模电实验学习指导书

模电实验学习指导书
模电实验学习指导书

实验一常用电子仪器的使用

一、实验目的

1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。

2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。

二、实验原理

在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。

实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。

图1-1 模拟电子电路中常用电子仪器布局图

1、示波器

示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,

又能对电信号进行各种参数的测量。现着重指出下列几点:

1)、寻找扫描光迹

将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。②触发方式开关置“自动”。③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。)

2)、双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一般适宜于输入信号频率较底时使用。

3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。

4)、触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。

有时,由于选择了较慢的扫描速率,显示屏上将会出现闪烁的光迹,但被测信号的波形不在X轴方向左右移动,这样的现象仍属于稳定显示。

5)、适当调节“扫描速率”开关及“Y轴灵敏度”开关使屏幕上显示一~二个周期的被测信号波形。在测量幅值时,应注意将“Y轴灵敏度微调”旋钮置于“校准”位置,即顺时针旋到底,且听到关的声音。在测量周期时,应注意将“X轴扫速微调”旋钮置于“校准”位置,即顺时针旋到底,且听到关的声音。还要注意“扩展”旋钮的位置。

根据被测波形在屏幕坐标刻度上垂直方向所占的格数(div或cm)与“Y 轴灵敏度”开关指示值(v/div)的乘积,即可算得信号幅值的实测值。

根据被测信号波形一个周期在屏幕坐标刻度水平方向所占的格数(div或cm)与“扫速”开关指示值(t/div)的乘积,即可算得信号频率的实测值。

2、函数信号发生器

函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电

压最大可达20V

P-P

。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。函数信号发生器的输出信号频率可以通过频率分档开关进行调节。

函数信号发生器作为信号源,它的输出端不允许短路。

3、交流毫伏表

交流毫伏表只能在其工作频率范围之内,用来测量正弦交流电压的有效值。

为了防止过载而损坏,测量前一般先把量程开关置于量程较大位置上,然后在测量中逐档减小量程。

三、实验设备与器件

1、函数信号发生器

2、双踪示波器

3、交流毫伏表

四、实验内容

1、用机内校正信号对示波器进行自检。

1) 扫描基线调节

将示波器的显示方式开关置于“单踪”显示(Y

1或Y

2

),输入耦合方式开

关置“GND”,触发方式开关置于“自动”。开启电源开关后,调节“辉度”、“聚焦”、“辅助聚焦”等旋钮,使荧光屏上显示一条细而且亮度适中的扫描基线。然后调节“X轴位移”()和“Y轴位移”( )旋钮,使扫描线位于屏幕中央,并且能上下左右移动自如。

2)测试“校正信号”波形的幅度、频率

将示波器的“校正信号”通过专用电缆线引入选定的Y通道(Y

1或Y

2

),将

Y轴输入耦合方式开关置于“AC”或“DC”,触发源选择开关置“内”,内触

发源选择开关置“Y

1”或“Y

2

”。调节X轴“扫描速率”开关(t/div)和Y轴“输

入灵敏度”开关(V/div),使示波器显示屏上显示出一个或数个周期稳定的方波波形。

a. 校准“校正信号”幅度

将“y轴灵敏度微调”旋钮置“校准”位置,“y轴灵敏度”开关置适当位置,读取校正信号幅度,记入表1-1。

表1-1

注:不同型号示波器标准值有所不同,请按所使用示波器将标准值填入表格中。

b. 校准“校正信号”频率

将“扫速微调”旋钮置“校准”位置,“扫速”开关置适当位置,读取校正信号周期,记入表1-1。

c.测量“校正信号”的上升时间和下降时间

调节“y轴灵敏度”开关及微调旋钮,并移动波形,使方波波形在垂直方向上正好占据中心轴上,且上、下对称,便于阅读。通过扫速开关逐级提高扫描速度,使波形在X?轴方向扩展(必要时可以利用“扫速扩展”开关将波形再扩展10倍),并同时调节触发电平旋钮,从显示屏上清楚的读出上升时间和下降时间,记入表1-1。

2、用示波器和交流毫伏表测量信号参数

调节函数信号发生器有关旋钮,使输出频率分别为100Hz、1KHz、10KHz、100KHz,有效值均为1V(交流毫伏表测量值)的正弦波信号。

改变示波器“扫速”开关及“Y轴灵敏度”开关等位置,?测量信号源输出电压频率及峰峰值,记入表1-2。

表1-2

3、测量两波形间相位差

1) 观察双踪显示波形“交替”与“断续”两种显示方式的特点

Y 1、Y

2

均不加输入信号,输入耦合方式置“GND”,扫速开关置扫速较低挡

位(如0.5s/div挡)和扫速较高挡位(如5μS/div挡),把显示方式开关分别置“交替”和“断续”位置,观察两条扫描基线的显示特点,记录之。

2) 用双踪显示测量两波形间相位差

①按图1-2连接实验电路,将函数信号发生器的输出电压调至频率为1KHz,幅值为2V的正弦波,经RC移相网络获得频率相同但相位不同的两路信

号u

i 和u

R

,分别加到双踪示波器的Y

1

和Y

2

输入端。

为便于稳定波形,比较两波形相位差,应使内触发信号取自被设定作为测

量基准的一路信号。

图 1-2 两波形间相位差测量电路

②把显示方式开关置“交替”挡位,将Y

1和Y

2

输入耦合方式开关置“⊥”

挡位,调节Y

1、Y

2

的()移位旋钮,使两条扫描基线重合。

③将Y

1、Y

2

输入耦合方式开关置“AC”挡位,调节触发电平、扫速开关及

Y 1、Y

2

灵敏度开关位置,使在荧屏上显示出易于观察的两个相位不同的正弦波

形u

i 及u

R

,如图1-3所示。根据两波形在水平方向差距X,及信号周期X

T

,则

可求得两波形相位差。

图 1-3 双踪示波器显示两相位不同的正弦波

0T 360(div)

X X(div)

?=

θ

式中: X T —— 一周期所占格数

X —— 两波形在X 轴方向差距格数

记录两波形相位差于表1-3。 表1-3

为数读和计算方便,可适当调节扫速开关及微调旋钮,使波形一周期占整数格。

五、实验总结

1、 整理实验数据,并进行分析。

2、 问题讨论

1)如何操纵示波器有关旋钮,以便从示波器显示屏上观察到稳定、清晰的波形?

2) 用双踪显示波形,并要求比较相位时,为在显示屏上得到稳定波形,应怎样选择下列开关的位置?

a) 显示方式选择(Y 1;Y 2;Y 1+Y 2;交替;断续) b) 触发方式(常态;自动) c) 触发源选择(内;外)

d) 内触发源选择(Y 1、Y 2、交替)

3、函数信号发生器有哪几种输出波形?它的输出端能否短接,如用屏蔽 线作为输出引线,则屏蔽层一端应该接在哪个接线柱上?

4、交流毫伏表是用来测量正弦波电压还是非正弦波电压?它的表头指示

值是被测信号的什么数值?它是否可以用来测量直流电压的大小?

六、预习要求

1、阅读实验附录中有关示波器部分内容。

2、已知C=0.01μf、R=10K,计算图1-2 RC移相网络的阻抗角θ。

实验二 晶体管共射极单管放大器

一、实验目的

1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理

图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。

图2-1 共射极单管放大器实验电路

在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2

B1B1

B U R R R U +≈

U CE =U CC -I C (R C +R E )

电压放大倍数

be

L C V r R R βA // -=

输入电阻

R i =R B1 // R B2 // r be 输出电阻 R O ≈R C

由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量

测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用

C

E

BE

B E I R U U I ≈-≈

E E E C R U I I =

≈算出I C (也可根据C

C

CC C R U U I -=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。

为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试

放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。

静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。

(a) (b)

图2-2 静态工作点对u O 波形失真的影响

改变电路参数U CC 、R C 、R B (R B1、R B2)都会引起静态工作点的变化,如图2-3所示。但通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。

图2-3 电路参数对静态工作点的影响

最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

2、放大器动态指标测试

放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。 1) 电压放大倍数A V 的测量

调整放大器到合适的静态工作点,然后加入输入电压u i ,在输出电压u O 不失真的情况下,用交流毫伏表测出u i 和u o 的有效值U i 和U O ,则 i

V U U A

2) 输入电阻R i 的测量

为了测量放大器的输入电阻,按图2-4 电路在被测放大器的输入端与信号源之间串入一已知电阻R ,在放大器正常工作的情况下, 用交流毫伏表测出U S 和U i ,则根据输入电阻的定义可得

R U U U R

U U I U R i S i

R i i i i -===

图2-4 输入、输出电阻测量电路

测量时应注意下列几点:

① 由于电阻R 两端没有电路公共接地点,所以测量R 两端电压 U R 时必须分别测出U S 和U i ,然后按U R =U S -U i 求出U R 值。

② 电阻R 的值不宜取得过大或过小,以免产生较大的测量误差,通常取R 与R i 为同一数量级为好,本实验可取R =1~2K Ω。 3) 输出电阻R 0的测量

按图2-4电路,在放大器正常工作条件下,测出输出端不接负载 R L 的输出电压U O 和接入负载后的输出电压U L ,根据 O L

O L

L U R R R U +=

即可求出 L L

O

O 1)R U U (

R -= 在测试中应注意,必须保持R L 接入前后输入信号的大小不变。 4) 最大不失真输出电压U OPP 的测量(最大动态范围)

如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中

点。为此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节R W (改变静态工作点),用示波器观察u O ,当输出波形同时出现削底和缩顶现象(如图2-5)时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出U O (有效值),则动态范围等于0U 22。或用示波器直接读出U OPP 来。

图 2-5 静态工作点正常,输入信号太大引起的失真

5) 放大器幅频特性的测量

放大器的幅频特性是指放大器的电压放大倍数A U 与输入信号频率 f 之间的关系曲线。单管阻容耦合放大电路的幅频特性曲线如图2-6所示,A um 为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的

2/1倍,即0.707A um 所对应的频率分别称为下限频率f L 和上限频率f H ,则通

频带 f BW =f H -f L

放大器的幅率特性就是测量不同频率信号时的电压放大倍数A U 。为此,可采用前述测A U 的方法,每改变一个信号频率,测量其相应的电压放大倍数,测量时应注意取点要恰当,在低频段与高频段应多测几点,在中频段可以少测几点。此外,在改变频率时,要保持输入信号的幅度不变,且输出波形不得失真。 6) 干扰和自激振荡的消除 参考实验附录

3DG 9011(NPN)

3CG 9012(PNP)

9013(NPN) 图 2-6 幅频特性曲线图2-7晶体三极管管脚排列

三、实验设备与器件

1、+12V直流电源

2、函数信号发生器

3、双踪示波器

4、交流毫伏表

5、直流电压表

6、直流毫安表

7、频率计 8、万用电表

9、晶体三极管3DG6×1(β=50~100)或9011×1 (管脚排列如图2-7所示)

电阻器、电容器若干

四、实验内容

实验电路如图2-1所示。各电子仪器可按实验一中图1-1所示方式连接,为防止干扰,各仪器的公共端必须连在一起,同时信号源、交流毫伏表和示波器的引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线的外包金属网应接在公共接地端上。

1、调试静态工作点

接通直流电源前,先将R

W

调至最大,函数信号发生器输出旋钮旋至零。

接通+12V电源、调节R

W ,使I

C

=2.0mA(即U

E

=2.0V),用直流电压表测量

U B 、U

E

、U

C

及用万用电表测量R

B2

值。记入表2-1。

表2-1 I C =2mA

测 量 值

计 算 值

U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA )

2、测量电压放大倍数

在放大器输入端加入频率为1KHz 的正弦信号u S ,调节函数信号发生器的输出旋钮使放大器输入电压U i 10mV ,同时用示波器观察放大器输出电压u O 波形,在波形不失真的条件下用交流毫伏表测量下述三种情况下的U O 值,并用双踪示波器观察u O 和u i 的相位关系,记入表2-2。

表2-2 Ic =2.0mA U i = mV R C (K Ω) R L (K Ω) U o (V) A V 观察记录一组u O 和u 1波形

2.4 ∞

1.2 ∞

2.4

2.4

3、观察静态工作点对电压放大倍数的影响

置R C =2.4K Ω,R L =∞,U i 适量,调节R W ,用示波器监视输出电压波形,在u O 不失真的条件下,测量数组I C 和U O 值,记入表2-3。

表2-3 R C =2.4K Ω R L =∞ U i = mV I C (mA) 2.0 U O (V) A V

测量I C 时,要先将信号源输出旋钮旋至零(即使U i =0)。 4、观察静态工作点对输出波形失真的影响

置R C =2.4K Ω,R L =2.4K Ω, u i =0,调节R W 使I C =2.0mA ,测出U CE 值,

再逐步加大输入信号,使输出电压u

足够大但不失真。然后保持输入信号不

变,分别增大和减小R

W ,使波形出现失真,绘出u

的波形,并测出失真情况下

的I

C 和U

CE

值,记入表2-4中。每次测I

C

和U

CE

值时都要将信号源的输出旋钮

旋至零。

表2-4 R

C =2.4KΩ R

L

=∞ U

i

=mV

I C (mA) U

CE

(V) u

波形失真情况管子工作状态

2.0

5、测量最大不失真输出电压

置R

C =2.4KΩ,R

L

=2.4KΩ,按照实验原理2.4)中所述方法,同时调节输

入信号的幅度和电位器R

W ,用示波器和交流毫伏表测量U

OPP

及U

O

值,记入表

2-5。

表2-5 R

C =2.4K R

L

=2.4K

I C(mA) U im(mV) U om(V) U OPP(V) *6、测量输入电阻和输出电阻

置R

C =2.4KΩ,R

L

=2.4KΩ,I

C

=2.0mA。输入f=1KHz的正弦信号,在输

出电压u

o 不失真的情况下,用交流毫伏表测出U

S

,U

i

和U

L

记入表2-6。

保持U

S 不变,断开R

L

,测量输出电压U

o

,记入表2-6。

表2-6 I

c =2mA R

c

=2.4KΩ R

L

=2.4KΩ

*7、测量幅频特性曲线

取I

C =2.0mA,R

C

=2.4KΩ,R

L

=2.4KΩ。保持输入信号u

i

的幅度不变,

改变信号源频率f,逐点测出相应的输出电压U

O

,记入表2-7。

表2-7 U

i

= mV

为了信号源频率f取值合适,可先粗测一下,找出中频范围,然后再仔细读数。

说明:本实验内容较多,其中6、7可作为选作内容。

五、实验总结

1、列表整理测量结果,并把实测的静态工作点、电压放大倍数、输入电阻、输出电阻之值与理论计算值比较(取一组数据进行比较),分析产生误差原因。

2、总结R

C ,R

L

及静态工作点对放大器电压放大倍数、输入电阻、输出电阻

的影响。

3、讨论静态工作点变化对放大器输出波形的影响。

4、分析讨论在调试过程中出现的问题。

六、预习要求

1、阅读教材中有关单管放大电路的内容并估算实验电路的性能指标。

假设:3DG6 的β=100,R B1=20K Ω,R B2=60K Ω,R C =2.4K Ω,R L =2.4K Ω。 估算放大器的静态工作点,电压放大倍数A V ,输入电阻R i 和输出电阻R O 2、阅读实验附录中有关放大器干扰和自激振荡消除内容。

3、 能否用直流电压表直接测量晶体管的U BE ? 为什么实验中要采用测U B 、U E ,再间接算出U BE 的方法?

4、怎样测量R B2阻值?

5、当调节偏置电阻R B2,使放大器输出波形出现饱和或截止失真时,晶体管的管压降U CE 怎样变化?

6、改变静态工作点对放大器的输入电阻R i 有否影响?改变外接电阻R L 对输出电阻R O 有否影响?

7、在测试A V ,R i 和R O 时怎样选择输入信号的大小和频率? 为什么信号频率一般选1KHz ,而不选100KHz 或更高?

8、测试中,如果将函数信号发生器、交流毫伏表、示波器中任一仪器的二个测试端子接线换位(即各仪器的接地端不再连在一起),将会出现什么问题?

注:附图2-1所示为共射极单管放大器与带有负反馈的两级放大器共用实验模块。如将K 1、K 2断开,则前级(Ⅰ)为典型电阻分压式单管放大器;如将K 1、K 2接通,则前级(Ⅰ)与后级(Ⅱ)接通,组成带有电压串联负反馈两级放大器。

附图2-1

实验三场效应管放大器

一、实验目的

1、了解结型场效应管的性能和特点

2、进一步熟悉放大器动态参数的测试方法

二、实验原理

场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。

1、结型场效应管的特性和参数

场效应管的特性主要有输出特性和转移特性。图3-1所示为N沟道结

图3-1 3DJ6F的输出特性和转移特性曲线

型场效应管3DJ6F的输出特性和转移特性曲线。其直流参数主要有饱和漏极

电流I

DSS ,夹断电压U

P

等;交流参数主要有低频跨导

常数

U

△U

△I

g

DS

GS

D

m

=

=

模拟电路实验指导书

目录 实验一整流、滤波、稳压电路 (1) 实验二单级交流放大器(一) (5) 实验三单级交流放大器(二) (7) 实验四两级阻容耦合放大电路 (9) 实验五负反馈放大电路 (11) 实验六射极输出器的测试 (14) 实验七 OCL功率放大电路 (16) 实验八差动放大器 (18) 实验九运算放大器的基本运算电路(一) (20) 实验十集成运算放大器的基本运算电路(二) (22) 实验十一比较器、方波—三角波发生器 (24) 实验十二集成555电路的应用实验 (26) 实验十三 RC正弦波振荡器 (30) 实验十四集成功率放大器 (32) 实验十五函数信号发生器(综合性实验) (34) 实验十六积分与微分电路(设计性实验) (36) 实验十七有源滤波器(设计性实验) (38) 实验十八电压/频率转换电路(设计性实验) (40) 实验十九电流/电压转换电路(设计性实验) (41)

实验一整流、滤波、稳压电路 一、实验目的 1、比较半波整流与桥式整流的特点。 2、了解稳压电路的组成和稳压作用。 3、熟悉集成三端可调稳压器的使用。 二、实验设备 1、实验箱(台) 2、示波器 3、数字万用表 三、预习要求 1、二极管半波整流和全波整流的工作原理及整流输出波形。 2、整流电路分别接电容、稳压管及稳压电路时的工作原理及输出波形。 3、熟悉三端集成稳压器的工作原理。 四、实验内容与步骤 首先校准示波器。 1、半波整流与桥式整流: ●分别按图1-1和图1-2接线。 ●在输入端接入交流14V电压,调节使I O=50mA时,用数字万用表测出V O,同时用 示波器的DC档观察输出波形记入表1-1中。 图1-1

模电实验

第一篇基础实验 实验一常用电子仪器使用练习、用万用表 测试二极管、三极管 模拟电子技术基础实验常用的电子仪器有: 1、通用示波器20MHZ 2、低频信号发生器 HG1021型 3、晶体管毫伏表:DA-16 4、万用表(500型)或数字万用表 5、直流稳压电源+12V、500mA 为了在实验中能准确地测量数据,观察实验现象,必须学会正确地使用这些仪器的方法,这是一项重要的实验技能,因此以后每次实验都要反复进行这方面的练习。 一、实验目的 (一)、学习或复习示波器、低频信号发生器、晶体管毫伏表及直流稳压电源的使用方法。 (二)学习用万用表辨别二极管、三极管管脚的方法及判断它们的好坏。 (三)学习识别各种类型的元件。 二、实验原理 示波器是一种用途很广的电子测量仪器。利用它可以测出电信号的一系列参数,如信号电压(或电流)的幅度、周期(或频率)、相位等。 通用示波器的结构包括示波管、垂直放大、水平放大、触发、扫描及电源等六个主要部分,各部分作用见附录。YX4320型波器。 三、预习要求 实验前必须预习实验时使用的示波器、低频信号发生器,万用表的使用说明及注意事项等有关资料。 四、实验内容及步骤 (一)电子仪器使用练习 1、将示波器电源接通1至2分钟,调节有关旋钮,使荧光屏上出现扫描线,熟悉“辉度”、“聚焦”、“X轴位移”、“Y轴位移”等到旋钮的作用。 2、启动低频信号发生器,调节其输出电压(有效值)为1~5V,频率为1KHZ,用示波器观察信号电压波形,熟悉“Y轴衰减”和“Y轴增幅”旋钮的作用。 3、调节有关旋钮,使荧光屏上显示出的波形增加或减少(例如在荧光屏上

得到一个、三个或六个完整的正弦波),熟悉“扫描范围”及“扫描微调”旋钮的作用。 4、用晶体管毫伏表测量信号发生器的输出电压。将信号发生器的“输出衰减”开关置0db、20db、40db、60db位置,测量其对应的输出电压。测量时晶体管毫伏表的量程要选择适当,以使读数准确。注意不要过量程。 (二)用万用表辨别二极管的极性、辨别二极管e、b、c各极、管子的类型(PNP 或NPN)及其好坏。 1、利用万用表测试晶体二极管。 (1)鉴别正、负极性 万用表欧姆档的内部电路可以用图1-1(b)所示电路等效,由图可见,黑棒为正极性,红棒为负极性。将万用表选在R×100档,两棒接到二极管两端如图1-1(a),若表针指在几KΩ以下的阻值,则接黑棒一端为二极管的正极,二极管正向导通;反之,如果表针指向很大(几百千欧)的阻值,则接红棒的那一端为正极。 (2)鉴别性能 将万用表的黑棒接二极管正极,红棒接二极管负极,测得二极管的正向电阻。一般在几KΩ以下为好,要求正向电阻愈小愈好。将红棒接二极管的正极,黑棒接二极管负极,可测量出反向电阻。一般应大于200KΩ以上。 2、利用万用表测试小功率晶体三极管 晶体三极管的结构犹如“背靠背”的两个二极管,如图1-2所示。测试时用R×100档。 (1)判断基极b和管子的类型 用万用表的红棒接晶体管的某一极,黑棒依次接其它两个极,若两次测得电阻都很小(在几KΩ以下),则红棒接的为PNP型管子的基极b;若量得电阻都

数字电路实验指导书2016

***************************************************** ***************************************************** *********************************************** 数字电路 实验指导书 广东技术师范学院天河学院电气工程系

目录 实验系统概术 (3) 一、主要技术性能 (3) 二、数字电路实验系统基本组成 (4) 三、使用方法 (12) 四、故障排除 (13) 五、基本实验部分 (14) 实验一门电路逻辑功能及测试 (14) 实验二组合逻辑电路(半加器全加器及逻辑运算) (18) 实验三译码器和数据选择器 (43) 实验四触发器(一)R-S,D,J-K (22) 实验五时序电路测试及研究 (28) 实验六集成计数器161(设计) (30) 实验七555时基电路(综合) (33) 实验八四路优先判决电路(综合) (43) 附录一DSG-5B型面板图 (45) 附录二DSG-5D3型面板图 (47) 附录三常用基本逻辑单元国际符号与非国际符号对照表 (48) 附录四半导体集成电路型号命名法 (51) 附录五集成电路引脚图 (54)

实验系统概述 本实验系统是根据目前我国“数字电子技术教学大纲”的要求,配合各理工科类大专院校学生学习有关“数字基础课程,而研发的新一代实验装置。”配上Lattice公司ispls1032E可完成对复杂逻辑电路进行设计,编译和下载,即可掌握现代数字电子系统的设计方法,跨入EDA 设计的大门。 一、主要技术性能 1、电源:采用高性能、高可靠开关型稳压电源、过载保护及自动恢复功能。 输入:AC220V±10% 输出:DC5V/2A DC±12V/0.5A 2、信号源: (1)单脉冲:有两路单脉冲电路采用消抖动的R-S电路,每按一次按钮开关产生正、负脉冲各一个。 (2)连续脉冲:10路固定频率的方波1Hz、10Hz、100Hz、1KHz、10KHz、100KHz、500KHz、1MHz、5MHz、10MHz。 (3)一路连续可调频率的时钟,输出频率从1KHz~100KHz的可调方波信号。 (4)函数信号发生器 输出波形:方波、三角波、正弦波 频率范围:分四档室2HZ~20HZ、20HZ~200HZ、200HZ~2KHZ、2KHZ~20HZ。 3、16位逻辑电平开关(K0~K15)可输出“0”、“1”电平同时带有电平指示,当开关置“1”电平时,对应的指示灯亮,开关置“0”电平时,对应的指示灯灭,开关状态一目了然。 4、16位电平指示(L0~L15)由红、绿灯各16只LED及驱动电路组成。当正逻辑“1”电平输入时LED红灯点亮,反之LED绿灯点亮。

模电实验报告答案1汇总

简要说明:本实验所有内容是经过^一年的使用并完善后的定稿;已经出版的较为成熟的内容,希望同学们主要参考本实验内容进行实验。 实验一常用电子仪器使用 为了正确地观察电子技术实验现象、测量实验数据,实验人员就必须学会常用电子仪器及设备的正确使用方法,掌握基本的电子测试技术,这也是电子技术实验课的重要任务之一。在电子技术实验中,所使用的主要电子仪器有:SS-7804型双踪示波器,EE-1641D函数信号发生器,直流稳压电源,DT89C型数字万用表和电子技术实验学习机。学习上述仪器的使用方法是本实验的主要内容,其中示波器的使用较难掌握,是我们学习的重点,要进行反复的操作练习,达到熟练掌握的目的。 一、实验目的 1. 学习双踪示波器、函数信号发生器、直流稳压电源的正 确使用方法。 2. 学习数字万用表的使用方法及用数字万用表测量元器 件、辩别二极管和三极管的管脚、类型。 3. 熟悉实验装置,学会识别装置上各种类型的元件。 二、实验内容

(一)、示波器的使用 1. 示波器的认识 示波器是一种测量、观察、记录电压信号的仪器,广泛应用于电子技术等领域。随着电子技术及数字处理技术的发展,示波器测量技术日趋完善。示波器主要可分为模拟示波器和数字存贮示波器两大种类。 模拟示波器又可分为:通用示波器、取样示波器、光电存储示波器、电视示波器、特种示波器等。数字存贮示波器也可按功能分类。 即便如此,它们各有各的优点。模拟示波器的优点是: ?可方便的观察未知波形,特别是周期性电压波形; ?显示速度快; ?无混叠效应; ?投资价格较低廉。 数字示波器的优点是: ?捕捉单次信号的能力强; ?具有很强的存储被测信号的功能。 示波器的主要技术指标: ①. 带宽:带宽是衡量示波器垂直系统的幅频特性,它 指的是输入信号的幅值不变而频率变化,使其显示波形的幅度 下降到3dB时对应的频率值。 ②. 输入信号范围: ③. 输入阻抗: ④. 误差: ⑤. 垂直灵敏度:指垂直输入系统的每格所显示的电压

2011.12.30(修改)电路与模拟电子技术实验指导书

电路与模拟电子技术 实验指导书 王凤歌 (修改于2011.12.30) 1

实验一直流网络定理 一、实验目的 1、加深对基尔霍夫和迭加原理的内容和适用范围的理解。 2、用实验方法验证戴维南定理的正确性。 3、学习线性含源一端口网络等效电路参数的测量方法。 4、验证功率输出最大条件。 二、实验属性(验证性) 三、实验仪器设备及器材 1、电工实验装置(DG011T、DY031T、DG053T) 2、电阻箱 四、实验要求 1. 所有需要测量的电压值,均以电压表测量的读数为准,不以电源表盘指示值为准。 2. 防止电源两端碰线短路。 3. 若用指针式电流表进行测量时,要识别电流插头所接电流表时的“ +、-”极性。倘若不换接极性,则电表指针可能反偏(电流为负值时),此时必须调换电流表极性,重新测量,此时指针可正偏,但读得的电流值必须冠以负号。 4.用电流插头测量各支路电流时,应注意仪表的极性,及数据表格中“ +、-”号的记录。 五、实验原理 1、基尔霍夫定律是集总电路的基本定律。它包括电流定律和电压定律。 基尔霍夫电流定律:在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零。即 ∑I = 0 基尔霍夫电压定律:在集总电路中,任何时刻,沿任一回路内所有支路或元件电压的代数和恒等于零。即 ∑U = 0 2、迭加原理是线性电路的一个重要定理。 独立电源称为激励,由它引起的支路电压、电流称为响应,则迭加原理可简述为:在任意线性网络中,多个激励同时作用时,总的响应等于每个激励单独作用时引起的响应之和。 3、戴维南定理指出,任何一个线性含源一端口网络,对外部电路而言,总可以用一个理想电压源和电阻相串联的有源支路来代替,如图1-1所示,其理想电压源的电压等于原网络端口的开路电压U OC,其电阻等于原网络中所有独立电源为零值时的入端等效电阻R0。 图1-1 2

模电实验(附答案)

实验一 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 3、 交流毫伏表 4、 模拟电路实验箱 5、 万用表 四、实验内容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? 图1 共射极单管放大器实验电路图

I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表1中。 表1 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E =E E R U 或I C =C C CC R U U - U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 2.测量电压放大倍数 各仪器与放大器之间的连接图 关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。 1)检查线路无误后,接通电源。从信号发生器输出一个频率为1KHz 、幅值为10mv (用毫伏表测量u i )的正弦信号加入到放大器输入端。 2)用示波器观察放大器输出电压的波形,在波形不失真的条件下用交流毫

数字电子技术基础实验指导书

『数字电子技术基础实验指导书』 实验一实验设备认识及门电路 一、目的: 1、掌握门电路逻辑功能测试方法; 2、熟悉示波器及数字电路学习机的使用方法; 3、了解TTL器件和CMOS器件的使用特点。 二、实验原理 门电路的静态特性。 三、实验设备与器件 设备 1、电路学习机一台 2、万用表两快 器件 1、74LS00 一片(四2输入与非门) 2、74LS04 一片(六反向器) 3、CD4001 一片(四2输入或非门) 四、实验内容和步骤 1、测试74LS04的电压传输特性。按图1—1连好线路。调节电位器,使V I 在0~+3V间变化, 记录相应的输入电压V 1和输入电压V 的值。至少记录五组数据,画出电压传输特性。 2、测试四二输入与非门74LS00的输入负载特性。测试电路如图1—2所示。请用万用表测 试,将V I 和V O 随R I 变化的值填入表1—1中,画出曲线。 表1-1 3、测试与非门的逻辑功能。 测量74LS00二输入与非门的真值表:将测量结果填入表1—2中。

表1—2 4、测量CD4001二输入或非门的真值表,将测量结果填入表1-2中。 注意CMOS 电路的使用特点:应先加入电源电压,再接入输入信号;断电时则相反,应先测输入信号,再断电源电压。另外,CMOS 电路的多余输入端不得悬空。 五、预习要求 1、阅读实验指导书,了解学习机的结构; 2、了解所有器件(74LS00,74LS04,CD4001)的引脚结构; 3、TTL 电路和CMOS 电路的使用注意事项。 图1-1 图1-2 300V O

一、实验目的 1、学习并掌握小规模芯片(SSI)实现各种组合逻辑电路的方法; 2、学习用仪器检测故障,排除故障。 二、实验原理 用门电路设计组合逻辑电路的方法。 三、实验内容及要求 1、用TTL与非门和反向器实现“用三个开关控制一个灯的电路。”要求改变任一开关状态都能控制灯由亮到灭或由灭到亮。试用双四输入与非门74LS20和六反向器74LS04和开关实现。测试其功能。 2、用CMOS与非门实现“判断输入者与受血者的血型符合规定的电路”,测试其功能。 要求如下: 人类由四种基本血型— A、B、AB、O型。输血者与受血者的血型必须符合下述原则;O 型血可以输给任意血型的人,但O型血的人只能接受O型血;AB型血只能输给AB型血的人,但AB血型的人能够接受所有血型的血;A型血能给A型与AB型血的人;而A型血的人能够接受A型与O型血;B型血能给B型与AB型血的人,而B型血的人能够接受B型与O型血。试设计一个检验输血者与受血者血型是否符合上述规定的逻辑电路,如果输血者的血型符合规定电路,输出高电平(提示:电路只需要四个输入端,它们组成一组二进制数码,每组数码代表一对输血与受血的血型对)。 约定“00”代表“O”型 “01”代表“A”型 “10”代表“B”型 “11”代表“AB”型 3、TTL与非门和反向器实现一组逻辑电路,其功能自行选定。 四、实验设备及器件 1、数字电路学习机一台 2、74LS20 三片(双四输入与非门) 3、74LS04 一片(六反向器) 4、CD4011 两片(四二输入与非门) 五、预习要求 1、自行设计电路,画出接线图(用指定器件设计)。 2、制定测试逻辑功能方案,画出必要的表格。

模电实验教案实验

模电实验教案实验 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

课程教案 课程名称:模拟电子技术实验 任课教师:何淑珍 所属院部:电气与信息工程学院 教学班级:自动化1301-02 教学时间:2014 —2015学年第二学期

湖南工学院课程基本信息

实验一单管共射放大电路的研究 一、本次实验主要内容 按要求连接实验电路,调试静态工作点,测量电压放大倍数、输入电阻、输出电阻,分析静态工作点对输出波形失真的影响。 二、教学目的与要求 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响;掌握放大器各性能指标及最大不失真输出电压的测试方法;熟悉常用电子仪器及模拟电路实验设备的使用。 三、教学重点难点 1、静态工作点调试; 2、输入电阻、输出电阻的测量。 四、教学方法和手段 课堂讲授、操作、讨论; 五、作业与习题布置 完成实验报告

实验一单管共射放大电路的研究(验证性) 1. 实验目的 (1)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响; (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法; (3)熟悉常用电子仪器及模拟电路实验设备的使用。 2. 实验设备与器材 实验所用设备与器材见表1.1。 3. 实验电路与说明 实验电路如图1.1所示,为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。安装电路时,要注意电解电容极性、直流电源正负极和信号源的极性。

模电实验指导书

模拟电子线路实验指导书福州大学物理信息学院电子系

目录 实验一三种常用电子仪器的使用 (2) 实验二单管低频放大器的设计安装和调试 (5) 实验三负反馈放大器的设计与测量 (12) 实验四差分放大器 (16) 实验五集成运算放大器的线性应用电路的设计与测量 (20) 实验六整流与稳压电路 (27) 实验七无变压器低频功率放大器 (29) 实验一三种常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表等的主要技术指标、性能及正确使用方法。 2、初步掌握用示波器观察正弦信号波形和读取波形参数的方法。 二、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。 实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交

流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 图1-1 模拟电子电路中常用电子仪器布局图 1、示波器 示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。现着重指出下列几点: 1)、寻找扫描光迹 将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。 ②触发方式开关置“自动”。③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。) 2)、双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单 踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一般适宜于输入信号频率较底时使用。 3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。 4)、触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。 有时,由于选择了较慢的扫描速率,显示屏上将会出现闪烁的光迹,但被 测信号的波形不在X轴方向左右移动,这样的现象仍属于稳定显示。 5)、适当调节“扫描速率”开关及“Y轴灵敏度”开关使屏幕上显示

模电实验指导书test2

实验一、常用仪器的使用及常用器件的认识、检测一、实验目的 1.学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的技术指标、性能及正确使用方法。 2.初步掌握双踪示波器观察正弦信号波形和读书波形参数的方法。 3.认识常见的电子元器件及其检测方法。 二、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等。它们和万用电表在一起,可以完成对模拟电子电路的静态与动态工作情况的测试。 实验中要对各中电子仪器进行综合使用,可按照信号流向,一连先简捷,调节顺手,观察与读数方便等原则进行合理布局,个仪器与被册实验装置之间的布局与连线如图1——1所示。接线是应注意,为了防止外界的干扰,各仪器的公共接地端应连接在一起,称共地。信号源和交流伏安表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 1.示波器 在本书实验附录中已对常用的GOS-620型双踪示波器的原理和使用做了较详细的说明,先着重指出下列几点: 1)寻找扫描光迹点 在开机半分钟后,如还找不到光点,可调节亮度旋钮,并按下“寻迹”键,从中判断光点的位置,然后适当调节垂直(↑↓)和水平()移位旋钮,将光点移至荧光屏的中心位置。 2)为了显示稳定的波形,需注意示波器面板上的下列几个控制开关(或旋钮)的位置。 a、“扫描速率”开关(t/div)——它的位置应根据被观察信号的周期来确定。 b、“触发源的选择”开关(内、外)——通常选为内触发。 c、“内触发源的选择”开关(拉YB)——通常至于常态(推进位置)。此时对单一从 YA或YB输入的信号均能同步,仅在作双路同时显示时,为比较两个波形的相对位置,才将其置于拉出(拉YB )位置,此时触发信号仅取自YB,故仅对YB输入的信号同

模电实验02_基本放大电路实验

实验二 基本放大电路实验 验证性实验——晶体管共射放大电路 1.实验目的 ①掌握放大电路的静态工作点和电压放大倍数的测量方法。 ②了解电路元件参数改变对静态工作点及电压放大倍数的影响。 ③掌握放大电路输入、输出电阻的测量方法。 2.实验电路及仪器设备 ⑴ 实验电路 单管共射放大电路如图1-6所示。 图1-6 单级共射放大电路 R b1 20k Ω R b2 10k Ω R c 、R s 、R L 3k Ω R e 2k Ω C 1、C 2 10μF C e 47μF V 3DG6 β 50~60 V CC 12V ⑵ 实验仪器设备 ①双踪示波器 1台 ②直流稳压电源 1台 ③信号发生器 1台 ④交流毫伏表 1台 ⑤数字(或指针)式万用表 1块 3.实验内容及步骤 ⑴ 测量静态工作点 ①先将直流电源调整到12V ,关闭电源。 ②按图1-6连接电路,注意电容器C 1、C 2、C e 的极性不要接反,最后连接电源线。 ③仔细检查连接好的电路,确认无误后,接通直流稳压电源。 ④按表1-5用数字万用表测量各静态电压值,并将结果记入表1-5中。 表1-5 静态工作点实验数据 ⑵ 测量电压放大倍数 ①按图1-7将信号发生器和交流毫伏表接入放大器的输入端,示波器接入放大器的输出端。调节信号 发生器为放大电路提供输入信号为1kHz 的正弦波i U ,示波器用来观察输出电压o U 的波形。适当调整信号发生器的值,确保输出电压o U 不失真时,分别测出o U 和i U 的值,求出放大电路的电压放大倍数u A 。

图1-7 实验线路与所用仪器连接图 ②观察交流毫伏表读数,保持U i 不变,改变R L ,观察负载电阻改变对电压放大倍数的影响,将测量结果记入表1-6中。 表1-6 电压放大倍数实测数据(保持U i 不变) ⑶ 观察工作点变化对输出波形的影响 调整信号发生器的输出电压幅值(增大放大器的输入电压U i ),观察放大电路的输出电压的波形,使放大电路处于最大不失真电压时,逐个改变基极电阻R b1的值,分别观察R b1变化对静态工作点及输出波形的影响,将所测结果记入表1-7中。 表1-7 R b1对静态、动态影响的实验结果 ⑷ 测量输入电阻R i 及输出电阻R o ①测量输入电阻R i 方法一:测量原理图如图1-8所示,在放大电路与信号源之间串入一固定电阻 R =3k Ω,在输入电压波形不失真的条件下,用交流毫伏表测量U s 以及相应U i 的值,并按式(1-1)计算R i i i s i U R R U U = - (1-1) 方法二:测量原理图如图1-9所示,当R =0时,在输出电压波形不失真的条件下,用交流毫伏表测出输出电压U o1;当R =3k Ω时,测出输出电压U o2,并按式(1-2)计算R i o2 i o1o2 U R R U U = - (1-2) 将两种方法的测量结果计算出的R i 与理论值比较,分析测量误差。R 的取值接近于R i 。

模电实验

模拟电子技术实验第十一次实验 波形发生电路 实验报告 2016.12.22 . .

. . 一、 实验目的 1、 学习用集成运放构成正弦波、方波和三角波。 2、 学会波形发生电路的调整和主要性能指标的测试方法。 二、 实验原理 由集成运放构成的正弦波、方波和三角波发生电路有多种形式,本实验采用 最常用且比较简单的几种电路来做分析。 1、 RC 桥式正弦波振荡电路 下图所示为RC 桥式正弦波振荡电路。其中RC 串并联电路构成正反馈支路, 同时起到选频网络的作用。R1、R2、Rw 及二极管等元件构成负反馈和稳幅环节。调节电位器Rw ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。D1、D2采用硅管(温度稳定性好),且要求特性匹配,才能保持输出波形正、负半周对称。R3的接入是为了削弱二极管非线性的影响,以改善波形失真。 电路的振荡频率:12o f RC π= 起振的幅值条件:12f R R ≥ (具体推导见书第406页) 其中23(//)f w D R R R R r =++,D r 是二极管正向导通电阻 调整反馈电阻Rf (调Rw ),使电路起振,且波形失真最小。如不能起振,则

. . 说明负反馈太强,应当适当加大Rw ;如波形失真严重,则应当适当减小Rw 。 改变选频网络的参数C 或R ,即可调节振荡频率。一般采用改变电容C 作频率量程切换,而调节R 作量程的频率细调。 2、 方波发生电路 由集成运放构成的方波发生电路和三角波发生电路,一般均包括比较电路和 RC 积分电路两大部分。下图所示为由迟滞比较器及简单RC 积分电路组成的方波-三角波发生电路。它的特点是线路简单,但三角波的线性度较差。主要用于产生方波,或对三角波要求不高的场合。 电路振荡频率:211 22ln(1)o f f f R R C R =+ 式中11''w R R R =+,22'''w R R R =+ 方波输出幅值:om Z V V =± 三角波输出幅值:212 CM Z R V V R R =+ 调节电位器Rw (即改变R2/R1,),可以改变振荡频率,但三角波的幅值也随之变化。如要互不影响,则可以通过改变Rf 或Cf 来实现振荡频率的调节。 3、 三角波和方波发生电路 如把迟滞比较电路和积分电路首尾相接形成正反馈闭环系统,如下图所示, 则比较电路A1输出的方波经积分电路A2积分可以得到三角波,三角波又触发比较器自动翻转形成方波,这样既可构成三角波、方波发生电路。

数电实验指导书(2016年14级)

实验一:门电路实验 一、实验目的: 熟悉、掌握门电路的逻辑功能 二、实验仪器和设备: 1、TPE-D6型数字电路学习机2、数字万用表 三、实验原理及主要知识点 1.与非门_____ AB F =(有0出1,全1出0) 2.与或非门___ __________CD AB F +=(画真值表自行总结) 3.或门B A F +=(有1出1,全0出0) 四、实验步骤 实验前的准备:在学习机上未接任何器件的情况下(指实验用插座部分),先合上交流电源,检查5V 电源是否正常,再合直流电源测V CC 处电压是否正常,测两排插口中间V CC 插口处电压是否正常,全正常后断开全部电源。 随后选择好实验用集成片,查清集成片的引腿及功能,然后根据实验图接线,特别注意V CC 及地的接线不能接错,待老师检查后方可接通电源进行实验,以后所有实验依此办理。 (一) 测与非门的逻辑功能 1、选双4输入正与非门74LS20集成芯片一只;选择一个组件插座(片子先不要插入)按图接好线。 2、输入端接电平开关输出插口,输出端接发光二极管显示插口。 3、拨动电平开关,按表中情况分别测出输出端电平。 (二)、测与异或门的逻辑功能 1、选两路四输入与或非门电路74LS55集成芯片一只;选择一个组件插座(片子先不要插入)按图接线。 4 双4输入正与非门74LS20

2、 (三)根据摩根定理或门的逻辑函数表达式B A Z +=,可以写成B A Z ?=,因此可以用三个与非门构成或门。 (1) 将由三个与非门构成的或门测试电路画在下面空白处。 (2) 当输入端(A 、B )为下列情况时,分别测输出端(Z )的电位,将结果填入表中。 五、实验思考题及实验报告要求 整理实验数据,并对数据进行分析,根据实验观察到的现象,回答下列问题。 1与非门在什么情况下输出高电平?什么情况下输出低电平?TTL 与非门不用的输入端应如何处理? 2与或非门在什么情况下输出高电平?什么情况下输出低电平?TTL 与或非门不用的与门应如何处理? 实验二 组合逻辑电路实验 一、实验目的 (一) 掌握组合逻辑电路的分析方法 (二) 验证半加器的逻辑功能 (三) 了解二进制数的运算规律 二、实验仪器及设备 (一) TPE-D6型数字电路学习机 (二)数字万用表 三、实验原理及主要知识点 组合逻辑电路的分析是根据所给的逻辑电路,写出其输入与输出之间的逻辑关系(逻辑函数表达式或 4个二输入异或门74LS86

高电压技术实验指导书_学生用_

实验一.电介质绝缘特性及电击穿实验 一.实验目的: 观察气隙击穿、液体击穿以及固体沿面放电等现象及其特点,认识其发展过程及影响击穿电压的各主要因素,加深对有关放电理论的理解。 二.预习要点: 概念:绝缘;游离;电晕;电子崩;流注;先导放电;自持放电;滑闪放电;沿面放电;小桥;电击穿;热击穿。 判断:空气是绝缘介质;纯净液体的击穿是电击穿,非纯净液体的击穿是热击穿,绝缘油的击穿电压受油品、电压作用时间、电场分布情况及温度的影响较大,电弧会使油分解并产生炭粒;沿面放电是特殊的气体放电,分三个阶段,沿面闪络电压小于气隙击穿电压。 推理:变压器油怕受潮;油断路器有动作次数的限制; 相关知识点:电场、介质极化、偶极子、介电常数、Paschen定律、Townsend理论、流注理论、伏秒特性、大气过电压、内部过电压。 三.实验项目: 1.气体绝缘介质绝缘特性及电击穿实验 ⑴.电极形状对放电的影响 ①.球球间隙 ②.针板间隙 ③.针针间隙 ⑵.电场性质对放电的影响 ①.工频交流电场 ②.直流电场 ⑶.极性效应 ①.正针负板 ②.负针正板 2.液体绝缘介质绝缘特性及电击穿实验 ⑴.导电小桥的观察 ⑵.抗电强度的测试 3.固体绝缘介质绝缘特性及电击穿实验 ⑴.刷状放电的观察 ⑵.滑闪放电的观察 ⑶.沿面闪络的观察 四.实验说明: 1.气体绝缘特性: ⑴.气体在正常情况下绝缘性能良好(带电粒子很少); ⑵.气体质点获得足够的能量(大于其游离能)后,将会产生游离,生成正离子和电子; ⑶.气体质点获得能量的途径有:粒子撞击、光子激励、分子热碰撞; ⑷.气隙中除了有气体质点游离产生的带电粒子外,还存在金属电极表面的逸出电子; ⑸.气隙加上电场,气隙中的带电粒子将顺电场方向加速运动,造成大量的粒子碰撞,但产生气体质点游离的撞源粒子是电子;

电路与模电实验指导书

实验一基尔霍夫定律验证和电位的测定 一、实验目的 1.验证基尔霍夫电流定律(KCL)和电压定律(KVL)。 2.通过电路中各点电位的测量加深对电位、电压及它们之间关系的理解。3.通过实验加强对参考方向的掌握和运用的能力。 4.训练电路故障的诊查与排除能力。 二、原理与说明 1.基尔霍夫电流定律(KCL) 在任一时刻,流出(或流入)集中参数电路中任一可以分割开的独立部分的端子电流的代数和恒等于零,即: ΣI=0 或ΣI入=ΣI出式(3-1) 此时,若取流出节点的电流为正,则流入节点的电流为负。它反映了电流的连续性。说明了节点上各支路电流的约束关系,它与电路中元件的性质无关。 要验证基式电流定律,可选一电路节点,按图中的参考方向测定出各支路电流值,并约定流入或流出该节点的电流为正,将测得的各电流代入式(3-1),加以验证。 2.基尔霍夫电压定律(KVL) 按约定的参考方向,在任一时刻,集中参数电路中任一回路上全部元件两端电压代数和恒等于零,即: ΣU=0 式(3-2) 它说明了电路中各段电压的约束关系,它与电路中元件的性质无关。式(3-2)中,通常规定凡支路或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。 3.电压、电流的实际方向与参考方向的对应关系 参考方向是为了分析、计算电路而人为设定的。实验中测量的电压、电流的实际方向,由电压表、电流表的“正”端所标明。在测量电压、电流时,若电压表、电流表的“正”端与参考方向的“正”方向一致,则该测量值为正值,否则为负值。 4.电位与电位差 在电路中,电位的参考点选择不同,各节点的电位也相应改变,但任意两节点间的电位差不变,即任意两点间电压与参考点电位的选择无关。

模拟电子技术实验测试题

模拟电子技术实验测试题 1、在共射基本放大电路实验中,若基极电阻R b不变,调整集电极电阻R c,对静态工作点有何影响?若集电极电阻R c不变,调整基极电阻R b,对静态工作点又有何影响?试在输出特性曲线上加以说明。 2、如何用实验的方法测试放大电路的输入电阻?试画出示意图,并简述原理。 3、如何用实验的方法测试放大电路的输出电阻?试画出示意图,并简述原理。 4、由NPN硅管组成的放大电路发生截止失真时,试定性画出在示波器上看到的输出电压波形。PNP锗管的截止失真波形有何不同? 5、在RC耦合两级放大电路的实验中,先测试两级耦合时各级的电压增益和总电压增益,再将耦合断开,分别测试两个独立放大器的电压增益,两个结果是否相同?说明什么问题? 6、在负反馈放大电路的实验中,测得开环电压增益为A V=95,当调整R10+R P3=4.9kΩ时,实测的闭环电压增益与使用公式A V≈1/F V 的估算值比较,误差情况如何?为什么? 7、差分式放大电路的实验中,T1、T2的基极电压V B1、V B2实测的极性为正还是为负?为什么? 8、能否不用其它仪器设备,检测示波器探头的好坏?简单说明操作方法。 9、在RC桥式振荡器中,RC串并联网络起什么作用?如何测量其幅频特性?画出示意图。 10、在RC桥式振荡器中,R P3、R10串联支路起什么作用?调节R P3,振荡波形如何变化?为什么? 11、在由集成运放构成的实用积分电路中,与电容C并联的R f 起什么作用?试定性画出当输入为方波电压时的输出电压波形。 12、在由集成运放构成的实用微分电路中,与电容C1串联的R p 起什么作用?试定性画出当输入为方波电压时的输出电压波形。 13、在RC桥式振荡电路中,当输出电压出现上下削波时,应调节什么参数使波形为不失真的正弦波? 14、方波-三角波发生器由什么基本电路构成?电阻R4由3kΩ变为6kΩ,对输出波形有何影响? 15、在负反馈放大电路的实验中,若使R P3减小,放大器的输入、输出电阻及通频带将如何变化?简述理由。 16、如何测试放大电路的上、下限频率和通频带? 17、能否用简单的方法判断接在电路中的三极管的好坏? 18、用示波器如何测量直流电压的大小?简述测量方法。 19、用示波器和万用表测量的交流电压值是否相同?

电力电子技术实验指导书

电力电子技术实验指导书 河南机电职业学院 2010年4月

学生实验守则 一、学生进入实验室必须服从管理,遵守实验室的规章制度。保持实验室的安静和整洁,爱护实验室的一切设施,不做与实验无关的事情。 二、实验课前要按照教师要求认真预习实验指导书,复习教材中于实验有关的内容,熟悉与本次实验相关的在理论知识,同时写出实验预习报告,并经教师批阅后方可进行实验。 三、实验课上要遵守操作规程,线路连接好后,先自行检查,后须经指导教师检查后,才可接通电源进行实验。如果需更改线路,也要经过教师检查后才能接通电源继续实验。 四、学生实验前对实验所用仪器设备要了解其操作规程和使用方法,实验过程中按照要求记录实验数据。实验中有仪器损坏情况,应立即报告指导教师检查处理。凡因不预习或不按照使用方法误操作而造成设备损坏后,除书面检查外,还要按照规定进行赔偿。 五、注意实验安全,不要带电连接、更改或拆除线路。实验中遇到事故应立即关断电源并报告教师处理。 六、实验完成后,实验数据必须经教师签阅后,方可拆除实验线路。并将仪器、设备、凳子等按照规定放好,经教师同意后方可离开实验室。 七、实验室仪器设备不能擅自搬动、调换,更不能擅自带出实验室。 八、因故缺课的同学可以向实验室申请一次补做机会。无故缺课、无故迟到十五分钟以上或者早退的不予补做,该实验无成绩。

第一章电力电子技术实验的基本要求 和安全操作说明 《电子电力技术》是电气工程及其自动化、自动化等专业的三大电子技术基础课程之一,课程涉及面广,内容包括电力、电子、控制、计算机技术等。而实验环节是该课程的重要组成部分,通过实验,可以加深对理论的理解,培养和提高动手能力、分析和解决问题的独立工作能力。 1-1 实验的特点和要求 电力电子技术实验的内容较多、较新,实验系统也比较复杂,系统性较强。理论教学是实验教学的基础,要求学生在实验中应学会运用所学的理论知识去分析和解决实际系统中出现的各种问题,提高动手能力;同时通过实验来验证理论,促进理论和实际相结合,使认识不断提高、深化。通过实验,学生应具备以下能力: (1)掌握电力电子变流装置的主电路、触发和驱动电路的构成及调试方法,能初步设施和应用这些电路; (2)熟悉并掌握基本实验设备、测试仪器的性能和使用方法; (3)能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题; (4)能够综合实验数据,解释实验现象,编写实验报告。 1-2 实验前的准备 实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。每次实验前都应先进行预习,从而提高实验质量和效率,否则就有可能在实验时不知如何下手,浪费时间,完不成实验要求,甚至有可能损坏实验装置。因此,实验前应做到: (1)复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识。 (2)阅读本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;明确实验过程中应注意的问题。 (3)写出预习报告,其中应包括实验系统的详细接线图、实验步骤、数据记录表格等。 (4)进行实验分组,一般情况下,电力拖动自动控制系统实验的实验小组为每组2~3人。 1-3 实验实施 在完成理论学习、实验预习等环节后,就可进入实验实施阶段。实验时要做到以下几点: (1)实验开始前,指导教师要对学生的预习报告作检查,要求学生了解本次实验的目的、内容和方法,只有满足此要求后,方能允许实验。 (2)指导教师对实验装置作介绍,要求学生熟悉本次实验使用的实验设备、仪器,明确这些设备的功能与使用方法。 (3)按实验小组进行实验,实验小组成员应进行明确的分工,以保证实验操作协调,记录数据准确可靠,各人的任务应在实验进行中实行轮换,以便实验参加者能全面掌握实验技术,提高动手能力。 (4)按预习报告上的实验系统详细线路图进行接线,一般情况下,接线次序为先主电路,后控制电路;先串联,后并联。在进行调速系统实验时,也可由2人同时进行主电路和控制电路的接线。 (5)完成实验系统接线后,必须进行自查。串联回路从电源的某一端出发,按回路逐项

模电实验考题_269007700

模拟电路实验考核方法及内容 一、考核时间 第15周,按原分组时间地点进行。考核时间共计2小时。 二、考核方法 1. 课外: 预习准备:学生按提前公布的考核题目与要求做好预习准备工作,包括查阅资料,设计电路,拟定实验步骤,设计数据记录表格等,并写成预习报告。 由于器件参数有分散性,因此要有充分的思想准备和设计调试考虑,根据现场实测数据,修改设计电路参数,以调试出要求的结果。 2.课内: (1)实验操作:在实验室安装调试所设计的电路,按要求测量电路的性能指标。 (2)写出简单的实验报告,要求可参考以前实验报告,重点是实验结果的分析,实验中出现的问题和解决方法等。 三、考核内容 1.设计制作一个压控振荡器(VCO),参考电路如下图。要求输出锯齿波(v O1)的幅度(峰-峰值)约为10V。 2.在实验室安装、调试电路,使之正常工作,之后完成下列测试。 (1)观察压控作用,即改变V I测量相应的输出信号频率f(自选3个测量点)。 以下测量在指定控制电压V I(课内考查时公布,同时教师会从以下题目中指定4道)下完成。 (2)测定输出锯齿波扫描(正程)时间。 (3)测定输出锯齿波的频率。 (4)测定输出矩形波的平均脉宽。

(5)测定输出矩形波的上升时间。 (6)测定输出矩形波的脉冲幅度。 (7)改变电路中某个元件参数,使锯齿波峰-峰值为6V,写出该元件名称及改变后的参数值。 (8)V I改成–12V,修改电路,调出输出波形。 四、注意事项: 1、严格禁止课前试做考核题目。 2. 记住带相关元器件及导线。运算放大器使用前最好测试其好坏。 3. 课内考查时间为2小时,包括实验操作和写实验报告,考核结束时当堂提交实验 报告。 4. 采用开卷考试方法,但要求独立完成,抄袭别人按作弊处理。

相关文档
最新文档