA,常以盐酸羟胺形式存在,为白色晶体,溶于水,不稳定易分解,具腐蚀性。

1.羟胺的诱变机制

当羟胺浓度为0.1~1.0 mol/L pH6.0时,主要与胞嘧啶反应,使羟化的C与A配对,在0.1~1.0 mol/L pH9.0,羟胺可以与鸟嘧啶反应,1.0~3.0 mol/L时,羟胺可以与胸腺嘧啶、鸟嘌呤和尿嘧啶起反应。但据分析,羟胺与T、G反应的是它的产物,而不是它本身。此外,羟胺有时还能和细胞中其他物质作用产生过氧化氯,也具有诱变作用。

2.羟胺的处理方法

常用浓度为0.1%~5.0%,可直接在溶液中处理,时间1~2 h,然后分离培养。但一般都加到琼脂平板或振荡培养基中。然后接入孢子或细菌,在适温下培养,生长过程中处理.所用浓度比直接处理时低些。

六、金属盐类

用于诱变育种的金属盐类主要有氯化锂、硫酸锰等。其中氯化锂比较常用,与其他诱变剂复合处理,效果相当显著。

氯化锂称之为助诱变剂,氯化锂是白色粉末,易溶于水,使用时通常加到培养基中。

为了避免受破坏,倒平板时,当培养基温度冷却到50~60℃时才加入制成平板,然后把细菌或孢子涂布分离,处理终浓度为0.3%~1.5%。

七、其他化学诱变剂

1.秋水仙素

秋水仙碱是诱发细胞染色体多倍体的诱变剂。秋水仙碱的主要作用是破坏细胞有丝分裂过程中纺锤丝的形成。导致多倍体的产生。

2.抗生素

作为诱变剂的抗生素主要有链黑霉素、争光霉素、丝裂霉素、放线菌素、光辉霉素和阿霉素等。这些抗生素都是抗癌药物,它们在微生物育种中虽有应用,但效果不如烷化剂等诱变剂显著,应用并不广泛。一般不单独使用,常与其他诱变剂一起复合使用。

八、直视化学诱变剂的操作安全

化学诱变剂多数是极毒的致癌药品,在进行诱变操作后的处置以及诱变剂的保藏等方面的安全防护都是极其重要的。如有疏忽,就可能对健康和环境带来恶果,万万不可麻痹。

微生物的诱变育种

微生物的诱变育种 作者:佚名来源:生物秀时间:2008-4-18 实验仪器大全实验试剂大全 一、实验目的和内容 目的:以紫外线诱变获得用于酱油生产的高产蛋白酶菌株为例,学习微生物诱变育种的基本操作方法。 内容:1.对米曲霉(Aspergills oryzae )出发菌株进行处理,制备孢子悬液。 2.用紫外线进行诱变处理。 3.用平板透明圈法进行两次初筛。 4.用摇瓶法进行复筛及酶活性测定。 二、实验材料和用具 米曲霉斜面菌种; 豆饼斜面培养基、酪素培养基、蒸馏水、0.5%酪蛋白; 三角瓶(300mL、500mL)、试管、培养皿(9cm)、恒温摇床、恒温培养箱、紫外照射箱、磁力搅拌器、脱脂棉、无菌漏斗、玻璃珠、移液管、涂布器、酒精灯。 三、操作步骤 (一)出发菌株的选择及菌悬液制备 1.出发菌株的选择可直接选用生产酱油的米曲霉菌株,或选用高产蛋白酶的米曲霉菌株。2. 菌悬液制备取出发菌株转接至豆饼斜面培养基中,30℃培养3~5d 活化。然后孢子洗至装有1mL 0.lmol/L pH6.0 的无菌磷酸缓冲液的三角瓶中(内装玻璃珠,装量以大致铺满瓶底为宜),30℃振荡30min,用垫有脱脂棉的灭菌漏斗过滤,制成把子悬液,调其浓度为106~108 个/mL,冷冻保藏备用。 (二)诱变处理 用物理方法或化学方法,所用诱变剂种类及剂量的选择可视具体情况决定,有时还可采用复合处理,可获得更好的结果。本实验学习用紫外线照射的诱变方法。 1.紫外线处理打开紫外灯(30W)预热20min。取5mL 菌悬液放在无菌的培养皿(9cm)中,同时制作5 份。逐一操作,将培养皿平放在离紫外灯30cm(垂直距离)处的磁力搅拌器上,照射l min 后打开培养皿盖,开始照射,与照射处理开始的同时打开磁力搅拌器进行搅拌,即时计算时间,照射时间分别为15 s、30 s、l min、2 min、5 min。照射后,诱变菌液在黑暗冷冻中保存1~2h 然后在红灯下稀释涂菌进行初筛。 2.稀释菌悬液按10 倍稀释至10-6,从10-5和10-6中各取出0.lmL 加入到酪素培养基平板中(每个稀释度均做3 个重复),然后涂菌并静置,待菌液渗入培养基后倒置,于30℃恒温培养2~3d。 (三)优良菌株的筛选 1. 初筛首先观察在菌落周围出现的透明圈大小,并测量其菌落直径与透明圈直径之比,选择其比值大且菌落直径也大的菌落40~50 个,作为复筛菌株。 2.平板复筛分别倒酪素培养基平板,在每个平皿的背面用红笔划线分区,从圆心划线至周边分成8 等份,1~7 份中点种初筛菌株,第8 份点种原始菌株,作为对照。培养48h 后即可见生长,若出现明显的透明圈,即可按初筛方法检测,获得数株二次优良菌株,进大摇瓶复筛阶段。3.摇瓶复筛将初筛出的菌株,接入米曲霉复筛培养基中进行培养,其方法是,称取麦秩85g,

微生物菌种的选育方法

微生物菌种的选育方法 菌种选育Loremreferentibus(英语:Strain selection 日语:ひずみの选択法语:la sélection des souches 俄语:Штаммвыбор 德语:Stammselektion )微生物菌种是决定发酵产品的工业价值以及发酵工程成败的关键,只有具备良好的菌种基础,才能通过改进发酵工艺和设备以获得理想的发酵产品。菌种用途广泛涉及食品、医药、工农业、环保等诸多领域。 自然选育

自然选育的菌种来源于自然界、菌种保藏机构或生产过程,从自然界中选育菌种的过程较为复杂,而从生产过程或菌种保藏机构得到菌种的自然选育过程较为简单。 自然选育的步骤主要是:采样,增长培养,培养分离和筛选等。采样筛选的菌种采集的对象以土壤为主,也可以是植物、腐败物品和某些水域等。土壤是微生物的汇集地,从土壤中几乎可以分离到任何所需的微生物,故土壤往往是首选的采集目标。微生物的营养需求和代谢类型与生长环境有很大关系。富集培养由于采集样品中各种微生物数量有很大差异,若估计到要分离的菌种数量不多时,就要人为增加分离的概率,增加该菌种的数量,称为富集培养。纯种培养尽管通过增长培养的效果很好,但是得到的微生物还是处于混杂状态,因为样品中本身含有许多种类的微生物。所以,为了取得所需的微生物纯种,增殖培养后必须进行分离。平板分离法由接种环以无菌操作沾取少许待分离的材料,在无菌平板表面进行平行划线、扇形划线或其他形式的连续划线,微生物细胞数量将随着划线次数的增加而减少,并逐步分散开来。如果划线适宜的话,微生物能一一分散,经培养后,可在平板表面得到单菌落。分离方法有三种:即划线分离法、稀释法和组织分离法。稀释分离法在溶液中再加入溶剂使溶液的浓度变小。亦指加溶剂于溶液中以减小溶液浓度的过程。浓溶液的质量×浓溶液的质量分数=稀溶液的质量×稀溶液的质量分数生产能力考察初筛一般通过平板稀释法获得单个菌落,然后对各个菌落进行有关性状的初步测定,从中选出具有优良性状的菌落。例如,对抗生素产生

诱变育种技术

诱变育种技术 诱变育种是利用物理、化学因子,促使育种的原始材料的遗传性发生变异,从而选出优良品种的一种育种方法。它包括物理的辐射诱变和化学诱变两种。 辐射诱变是指利用γ-射线、X-射线、β-射线、中子、无线电微波、激光、紫外线等物理因子,照射植物的种子、植株和其他器官,使它们的遗传物质发生变化,产生各种各样的变异,通常称为突变,然后选择符合人们需要的植株进行培育,从而获得新品种。化学诱变则是利用一些化学药品,来浸泡和处理植物的种子或其他器官,促使突变的发生,从而选育出新的品种。 诱变育种是相对于利用自然突变选种(穗选、株选)而言的,植物在自然条件下生长发育,由于受到各种自然条件的作用,它们的遗传物质也会发生变异。但由于自然条件下的各种引起变异的因子的强度较缓和,自然突变的频率较低,发生的变异数往往满足不了育种选择的需要,所以现代育种中往往采取较强的诱变强度,让突变的发生数大大增加,从而加快育种进程。 诱变育种的优点在于: 能大幅度提高植物的变异牢,扩大变异范围:自然突变率一般在十万分之几到百万分之几,而诱变处理后的突变频率可高达 1/30左右,比自然突变高1000~10000倍,同时引起的变异类型多、范围广。如印度用γ-射线处理蓖麻,获得了生育期由270天缩短到120天的特大变异株系。

能改良品种的第一性状,而保持其他优良性状不变:对于一个具有多种优良性状而只希望改进某一两个性状的品种,采用诱变育种最为有效,它较之利用杂交育种方法相比,容易收到满意的效果。如通过辐射,把燕麦的抗锈病特性和对叶枯病易感性分离开来,培育出了抗锈病又不易感染叶枯病的新品种。 引起的变异稳定快,育种年限短;诱变处理后的子代分离少、稳定快,一般在第三代就可稳定,而杂交育种的某个性状的稳定往往要在第五到第七代。对于一年只能生长一季的农作物来说,意味着缩短育种时间2~4年。 能改变作物的育性,有利于杂种优势的发挥:在常规的杂交育种中,往往要用较多的时间和人力去除掉母本的雄蕊,避免自交现象的发生。用诱变处理母本的种子,可以选育出雄性不育的植株,形成雄性不育系,供杂交育种时使用。由于杂交后的第一代往往表现出杂种优势,发挥了父、母本的各自的优良品质,用它们的子一代作种子来生产,其产量及其他性状往往很好。所以我国现在大面积推广的杂交水稻、杂交玉米、杂交小麦,都取得了明显的经济效益和社会效益,为解决我国广大农民的温饱问题作出了巨大贡献。 诱变育种的中心是利用各种诱变剂提高作物的突变率。但是诱变剂的剂量是一个首先要注意的问题,并非剂量越大越好,要明白诱变剂的处理是建立在对原有细胞中的遗传物质的损伤基础上来加大突变率的,它们的处理对细胞是有伤害的。选择一定的诱变剂量很重要,诱变育种中有相应的三个名词或俗语,那就是“致死剂量”、

关于微生物育种中化学诱变技术的综述

关于微生物育种中化学诱变技术的综述 姓名:周旭班级;11生工1 学号:20110801120 摘要:化学诱变是一种传统而经典的微生物育种技术,不仅在高产工业菌株选育中得到广泛应用,而且近来还用于改造野生菌株代谢功能,以发现新产活性产物。本文简要综述常用化学诱变剂及其作用机制,以及化学诱变技术在微生物育种领域中的新近应用研究进展。 关键词:微生物育种;化学诱变剂;诱变机制;应用 1前言 菌种优劣对于微生物药物的工业化生产具有决定性意义。野生菌株往往因产率低而不能直接用于工业生产,而需要通过菌种改良,选育高产优良菌株。微生物药物的工业化生产对菌株的这种需求带动了各种育种技术的蓬勃发展,而育种技术则通过不断提供优良菌株又促进了微生物药物产业的持续发展。 在育种研究中,近来还发现有些突变株可代谢产生新产物,具有可供作药源新菌株资源的潜在应用前景,使育种技术进一步拓展了新的应用研究发展空间。微生物人工诱变育种技术按诱导突变类型可分为物理诱变、化学诱变和生物诱变三大类[1]。化学诱变是一种传统而经典的微生物育种技术,不仅在高产工业菌株选育中得到广泛应用,而且还用于改造野生菌株的代谢功能,从而发现新产活性产物。在实际应用中,化学诱变既有利用某一种化学诱变剂的单一诱变,也有组合利用化学或其他多种诱变剂的复合诱变,还有化学诱变联合抗生素抗性筛选等。本文简要综述常用化学诱变剂及其作用机制,以及化学诱变技术在微生物育种领域中的新近应用研究进展。 2常用化学诱变剂 2.1碱基类似物作为化学诱变剂的碱基类似物主要有嘧啶类似物和嘌呤类似物两大类。其中,常用嘧啶类似物有5-溴尿嘧啶(5-BU)、5-氟尿嘧啶(5-FU)、6-氮杂尿嘧啶(6-NU)等;嘌呤类似物有2-氨基嘌呤(2-AP)、6-巯基嘌呤(6-MP)、8-氮鸟嘌呤(8-NG)等[2]。 2.2烷化剂 烷化剂类化学诱变剂种类较多,如硫芥(氮芥)类、环氧衍生物类、乙撑亚胺类、硫酸(磺酸)酯类、重氮烷类、亚硝基类等。其中,亚硝基乙基脲、亚硝基胍、硫酸二乙酯、甲基磺酸甲酯、甲基磺酸乙酯等较为常用。 2.3移码诱变剂 移码诱变剂系指能够引起DNA分子中组成遗传密码的碱基发生移位复制,致使遗传密码发生相应碱基位移重组的一类化学诱变物质,主要为吖啶类杂环化合物,常用的有吖啶橙和原黄素两种(图1)。

菌种诱变方法

微生物诱变育种的方法 摘要:介绍了几种常用的物理诱变和化学诱变育种方法的原理、特点以及成功案例等,为微生物诱变育种提供了一个总体的方法框架。 关键词:诱变; 微生物育种 微生物与酿造工业、食品工业、生物制品工业等的关系非常密切,其菌株的优良与否直接关系到多种工业产品的好坏,甚至影响人们的日常生活质量,所以选育优质、高产的微生物菌株十分重要。微生物育种的目的就是要把生物合成的代谢途径朝人们所希望的方向加以引导,或者促使细胞内发生基因的重新组合优化遗传性状,人为地使某些代谢产物过量积累,获得所需要的高产、优质和低耗的菌种。作为育种途径之一的诱变育种一直被广泛应用。目前,国内微生物育种界主要采用的仍是常规的物理及化学因子等诱变方法。 1 物理诱变 1.1紫外照射 紫外线照射是常用的物理诱变方法之一,是诱发微生物突变的一种非常有用的工具。DNA和RNA的嘌呤和嘧啶最大的吸收峰260nm,因此在260nm的紫外辐射是最有效的致死剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至死亡[2]。 马晓燕[3]等以紫外诱变原生质选育法筛选发酵乳清高产酒精菌株马克斯克 鲁维酵母菌株ZR-20,比优化前的酒精产率提高10.5%,较出发菌株提高了68%。顾蕾[4]等通过紫外诱变红酵母ns-1原生质体,获得类胡萝卜素产量明显提高的突变株,其生物量、色素产量分别为6.15g/L、6.41mg/L,分别比原始菌株提高了67.6%、54.1%。 紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。 1.2电离辐射 γ-射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖-磷酸相连接的化学键。其间接效应是能使

诱变育种

诱变育种 第一节诱变育种的概念、意义与特点 诱变育种就是人为地采用物理、化学的因素,诱发有机体产生遗传性的变异,并经过人工选择、鉴定、培育新品种的途径。诱变育种的目标就是改变或增加一个满意品种的某一特性,而在其她方面保持品种不变。如果需要一个适应性好、独特的、非常合意的与受欢迎的品种,这种方法特别吸引人。 诱变育种的特点:1)提高突变率,扩大变异谱;2)适于进行个别性状的改良;3)育种程序简单,年限短;4)变异的方向与性质不定(已有人把人工合成低聚核苷酸片段引入基因组中,以一定方式改变某一基因,进行定向诱变)。 作为一种育种方法,诱发突变技术在培育那些在种内有足够的遗传变异与由显性基因确定其特性的作物,就是可有可无的或无前途的。但就是,显性突变型曾被诱发,特别就是抗病型,部分由于寄生植物的基因与病原体的基因之间的相互作用。在完全不育或无性繁殖的植物中,诱变育种就是品种改良的唯一方法,例如专性无融合生殖植物,它不产生有合子胚的种子。无融合生殖在柑橘类与某些苹果属、树莓属的种中就是普通的。 诱变育种就是常规育种的一个补充或在园艺植物育种某些方面潜在替代者:1)在适应性广泛的种中诱发变异性,假若进一步的杂交提供有限的变异性与改良,而品种已接近选择的极限;2)诱发一个新的特性,如果没有通过杂交能传递的已知基因源,例如抗病性、企望的生长型或自交亲与性;3)在有性繁殖中将会消失的特定突变,通过营养繁殖产生与保存;4)打破与不良的特性或基因多效影响的连锁;5)使现存的嵌合体显露与均质化,并使突变型获得稳定;6)在远缘亲本之间杂交中遏制不亲与性;7)诱发单倍体;8)在无融合生殖植物中产生过渡性有性状态。 成功的诱变育种需要:1)处理可用于筛选的大的植物群体;2)预期的特性突变率高;3)可以用视力诊断或简单测定鉴别突变的有效方法。 第二节诱变因素 在诱发突变中,有两类诱变剂被使用:物理的与化学的。物理的诱变剂有:1)紫外灯发出的紫外线(UV)照射;2)电磁辐射:X射线发生器发出的X射线;从放射性同位素钴60或铯137发出的?射线;3)微粒辐射:从核反应堆发出的热中子或慢中子;从放射性同位素磷32或硫35发出的β粒子(电子)。化学诱变剂主要用于种子繁殖植物。较常用的有:叠氮化物、秋水仙碱、烷化剂、碱基类似物等。 1.物理的诱变因素 物理诱变因素的辐射能对植物诱发化学反应,结果造成DNA结构的变化。这些变化如果在DNA中保持重复,证明就是突变。 1、1紫外线的能量与穿透力低,能成功地用于处理花粉粒。 1、2电磁辐射与中子容易穿透植物组织。 1.3X射线:辐射源就是X光机。X射线又称阴极射线,就是一种电磁辐射,它不带电核,就是一种 中性射线。一大部分的栽培作物用物理诱变剂诱发的突变就是X射线辐射的结果。X射线的反应在有氧时会加强。 1.4?射线:辐射源就是60Co与137Cs及核反应堆。?射线也就是一种不带电荷的中性射线。应用 于植物育种的?射线照射装置有?照射室与?圃场,前者用于急性照射,后者用于慢性照射。1.5中子:辐射源为核反应堆、加速器或中子发生器。根据中子能量大小分为超快中子、快中 子、中能中子、慢中子、热中子。在生物研究中,通常用慢中子或热中子。热中子处理比用X射线照射更少受干扰因素的影响,如氧的浓度或温度。对多数作物来说,包括苹果,中子就是比X或?射线更有效的诱变剂。高密度中子主要造成氧独立的不可挽回的损害,包括染色体畸变。

工业微生物育种

转谷氨酰胺酶生产菌株的诱变选育方案 学生: 摘要:通过诱变育种选育转谷氨酰胺酶工业生产菌株,使目的菌株产酶量高、酶活高、到达最大产酶量的时间短,生长周期、最适产酶温度等条件尽可能地符合工厂要求。 关键字:筛选;工业菌株;诱变育种 前言: 工业微生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造, 去除不良性质, 增加有益新性状, 以提高产品的产量和质量的一种育种方法。工业微生物的育种技术已从常规的突变和筛选技术发展到基因诱变、基因重组和基因工程等, 育种技术的不断成熟, 大大提高了微生物的育种效果。 微生物发酵要想取得优良成绩, 有赖于优良菌种的利用。从工业发酵的观点来看发酵菌种的优异生产性能等于经选育的、符合经济要求的优良遗传背景加上经人为精心设计的、优化的发酵环境。菌种选育的最终目标, 就是通过人工干预, 使选出的优良菌种在优化环境中尽可能表现出优异性状。菌种分离、筛选、改良是贯彻微生物发酵始终的工作。 一.菌种选育的具体目标 (1) 提高产量。 (2) 提高产物的纯度。减少副产物; 提高有效组分;减少色素等杂质。 (3) 改变菌种性状。改善发酵过程, 包括: 改变和扩大菌种所利用的原料结构; 改善菌种生长速度; 提高斜面孢子化程度; 改善菌丝体形状, 采用菌球菌丝体发酵;少用消泡剂或使菌种耐合成消泡剂; 改善对氧的摄取条件, 降低需氧量及能耗; 耐不良环境: 抗噬菌体的侵染,耐高温、耐酸碱、耐自身所积累的代谢产物; 改善细胞透性, 提高产物的分泌能力等。 (4) 菌种的遗传性状。生产性状稳定。 (5) 改变生物合成途径。以获得新产品。 二.获取优良菌种的有效途径 广义上说, 菌种改良可描述为采用任何科学技术手段( 物理、化学、生物学、工程学方法以及它们的各种组合)处理微生物菌种, 从中分离得到能显示所要求表型的变异菌种。 菌种改良的基本途径: 突变和选择; 基因重组( 遗传重组) 和基因工程( 遗传工程) MTG 生产菌株的诱变育种 诱变的方式包括了各种物理射线、化学诱变剂以及生物方面的噬箘体等等。用得最多的是前两种,也有将几种方式混合使用的。国内的王璋教授还曾借助“神舟”4 号飞船搭载MTG 生产菌种在外太空进行诱变实验,取得不错的效果。

电离辐射和化学诱变剂在诱变育种中的机理解析

电离辐射和化学诱变剂在诱变育种中的机理解析 诱变育种的机理 问题的提出 最近在进行《育种在农业生产中的应用》教学,按照五种育种的难 点来看,我一直认为是单倍体育种,所以平时教学中重点就是解决 单倍体育种的原理、过程和优缺点。通过和学生的面对面交流抽 查,发现学生的掌握情况却是诱变育种最薄弱,这是我没有想到 的。这固然和学生的生活常识有一定的关系,如不知道具体的诱变 剂,最主要的可能是诱变育种的机理不够了解,影响了诱变育种的 理解、 问题:诱变育种的机理是什么?辐射射线或诱变剂如何导致基因突 变? 01 辐射诱变是利用各类射线如X射线、γ射线、α射线、β射线、中子等照射生物。 自然空间中来源于宇宙空间或地球岩石等的射线剂量极低,对各类生物虽然有一定影响,但影响极少。但若加大剂量或长时间使生物暴露在各

类射线的照射条件下,很容易诱发染色体的断裂和结构变异。各类染色结构变异中易位发生频率最高。 射线有两种类型,一种是波长较短的电磁波射线(X射线γ射线),另一种是高能量基本粒子(如α粒子、β粒子和中子)。X射线、γ射线和中子穿透力强,常用作外照射,α和β射线穿透力弱,如α射线仅能穿透软组织1m m,常用于内照射。 射线的作用分急性和慢性两种,急性是指短时间大剂量的照射;慢性是指低剂量长时间照射,二者均可导致染色体结构改变。一次照射剂量过大容易导致生物死亡。 通过辐射诱变已获得多种染色体结构变异类型,X射线诱发果蝇的染色体结构变异是诱发变异的经经典例证。早在1927年,H.J.M u l l e r报道了在果蝇中用X射线诱发的易位及其他染色体结构变异。 电离辐射的主要机理: 已知构成D N A分子的原子是由数量相等的质子和电子组成的。质子全部在原子核内,其中一半与电子结合成中子,另一半保持独立。而电子除一半与原子核内的质子结合为中子外,另一半分层包围在原子核的外围。因此正常的原子呈中性。 导致D N A分子上的原子(基团)发生电离。高能电磁波或射线粒子直接轰击原子,使其外围电子脱离轨道,原子释放出高能电子成为带正电荷的离子,称为初级电离或原发电离。活跃的高能电子高速运动引起途径的其他原子电离,称为次级电离。电离释放的电子被邻近原子(基团)捕获后形成带负电基因。

工业微生物育种诱变剂

第一章工业微生物育种诱变剂 1物理诱变剂的总类:物理辐射分为电离辐射和非电离辐射。 包括紫外线、X射线、r射线。快中子。微波,超声波、电磁波、激光射线和宇宙线等。(X 射线、r射线属于电离辐射,紫外线属于非电离辐射) 2物理诱变剂对微生物的影响实质:由高能辐射导致生物系统损伤,继而发生遗传变异的一系列复杂的连锁反应过程。 3辐射作用的时相阶段: 物理阶段——直接作用DNA或作用于水 物理化学阶段——激发和电离DNA分子或激发电离水分子 化学阶段——产生生物自由基 生物学阶段——分子发生变化,变异或死亡 4细菌中紫外线对DNA的影响:促使G:C A:T的转换; DNA链断裂,单链或双链;嘧啶或嘌呤被氧化脱去氨基;碱基分子结构中碳与碳之间的链断裂形成开环现象;辐射击中单个核苷酸后,使碱基或磷酸酯游离出来;交联作用 5辐射引起的生物学效应的影响因素:微生物的遗传背景;微生物的生理状态;可见光;细胞水分;温度;空气或氧气。 6紫外线的诱变机理及原因? 机理:(1)DNA与蛋白质交联(2)胞嘧啶与尿嘧啶之间的水合作用(3)DNA链断裂,形成嘧啶二聚体 原因:形成嘧啶二聚体 7DNA损伤修复中光修复与暗修复的主要机理? 光修复:嘧啶二聚体被一种光激活酶结合形成复合物,这种复合物在可见光下由于光激活酶获得光能而发生解离,从而使二聚体重新分解成单体。 暗修复:嘧啶二聚体的5’端限制性内切酶和外切酶的作用下,造成单链断裂,接着在外切核酸酶的作用下,切除嘧啶二聚体。然后再DNA聚合酶Ⅰ、Ⅲ的作用下,并以另一条完整的单链做模板合成正确的碱基对序列,最后由连接酶完成双链结构。 8紫外线有效波长(诱变)范围是:200~300nm 9紫外线的剂量以什么计算?绝对剂量:erg/mm2;相对剂量:照射时间、杀菌率表示 10紫外线诱变的步骤方法(以及应用,包括如何计数、致死率的计算) 步骤:(1)出发菌株的选择将细菌斜面培养至对数期,霉菌或放线菌培养至孢子刚成熟(2)前培养培养基中可添加咖啡碱或异烟肼等抗修复物质。将菌体培养至最佳状态(对数期)。 (3)制备菌悬液离心去除培养基,用生理盐水制备菌悬液,要求菌体浓度108,107, 106 mL-1等 (4)紫外线照射紫外灯预热20min;避免光修复。 (5)后培养将照射完毕的菌悬液加入到适合于正突变体增殖的培养基中,在适宜温度下培养1.5-2h。 (6)稀释涂皿后培养结束后,从中取一定量培养物,经不同稀释,涂皿,并且以未经紫外线照射过的菌悬液做对照皿,培养后,挑取菌落,以待筛选。 11化学诱变剂的概念:一类能够对DNA起作用、引起遗传变异的化学物质。 12以5-BU为例,详述碱基类似物的诱变机理:(见书43页) 答:诱变作用是取代核酸分子中碱基的位置,再通过DNA的复制,引起突变,因此,也叫掺入诱变剂。 1)争产掺入错误复制

(整理)工业微生物育种复习资料.

第一章绪论 一、微生物遗传育种 对野生型菌株或低产菌株进行遗传操作和分离筛选,从大量突变体中筛选出性状优良的菌株,并对其发酵条件加以优化,得到适合发酵工业生产的优良菌种(产量、质量、新产物)。 二、微生物遗传育种的具体目标: 1、提高产量生产效率和生产效益总是排在一切商业发酵首位的目标 2、提高产物的纯度,减少副如色素;提高有效产物组分 3、改变菌种形状,改善发酵过程,如改变和扩大菌种的原料结构;改善菌种生长速率;提高斜面孢子化程度;降低需氧量和能耗;耐不良环境;耐目的产物;改变细胞透性,提高产物分泌 4、遗传性状特别是生产性状稳定 5、改变生物合成途径,获得新产物 三、优良发酵菌株应具备哪些特性 1、遗传稳定 2、易于培养:营养谱广、培养条件易达到 3、易于保存(如孢子丰富或产生休眠体) 4、种子生长旺盛 5、发酵周期短,产量高,产物单一 6、产物易于分离纯化 第二章微生物遗传学基础 一、名词解释: 基因:遗传信息的基本单位。一般指位于染色体上编码一个特定功能产物(如蛋白质或RNA分子等)的一段核苷酸序列。 转化:受体细胞直接吸收了来自供外源DNA片断,并把它整合到自己的基因组中,细胞部分遗传性状发生变化的现象叫转化。 转导:外源遗传物质通过噬菌体的携带进入受体细胞,并与受体染色体发生基因重

组 接合:供体菌通过性菌毛传递不同长度的单链DNA给受体菌,在后者细胞中发生交换、整合,从而使后者获得新的遗传性状的现象。 菌种衰退:菌种在培养或保藏过程中,由于自发突变的存在,出现某些原有优良生产性状的劣化、遗传标记的丢失等现象,称为菌种的衰退。 二、突变型的种类:形态突变型、生化突变型、条件致死突变型、致死突变型、抗性突变型。 三、试质粒的性质及其在基因工程中的应用 性质:自我复制、拷贝数高、不相容性、转移性。 第四章工业微生物诱变育种 一、物理诱变剂基本作用过程 物理过程:能量吸收和传递物理化学作用:分子激发 化学过程:DNA断裂、碱基异构、碱基化学共价交联、碱基脱氨基等 生物学过程:经过DNA修复、复制、细胞分裂、代谢,产生死亡、基因突变、染色体畸变、染色体倍性变化等,使细胞死亡或形成各种突变体 二、紫外线的诱变机制 1、造成NDA断裂、与蛋白质交联、形成胸腺嘧啶二聚体 2、形成胸腺嘧啶二聚体是UV 引起突变的主要原因。形成于单链相邻TT间、或双链间 3、单链上出现TT二聚体,复制可能在此停止,或超越这一点继续复制,使子代DNA形成缺口,碱基错误插入该缺口,造成突变 4、双链间出现TT二聚体造成复制无法进行 三、DNA中TT二聚体的修复方法 1、光复活:90%,可见光,在黑暗下TT与一种光激活酶结合成较稳定的复合物,但在可见光下这种酶吸收光能而解离,二聚体重新分解!!!紫外诱变时照射和分离均应在黑暗或红光下进行 1、切补修复:4种酶参与,识别、内切、外切、延伸、连接。紫外诱变照射后在冰

化学诱变(检测方法HYN)

第七章 本章主要内容 概述 化学毒物致突变的类型 化学诱变作用机制及后果 机体对致突变作用的影响 观察化学物致突变作用的基本方法 第五节观察化学物致突变作用的 基本方法 主要内容 ?观察项目的选择 - 效应终点类型 - 成套的观察项目 ?常用的致突变试验 - 细菌回复突变试验(Ames试验) - 微核试验(MNT) - 染色体畸变分析(CA) - SCE ……. ?致突变试验中的一些问题 - 对照, 体外活化系统, 与致癌的关系, 评价 化学诱变剂的检测 ?遗传毒理学试验的目的:致突变性的鉴定;预测潜在的致癌物以及各种遗传毒物的监测及评价。

?遗传学终点(genetic endpoint) :致突变试验的观察终点(致突 变过程中发生的事件) 观察项目的选择 ?目前实用的genetic endpoint分类方法: ?基因突变 染色体畸变 染色体组畸变 DNA原始损伤 诱变试验的选择与配套原则 遗传毒理学评价程序通常为一组包括体内、外遗传毒理学试验。原因有四: ●遗传学终点不一样,没有一个试验可以涵盖所有的遗传学 终点。 ●靶细胞:靶细胞有的是体细胞,或生殖细胞,或两者兼而 有之,故在成套观察项目中既要用体细胞检测又要用生殖细胞。 3、直接致突变作用与间接致突变作用 ?间接致突变作用需要在体内代谢活化后、才具有致突变作用。 ?体内试验具有完整的活化系统,而体外试验则通过加人模拟代谢系统,如S9来弥补缺乏活化系统的不足。 4. 化学毒物的致突变性强弱不一 ?有的化学物在某一检测系统中是强致突变物,而在另一系统中可能是弱的致突变物。 ?弱致突变物在某些系统中比较容易漏检,即出现假阴性。

工业微生物育种

工业微生物育种简介 刘春波-12生工2-20120802224 摘要:本文综述了工业微生物遗传育种的历史地位,介绍了遗传育种的方法和机理,并对其前景进行了展望。微生物遗传育种,所谓微生物遗传育种,即菌种改良,是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造,去除不良性质,增加有益新性状,以提高产品的产量和质量的一种育种方法[1],使我们获得所需要的高产、优质和低耗的菌种,其目的是改良菌种的特性,使其符合工业生产的要求。 关键词:工业微生物;遗传育种;方法;机理 工业微生物菌株选育在工业发酵中占有重要地位。用于工业生产的微生物菌种,最好具有以下特征:1.在遗传上必须是稳定的。2.易于产生许多营养细胞、孢子或其它繁殖体3.必须是纯种,不应带有其它杂菌及噬菌体。4.种子的生长必须旺盛、迅速。5.产生所需要的产物时间短。6.比较容易分离纯化。7.有自身保护机制,抵抗杂菌污染能力强。8.能保持较长的良好经济能力。9.菌株对诱变处理较敏感,从而提高产量潜力高[2]。 1 历史地位 菌种选育技术的广泛应用为我们提供了各种类型的突变菌株,使得在食品工业、医药、农业、环境保护、化工能源、矿产开发等领域产生众多新的产品,促使传统产业的技术改造和新型产业的产生,同时使诸如抗生素、有机酸、维生素、色素、生物碱、激素以及其它生物活性物质等产品的产量成倍甚至成千万倍地增长,并且产品的质量也不断的提高。与此同时链霉素、土霉素、金霉素和氯霉素等抗生素也大规模的生产起来;在代谢控制育种的推动下使得产氨基酸、核苷酸、有机酸等次生代谢产物的高产菌株大批投入生产;由基因工程构建的工程菌株使得微生物次生代谢产物生产能力迅速提高,而且生产出微生物本生不能生产的外源蛋白质,如胰岛素、生长激素、单克隆抗体和细胞因子等等。由此可见工业微生物遗传育种技术是工业发酵工程的核心技术,在其作用下人们获得了许多的高产优质菌株,为生产实践发展起了强大的推动作用。 2 机理及方法 2.1 自然选育 就是不经人工处理,利用微生物的自然突变进行菌种选育的过程称为自然选育。这类突变没有人工参与并非是没有原因的,一般认为自然突变有两种原因引起,即多因素低剂量效应和互变异构效应。所谓多因素低剂量效应,是指在自然环境中存在着低剂量的宇宙射线、各种短波辐射、低剂量的诱变物质和微生物自身代谢产生的诱变物质等作用引起的突变。互变异构效应是指四种碱基第六位上的酮基或氨基的瞬间变构,会引起碱基的错配[3]。自然突变可能会产生两种截然不同的结果,一种是菌种退化而导致目标产量或质量下降;另一种是对生产有益的突变。为了保证生产水平的稳定和提高,应经常地进行生产菌种自然选育,以淘汰退化的,选出优良的菌种。

微生物菌种选育方式(一)

微生物菌种选育方式(一) 关键词:地衣芽孢杆菌诺卡氏菌 ATCC 北京标准物质网 微生物菌种选育技术在现代生物技术中具有十分重要的地位,经历了自然选育、诱变育种、杂交育种、代谢控制育种和基因工程育种五个阶段,各个阶段并不孤立存在,而是相互交叉,相互联系的。新的育种技术的发展和应用促进了生产的发展。 1.自然选育 随着微生物学的发展,特别是在发明微生物的纯培养技术之后,出现了微生物纯种的自然选育。以基因自发突变为基础选育优良性状菌株的这种方法,是最早应用微生物遗传学原理.进行育种实践的一个实例。由于微生物体内存在光复活、切补修复、重组修复、紧急呼救修复等修复机制以及DNA聚合酶的校正作用,使得自发突变几率极低,一般为10-6~10-10这样低的突变率导致自然选育耗时长、工作量大,影响了育种工作效率。在这种情况下,就出现了诱变育种技术。 2.诱变育种 1927年,Miller发现X射线能诱发果蝇基因突变。之后,人们发现其他一些因素也能诱发基因突变,并逐渐弄清了一些诱变发生的机理,为工业微生物诱变育种提供了前提条件。1941年,Beadle 和 Tatum 采用X射线和紫外线诱变红色面包霉,得到了各种代谢障碍的突变株。在这之后,诱变育种得到了极大发展。 诱变育种是以诱变剂诱发微生物基因突变,通过筛选突变体,寻找正向突变菌株的一种诱变方法。诱变剂包括物理诱变剂、化学诱变剂和生物诱变剂。其中,物理诱变剂包括紫外线、X射线、射线、快中子等;化学诱变剂包括烷化剂(如甲基磺酸乙酯、硫酸二乙酯、亚硝基胍、亚硝基乙基脲、乙烯亚胺及氮芥等)、天然碱基类似物、脱氨剂(如亚硝酸)、移码诱变剂、羟化剂和金属盐类(如氯化锂及硫酸锰等);生物诱变剂包括噬菌体等。物理诱变剂因其价格经济,操作方便,所以应用最为广泛;化学诱变剂多是致癌剂,对人体及环境均有危害,使用时须谨慎;生物诱变剂应用面窄,其应用也受到限制。 现今,诱变育种已取得了显著的成果,如青霉素生产菌的青霉素产量在40年内增加了近万倍,达到lO万u/ml左右;谷氨酸产生菌经紫外诱变处理,产酸率提高了3l%;用亚硝酸钠、紫外线等物化方法诱变产碱性蛋白酶的地衣芽

工业微生物育种全解

1.工业微生物育种在发酵工业中的作用如何?其目的是什么? 工业微生物育种建立在: (1)遗传和变异(微生物遗传学)的基础之上; (2)物理和化学诱变剂的发现和应用; (3)工业自动化(自动仪表装置和微机)。 工业微生物育种在发酵工业中占有重要地位,是决定该发酵产品能否具有工业化价值及发酵过程成败与否的关键。 2.工业微生物发展经历了哪几个阶段? 1)自然选育阶段 2)人工诱变选育阶段 3)杂交育种阶段 4)代谢控制育种阶段 5)基因工程育种阶段 3.工业微生物育种的核心指标有哪些? 1)在遗传上必须是稳定的。稳定性。 2)易于产生许多营养细胞、孢子或其它繁殖体。 3)必须是纯种,不应带有其他杂菌及噬菌体。 4)种子的生长必须旺盛、迅速。 5)产生所需要的产物时间短。转化率。 6)比较容易分离提纯。 7)有自身保护机制,抵抗杂菌污染能力强。 8)能保持较长的良好经济性能。产率。

9)菌株对诱变剂处理较敏感,从而可能选育出高产菌株。 10)在规定的时间内,菌株必须产生预期数量的目的产物,并保持相对地稳定。 4.革兰氏阳性和阴性菌的细胞壁结构有何差异?它们对溶菌酶和青霉素的敏感有何不同? 5.缺壁细菌有哪些类型和异同?制备缺壁细菌主要有哪些途径?原生质体:G+菌经溶菌酶或青霉素处理; 球状体:G-菌,残留部分细胞壁。 是研究遗传规律和进行原生质体育种的良好实验材料。 L型细菌:自发突变形成细胞壁缺陷菌株; 6.原生质体制备时,为什么不同微生物要选择不同的酶?举例说明。 酶在原生质体制备中主要用来酶解细胞壁的,不同的微生物其细胞壁成分及含量可能不同,所以要用不同的酶。 酵母菌的细胞壁主要成分有葡聚糖、甘露聚糖蛋白质、几丁质。霉菌的细胞壁:主要成分是纤维素、几丁质、葡聚糖等。

微生物诱变育种研究进展

微生物诱变育种研究进展 摘要:本文综述了国内外微生物诱变育种领域的研究新进展,对生物学效应及诱变微生物的机理进行了总结。从物理诱变、化学诱变及复合诱变三个方面介绍了诱变效应、作用机制及在实践中的应用,并对微生物诱变育种的研究进展进行了概述。 关键词:微生物;诱变育种;机制;研究进展 常规的诱变育种方法主要为物理诱变育种和化学诱变育种。微生物的诱变育种,是以人工诱变手段诱发微生物基因突变,改变遗传结构和功能,通过筛选,从多种多样的变异菌体中筛选出产量高、性状优良的突变株,并且找出发挥这个突变株最佳培养基和培养条件,使其在最适的环境条件下合成有效产物。以人工诱发突变为基础的微生物诱变育种,具有速度快、收效大和方法简单等优点,是菌种选育的1个重要途径,在发酵工业菌种选育上具有卓越的成就,迄今为止国内外发酵工业中所使用的生产菌种绝大部分是人工诱变选育出来的。诱变筛选方法相对简便,是菌种选育的基本、常规和经典方法。特别是对遗传背景不很清楚的对象,诱变育种更是必不可少。近年来,随着新诱变因子的不断发现和筛选体系的进一步完善,微生物诱变育种有了长足的发展。 1 微生物诱变育种的作用 从自然界分离的野生菌种,不论是在产量上还是在质量上,均难适合工业化生产的要求。理想的工业化菌种必须具备遗传性状稳定、纯净无污染、能产生许多繁殖单位、生长迅速、能于短时间内生产所要的产物、可以长期保存、能经诱变产生变异和遗传、生产能力具有再现性、具有高产量和高收率等特性。微生物发酵工业中,诱变育种主要有以下作用: 提高有效产物的产量;改善菌种特性,提高产品质量;简化工艺条件;开发新品种,产生新物质;用于研究推测产物的生物合成途径;与其他育种方法相结合[1]。 2诱变育种的过程 诱变育种包括三个重要环节:突变的诱发、突变株的筛选突变基因的表达。 2.1突变的诱发 突变的诱发受到菌种的遗传特性、诱变剂、菌种的生理状态以及诱变处理时环境条件的影响。出发菌株就是用来进行诱变试验的菌株。出发菌株的选择是诱变育种工作成败的关键。功的经验。诱变作用不但决定于诱变剂,还与出发菌株的遗传背景有关。菌种的生理状态、被处理菌株诱变前的预培养和诱变后的培养条件以及诱变处理时的外界条件等都会影响诱变效果。

人工化学诱变技术

化学诱变技术是指利用一些化学物质提高生物的自然突变率,这些化学物质就叫做“化学诱变剂”。其特点有:可操作性强,简单易行;特异性较强,能诱变定位到DNA上的某些碱基;后代较易稳定遗传,一般到F3代就可稳定;应用于遗传标记,是细胞融合技术的基础。诱变剂主要包括5类,他们的特点、机理和应用如下: 1、烷化剂:能使一些碱基烷基化,比如使鸟苷酸甲基化,影响mRNA的转录,从而使蛋白质的表达紊乱,使得蛋白质重组,而改变了性状。临床上应用此类物质作为抗癌药物,具有强烈杀伤癌细胞的作用,所以在应用在于植物上时,也要注意他的强烈杀伤性。 主要有:甲基磺酸乙酯(EMS),是最常用的诱变剂,我们曾用作真菌的遗传标记,诱变率很高。常用浓度0.05-0.5mol/L,作用时间5-60min。该物质具有强烈致癌性和挥发性,可用5%硫代硫酸钠作为终止剂和解毒剂。SIGMA公司价格:80元/25ml。 硫酸二乙酯(DMS),也很常用,但由于毒性太强,目前很少使用,作用机理和使用方法和EMS基本相同。属于剧毒品,受公安局管治。 乙烯亚胺,生产的较少,很难买到。只要用于大量诱变育种用,使用浓度:%,高度致癌性!使用时需要使用缓冲液配置。 盐酸氮芥,用于抗癌药物,可以从药店买到,但有些地方必须有主任医师的处方。 一般是针剂,稍加稀释即可使用,作用时间5-10min,可用甘氨酸作为终止剂和解毒剂。 环磷酰胺、亚硝基胍等物质也可作为诱变剂使用,但较少使用。 2、碱基类似物:分子结构类似碱基,导致DNA复制时产生错配,mRNA转录紊乱,功能蛋白重组,表型改变。该类物质毒性相对较小,但负诱变率很高,往往不易得到好的突变体。主要有:6-溴尿嘧啶、6-BudR、马来酰肼、2-氨基嘌呤等,同样属于抗癌药物,可到药店买到,稍加稀释即可使用。 3、嵌入剂:是分子生物学比较常用的一类,诱导率较高。原理是这类分子的大小正好可以嵌入碱基分子中,导致错配。最常用的:溴化乙锭(EB),高致癌性!价格较贵,但诱变率很高,是实验室常用试剂,可以到生化实际商店买到,1500元/100mg. 4、无机化合物:比较容易得到,效果一般,危险性较小。常用:氯化锂,白色粉状,使用时配成0.1-0.5%的溶液,作用30min-2d。可到化工商店买到:120元/500克。 亚硝酸:没有现成商品,由于该物质易分解,所以现配现用。常用亚硝酸钠和盐酸制取,将亚硝酸钠配成0.01-0.1mol/L的浓度,使用时加入等浓度等体积的盐酸即可。 过氧化氢:又名双氧水,效果不好,所以很少用到。 5 其他:盐酸羟胺,一种还原剂,作用于C上,是G-C变为A-T。也较常用,可以买到。使用浓度:0.1-0.5%,作用60min-2h。较便宜。 生物碱类:如长春碱、秋水仙碱、喜树碱等。 以上的诱变剂同时又是致癌物!使用时必须小心。通常用来浸种,最好的方法是将诱变剂加到组织培养的培养基中,诱变率最高。我们曾经搞过相关的突变检测、抗除草剂和抗药试验,我们认为最好的诱变程度是半数致死,另外的一半则有可能出现好的变异。所以调整诱变浓度、诱变时间至关重要。 搞诱变必须遵循生物安全性的公约,在没有全面考察诱变产物的遗传性、安全性之前,不得将诱变物外流,以免导致危险后果!

工业微生物化学诱变育种研究及应用进展

[收稿日期]2008-05-18  [作者简介]欧平(1970-),男,广西贺州学院讲师,微生物专业在读硕士。主要研究方向:微生物学。 工业微生物化学诱变育种研究及应用进展 欧 平 (贺州学院,广西 贺州 542800) [摘 要]文章着重介绍了当代化学诱变技术、发生突变的机理和诱变效率,概述了化学诱变的原理及 其在工业微生物育种上的应用进展,选择性地介绍了几种公认有效的突变剂的作用机理。 [关键词]微生物;化学诱变;诱变剂 [中图分类号]Q933 [文献标识码]A [文章编号]1673-8861(2008)03-0139-06 变异是生物进化的基础推动力(Stebbins 1950),也是保证物种多样性的前提,是其他任何方式不能代替的重要演变方式。人为地利用这种方式,用尽可能小地影响基础生命代谢的方式最大限度地追求对物种变异的加速,正是诱导变异的研究目的。诱变育种是人为地利用诱变因素诱发生物遗传变异,在较短时间内获得有利用价值的突变体,根据育种目标要求,选育成新品种直接生产利用,或育成新种质作亲本在育种上利用的育种途径。诱变育种对于品种的改良有着很大的贡献,而在生物的生理机制研究中,诱变技术也功不可没,许多代谢途径的发现都是建立在若干突变体的基础上的。随着分子水平的深入研究,与诱变相关的基因um u D 、C 和di n B 的克隆,以及其他突变机理的进一步明晰,诱变育种的工作变得更为有序和可操纵。 1927年,Muller 发现X 射线能诱发果蝇基因突 变,从此开创了诱变育种技术的先河。诱变育种技术发展至今形成了3种技术:辐射诱变、定点诱变和化学诱变。世界化学诱变育种研究工作始于20世纪50年代,我国近几十年来这方面的研究工作也有了较大进展。20世纪70年代以来,诱变因素从早期的单一诱变剂发展到多种化学诱变剂和生理活性物质,诱变方法从单一处理发展到复合处理,同时,诱变育种与组织培养等密切结合,大大提高了诱变育种的实际意义。 从自然环境中分离,经过简单筛选而获得的的产酶菌株虽然具备了一定的产酶能力,但是要达到某种特定代谢产物的大量积累,实现高产、优质和低 耗的高效转化,则需要对菌株进行改良,解除或突破微生物的代谢调控[1]。微生物育种手段主要有:诱变育种、杂交育种和基因工程育种。虽然现代的基因操作技术对菌株改造更为精准,但实际工业化生产上所使用的产酶菌株,仍然是多采用一些传统诱变技术。诱变育种就是利用物理、化学等诱变剂处理均匀而分散的微生物细胞群,在大大提高其突变频率的基础上,采用适当的筛选方法获得所需要的突变菌株,以供科学实验和生产实践使用[2]。由于化学诱变育种技术还具有易操作、剂量易控制、对基因组损伤小、突变率高等特点,因而近年来成为运用最为广泛的诱变技术。经过近一个世纪的不断发展和完善,化学诱变育种技术已成为目前工业微生物育种中最为常用、最有效的技术之一。 1.化学诱变的主要原理 化学诱变是通过采用一些分子结构不太稳定的化学诱变剂进行的,它通过化学试剂造成生物的损伤和错误修复,产生突变体。这些突变以点突变为主,并且因试剂不同具有某些相对高频而且较为稳定的突变谱。单一碱基对改变而形成的点突变是化学诱变的主要形式。 化学诱变剂主要指某些烷化剂、碱基类似物、抗 生素等化学药物,常见的有甲基磺酸乙酯(EMS )、硫酸二乙酯(DES )、叠氮化钠(SA )和乙烯亚胺(EI )等,这些化合物通过与核苷酸中的磷酸、嘌呤和嘧啶等分子直接反应来诱发突变,并对某特定的基因或核酸有选择性作用[3]。 其中烷化剂因可与核酸的碱基等直接发生化学

相关文档
最新文档