聚合物基复合材料

合集下载

聚合物基复合材料知识点

聚合物基复合材料知识点

聚合物基复合材料知识点概述:聚合物基复合材料是由聚合物基质和填料或增强材料(如纤维)组成的材料。

由于其独特的性能和广泛的应用领域,聚合物基复合材料成为现代工程领域中的重要材料之一。

本文将介绍聚合物基复合材料的相关知识点。

1. 聚合物基质的选择:聚合物基复合材料的性能主要取决于聚合物基质的选择。

常见的聚合物基质包括聚烯烃、聚酰胺、环氧树脂等。

不同的聚合物基质具有不同的化学性质和力学性能,因此在选择聚合物基质时需要考虑材料的具体应用需求。

2. 填料的选择:填料在聚合物基质中起到增强材料性能的作用。

常见的填料包括纤维、颗粒和珠状材料等。

填料的选择影响着复合材料的力学性能、耐热性和阻燃性等方面。

纤维增强材料可提供更高的强度和刚度,而颗粒和珠状填料则可改善材料的摩擦特性和耐磨性。

3. 增强材料的选择:增强材料在聚合物基质中起到增强材料性能的作用。

常见的增强材料包括玻璃纤维、碳纤维和芳纶纤维等。

不同的增强材料具有不同的强度和刚度特性,在选择增强材料时需要考虑材料的具体应用环境和要求。

4. 复合界面的设计:复合材料中的界面是指填料和基质之间的相互作用界面。

复合界面的设计可以影响材料的耐热性、粘合强度和耐化学腐蚀性等方面的性能。

在复合材料的制备过程中,通常会采用表面粗糙化、化学处理和界面改性等方法来改善复合界面的性能。

5. 制备工艺:制备工艺对于聚合物基复合材料的性能和结构有着重要影响。

常见的制备工艺包括手工层叠法、注塑成型、挤出成型、压制成型等。

不同的制备工艺决定了材料的成型精度、力学性能和表面质量等方面的特性。

6. 应用领域:聚合物基复合材料广泛应用于航空航天、汽车制造、建筑材料、电子电气等领域。

其具有轻质高强度、耐腐蚀、隔热隔音等优势,在这些领域中发挥着重要作用。

例如,碳纤维增强复合材料在航空航天领域中被广泛应用于飞机结构件和卫星结构件等。

7. 未来发展趋势:随着科学技术的不断进步,聚合物基复合材料将继续得到发展和应用。

聚合物基复合材料

聚合物基复合材料

聚合物基复合材料
聚合物基复合材料是由聚合物基体和增强物相互作用形成的复合材料,具有优异的力学性能、热稳定性和电绝缘性能,广泛应用于航空航天、汽车、建筑以及电子等领域。

聚合物基复合材料由于具有低密度、高强度、高刚度、耐腐蚀和自润滑等特点,在航空航天领域得到了广泛应用。

例如,碳纤维增强聚合物基复合材料具有高强度、低密度和耐高温性能,被广泛应用于制造飞机机身、翼面和发动机部件,能有效降低飞机的重量,提高燃油效率,提高飞机的载荷能力和飞行速度。

此外,聚合物基复合材料还被广泛应用于汽车制造领域。

相较于传统金属材料,聚合物基复合材料具有低密度、优异的力学性能和杰出的吸能能力,能够降低汽车整车重量,提高汽车燃油经济性和减少尾气排放。

因此,聚合物基复合材料被广泛应用于汽车车身、车顶、车门、引擎罩、底盘和车辆内部部件等。

在建筑领域,聚合物基复合材料也具有广泛的应用前景。

聚合物基复合材料具有轻质、高强度、耐候性和可塑性等特点,能够有效替代传统的建筑材料,例如水泥、钢材等。

聚合物基外墙材料、地板材料、隔热材料等聚合物基复合材料产品在建筑装饰、隔音隔热、防水防潮等方面具有广泛的应用。

此外,聚合物基复合材料还在电子领域得到了广泛应用。

聚合物基复合材料具有优异的电绝缘性能和低介电常数特点,能够有效隔离和保护电子元器件。

聚合物基复合材料在电路板、电子封装材料、电缆套管等领域具有广泛应用。

总之,聚合物基复合材料具有轻质高强、耐高温、抗腐蚀、电绝缘等一系列优异的特性,广泛应用于航空航天、汽车、建筑和电子等领域,为各行业的发展提供了更多的可能性。

聚合物基复合材料的优势

聚合物基复合材料的优势

聚合物基复合材料是由聚合物基质与纤维增强材料(如碳纤维、玻璃纤维等)或颗粒填充材料(如硅灰石、陶瓷等)组成的一种新型材料。

它的优势包括:
1. 轻质高强:由于纤维增强材料的加入,聚合物基复合材料具有轻质高强的特点,比传统材料如钢铁、铝等重量轻,但强度却更高。

2. 耐腐蚀:聚合物基复合材料的耐腐蚀性能很好,可以在恶劣环境下长期使用而不受到腐蚀和氧化的影响。

3. 抗疲劳:与金属材料相比,聚合物基复合材料的抗疲劳性能更好,可以在重复载荷下长期使用而不致疲劳断裂。

4. 自润滑:某些聚合物基复合材料中加入适当的固体润滑剂,可以在使用过程中自动释放出润滑剂,从而改善材料的摩擦性能和耐磨性。

5. 高温性能:某些聚合物基复合材料具有很好的高温性能,可以在高温环境下使用而不失效。

6. 成型性好:聚合物基复合材料易于成形,可采用热压、注
塑、挤出等多种加工方式,可以生产出各种形状和尺寸的复合材料制品。

7.热膨胀系数低:与金属相比,聚合物基复合材料的热膨胀系数较低,这意味着它们在温度变化时变形较小。

8.加工成本效益:尽管初始材料成本可能较高,但在生产过程中,聚合物基复合材料通过减少装配步骤、降低废料和能源消耗等方式,可以带来总体成本效益的提高。

9.环保可持续:某些类型的聚合物基复合材料可以使用可再生或回收资源制造,有助于实现可持续发展目标。

10美学效果:一些聚合物基复合材料可以通过染色或表面处理产生美观的效果,使其适合于建筑装饰和其他需要视觉吸引力的应用。

基于这些优势,聚合物基复合材料得到了广泛应用,包括航空航天、汽车、建筑、电子等领域,成为了一种重要的结构材料。

5.1 聚合物基复合材料

5.1 聚合物基复合材料
疲劳破坏是指材料在交变负荷作用下, 逐渐形成裂缝,并不断扩大而引起的低应 力破坏。
金属材料的疲劳破坏是由里往外突然发 展的。无预兆。
聚合物基复合材料由于疲劳而产生裂缝 时,因纤维与基体的界面能阻止裂缝的扩 展,提高材料的抗疲劳性,有预兆。
2021/10/10
10
5、2 聚合物基复合材料的性能
3、减震性能好 较高的自振频率会避免工 作状态下引起的早期破坏, 而结构的自振频率除了与 结构本身形状有关而外, 还与材料的比模量的平 方根成正比。 在复合材料中纤维与基体界面具吸振的能力 其振动阻尼很高,减震效果很好。
2021/10/10
33
团状模塑料 DMC Dough molding compound
2021/10/10
34
2021/10/10
团状模塑料
• 目前,国外轿车车灯 反光罩已有70%采用 IBMC料, 实现轿车 反光罩材料的国产化, IBMC被列为国家“九 五”攻关项目,于96 年底研制出IBMC料, 生产出合格的夏利轿 车车灯反光罩,并于 1997年实现了规模生 产,获得国家专利。
2021/10/10
3
概述
• 纤维和基体之间的良好的复合显示 了各自 的优点,并能实现最佳结构设计,具有许 多优良特性。
2021/10/10
4
PMC的组成
(1) 基体
热固性基体(thermosetting matrix):
i) 熔体或溶液粘度低,易于浸渍与浸润,成型工艺性好
ii) 交联固化成网状结构,尺寸稳定性、耐热性好,但性脆
2021/10/10
18
1-1 原材料
(1)基体、胶液准备 • 不饱和聚酯树脂:80% • 环氧树脂 • 高性能树脂:聚酰亚胺、双马树脂

聚合物基复合材料

聚合物基复合材料

纤维增强的聚合物基复合材料一、复合材料1、定义复合材料是一种多相的复合体系,由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。

各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料。

2、分类根据组成复合材料的不同物质在复合材料中的形态,可将它们分为基体材料和分散材料。

复合材料按分散材料形式不同可分为纤维增强复合材料、粒子增强复合材料、晶须增强复合材料等;按基体材料不同可分为聚合物基复合材料、金属基复合材料、陶瓷基复合材料。

二、纤维增强聚合物基复合材料聚合物基复合材料是以高分子聚合物为基体,添加增强纤维制得的一种复合材料。

它有许多优异的性能:(1)质轻高强。

若按比强度计算(强度与密度的比值),玻璃纤维增强的聚合物基复合材料不仅大大超过碳钢,而且可超过某些特殊合金钢。

特别是有机纤维、碳纤维复合材料有更低的密度和更高的强度。

(2)耐疲劳性能好。

聚合物复合材料中的纤维与基体的界面能阻止裂纹的发展,金属的疲劳强度是其拉伸强度的30~50%,碳纤维/不饱和聚酯复合材料是70~80%。

(3)耐热性强。

虽然聚合物基复合材料的耐热性不及金属基和陶瓷基复合材料,但随着高性能树脂和高性能增强材料的发展,它的耐热性也达到很优异的效果。

甲基二苯乙炔基硅烷树脂为基体的复合材料在500℃下仍能保持较好的力学性能。

(4)介电性能好。

通过选择树脂基体和增强纤维可制备低介电损耗角正切(小于0.005)的复合材料.如,热固性丁苯树脂基、聚酰亚胺树脂基复合材料。

1、聚合物基体目前可供选择的树脂主要有两类:一类为热固性树脂,其中包括环氧树脂、聚酰亚胺树脂、酚醛树脂等,另一类为热塑性树脂,如尼龙、聚砜、聚醚醚酮、聚醚酰亚胺等。

聚合物的选择应考虑:A、基体材料能在结构使用温度范围内正常使用;B、基体材料具有一定的力学性能;C、要求基体材料的断裂伸长率大于或者接近纤维的断裂伸长率,以确保充分发挥纤维的增强作用;D、要求具有一定的工艺性。

聚合物基复合材料

聚合物基复合材料

聚合物基复合材料聚合物基复合材料是一种由聚合物基体和强化材料组成的复合材料,具有轻质、高强度、耐腐蚀等优点,被广泛应用于航空航天、汽车制造、建筑材料等领域。

聚合物基复合材料的研究和应用已经成为材料科学领域的热点之一。

首先,聚合物基复合材料的基本组成是聚合物基体和强化材料。

聚合物基体通常采用树脂类材料,如环氧树脂、酚醛树脂、聚酰亚胺树脂等,而强化材料则可以是玻璃纤维、碳纤维、芳纶纤维等。

这些强化材料可以有效地提高复合材料的强度和刚度,使其具有优异的力学性能。

其次,聚合物基复合材料具有许多优越的性能。

首先是轻质性能,由于聚合物基体的密度较低,加上强化材料的高强度,使得复合材料具有很高的比强度和比刚度。

其次是耐腐蚀性能,聚合物基复合材料在恶劣环境下具有良好的耐腐蚀性能,可以替代传统的金属材料。

此外,聚合物基复合材料还具有良好的设计自由度,可以根据实际需求进行定制加工,满足不同领域的应用需求。

再次,聚合物基复合材料的制备工艺多样。

常见的制备工艺包括手工层叠、注塑成型、压缩成型等,其中注塑成型是目前应用最广泛的工艺之一。

通过不同的制备工艺,可以得到不同性能的聚合物基复合材料,满足不同领域的需求。

最后,聚合物基复合材料的应用领域非常广泛。

在航空航天领域,聚合物基复合材料被广泛应用于飞机机身、发动机零部件等;在汽车制造领域,聚合物基复合材料被应用于车身结构、内饰件等;在建筑材料领域,聚合物基复合材料被应用于地板、墙板、梁柱等。

可以说,聚合物基复合材料已经成为现代工程领域不可或缺的材料之一。

综上所述,聚合物基复合材料具有轻质、高强度、耐腐蚀等优点,具有广阔的应用前景。

随着材料科学的不断发展,相信聚合物基复合材料将会在更多领域展现其无穷魅力。

聚合物基复合材料的热稳定性研究

聚合物基复合材料的热稳定性研究

聚合物基复合材料的热稳定性研究聚合物基复合材料由于其优异的性能,在众多领域得到了广泛的应用。

然而,其热稳定性是影响其使用性能和寿命的关键因素之一。

因此,对聚合物基复合材料热稳定性的研究具有重要的理论和实际意义。

聚合物基复合材料是由聚合物基体和增强材料组成的多相体系。

常见的聚合物基体包括热塑性聚合物(如聚乙烯、聚丙烯等)和热固性聚合物(如环氧树脂、不饱和聚酯树脂等);增强材料则有纤维(如碳纤维、玻璃纤维等)、颗粒(如滑石粉、碳酸钙等)等。

不同的基体和增强材料的组合,以及它们之间的界面相互作用,都会对复合材料的热稳定性产生影响。

热稳定性可以从多个方面来衡量。

其中,热分解温度是一个重要的指标。

当聚合物基复合材料受热时,会发生化学键的断裂和重组,导致材料的质量损失和性能下降。

通过热重分析(TGA)等技术,可以测量材料在不同温度下的质量变化,从而确定其热分解温度。

一般来说,热分解温度越高,材料的热稳定性越好。

聚合物基体的化学结构对复合材料的热稳定性起着决定性的作用。

例如,具有芳香环结构的聚合物通常比脂肪族聚合物具有更高的热稳定性。

这是因为芳香环的共轭结构能够增加分子的刚性和热稳定性。

此外,聚合物的分子量和分子量分布也会影响热稳定性。

较高的分子量通常会提高材料的热稳定性,因为分子链之间的缠结和相互作用更强,能够更好地抵抗热分解。

增强材料对聚合物基复合材料的热稳定性也有显著的影响。

以纤维增强复合材料为例,纤维的种类、长度、直径和含量等因素都会影响热稳定性。

碳纤维具有优异的热稳定性,将其加入聚合物基体中可以显著提高复合材料的热分解温度。

这是因为碳纤维不仅本身具有较高的耐热性,还能够起到导热和阻碍热传递的作用,从而延缓基体的热分解。

复合材料中基体与增强材料之间的界面相互作用也不可忽视。

良好的界面结合能够有效地传递应力和热量,提高复合材料的整体性能。

界面处的化学键合、物理吸附和机械嵌合等作用都会影响热稳定性。

例如,通过对纤维进行表面处理,增加其与基体之间的相容性和界面结合强度,可以提高复合材料的热稳定性。

聚合物基复合材料

聚合物基复合材料
表面修饰
PLS
PLS
插层聚合
缩聚
加聚
聚合物 溶液分散
聚合物 熔融分散
聚合物/层状硅酸盐纳米复合物的结构和分类
从材料微观形态的角度,可以分成三种类型:
材料中粘土片层紧密堆积,分散相为大尺寸的颗粒状,粘土片层之间并无聚合物插入。
聚合物基体的分子链插层进入层状硅酸盐层间,层间距扩大,介于1-4nm,粘土颗粒在聚合物基体中保持“近程有序,远程无序”的层状堆积结构。可作为各向异性的功能材料
对相同尺寸和形状的梁进行振动试验的结果表明,对同一振动,轻合金梁需要9秒钟才能停止,而碳纤维复合材料梁只需2~3秒。
过载安全性
聚合物基复合材料的特性
在纤维复合材料中,由于有大量独立的纤维,在每平方厘米面积上的纤维数少至几千根,多达数万根。当过载时复合材料中即使有少量纤维断裂时,载荷就会迅速重新分配到未被破坏的纤维上,不至于造成构件在瞬间完全丧失承载能力而断裂,仍能安全使用一段时间。
.酚醛玻璃钢 耐热性最好, <350℃长期使用,短期可达1000℃;电学性能好,耐烧蚀材料,耐电弧。性脆,尺寸不稳定,收缩率大,对皮肤有刺激作用。
玻璃钢采光板
玻璃钢汽车保险杠
玻璃钢型材
透光型玻璃钢
体育馆采光
赛艇、帆船壳体
2、GF增强热塑性塑料 (FR-TP) 特点:
车用立体声音响喇叭
纳米材料是指含有纳米结构的材料。尺度为1nm-100nm范围内的物质即为纳米物质。
Why nano? Why nanocomposite?
01
从界面角度:
是两相在纳米尺寸范围内复合而成,界面间具有很强的相互作用,产生理想的粘接性能.
从增强体角度:强度大,模量高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚合物基复合材料摘要:本文主要研究的是聚合物基复合材料的制备、性能、和应用。

聚合物基复合材料是以有机聚合物为基体,连续纤维为增强材料组成的复合材料。

它有许多突出的性能:比强度大、比模量大;耐疲劳性能好;减振性好;过载时安全性好等。

聚合物基复合材料的结构和性能存在广泛的灵活关系,通过不同的工艺控制,可以形成不同的结构形态,从而获得目标性能。

关键词:聚合物基复合材料制备性能应用1、聚合物基复合材料的制备1.1.聚合物复合材料概述及其制备流程聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。

聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。

而纤维的高强度、高模量的特性使它成为理想的承载体。

纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。

实用PMC通常按两种方式分类。

一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。

1.2.基体及其制备:基体是聚合物基复合材料的主要成分。

用于复合材料的聚合物基体主要按树脂热行为可分为热固性及热塑性两类。

热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砚、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加工成型而无任何化学变比。

热固性基体如环氧树脂、酚醛树脂、双马树脂、不饱和聚酯等,它们在制成最终产品前,通常为分于量较小的液态或固态预聚体,经加热或加固化剂发生化学反应固化后,形成不溶不熔的三维网状高分子。

1.2.1热固性聚合物的制备热固性树脂是指在加热、加压下或在固化剂、紫外线作用下。

进行化学反应,交联固化成为不溶物质的一大类合成树脂。

这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时有发生化学反应而交联固化;有事放出一些副产物,如水等。

这反映是不可逆的,一经固化,再加压、加热也不可能再度软化或流动;温度过高,则分解或碳化。

热固性树脂多用于缩聚法生产。

常用热固性树脂有酚醛树脂、尿醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和聚酯树脂、聚氨酯、聚酰亚胺等。

热固性树脂主要用于制造增强塑料、泡沫塑料、各种电工用模塑料、浇铸制品等,还有相当数量用于胶黏剂和涂料。

根据浸渍设备或制造方式不同,热固性FRP预浸料的制造分轮鼓缠绕法和阵列排铺法;按浸渍树脂状态分湿法(溶液预浸法)和干法(热熔预浸法)。

1.2.2.热塑性聚合物的制备热塑性聚合物包括各种通用塑料(聚丙烯、聚氯乙烯等)、工程塑料(尼龙、聚碳酸酯等)和特种耐高温聚合物(聚酰胺、聚醚砜、聚醚醚酮等)。

它们是一类线型或有支链的固态高分子,可溶可熔,课反复加工而无化学变化,加热时软化并熔融,可塑造成型,冷却后即成型并保持既得形状,而且该过程可反复进行。

连续纤维被切成一定长度的短纤维,散落在连续输送的涂有含填料的糊状树脂的塑料薄膜上,将含有纤维、填料和树脂混合物的塑料薄膜卷绕起来就成为片状模塑料(SMC)。

1.2.3.增强体的制备在现代复合材料的发展历史中,纤维增强材料是最大的功臣,也可以说是现代复合材料的支柱。

最早使用的复合材料就是玻璃纤维增强塑料,至今在高技术新材料领域纤维增强复合材料仍然在发挥重要的作用。

为了进一步提高复合材料的性能,纤维增强材料的研究与开发显得特别活跃,先后开发出几十种纤维增强材料。

主要有玻璃纤维、芳纶纤维(kevlar纤维)、尼龙纤维、聚乙烯纤维、碳纤维、硼纤维、碳化硅纤维、氧化铝纤维以及金属纤维(如钨、钼、不锈钢丝等)。

其中在各类复合材料中得到大量使用的是玻璃纤维、芳纶纤维、碳纤维、硼纤维、碳化硅纤维等。

1.3.聚合物基复合材料成型工艺2、性能2.1.比强度、比模量大比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。

复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的七倍,比模量比钢大三倍。

2.2.耐疲劳性能好疲劳破坏是材料在变载荷作用下,由于裂纹的形成和扩展而形成的低应力破坏。

聚合物复合材料疲劳破坏总是从纤维的薄弱环节开始,逐渐扩展到结合面上,破坏前有明显的预兆,而且纤维与基体的界面能阻止裂纹的扩展。

大多数金属材料的疲劳强度极限是其抗拉强度的20%-50%,而碳纤维/聚酯复合材料的疲劳极限可为其抗拉强度的70%-80%。

2.3.减振性好许多机器和设备如汽车、动力机械等的振动问题十分突出,而复合材料的减振性能好。

原因是纤维增强复合材料比模量大,则自振频率高,可避免产生共振而引起的早期破坏。

另外纤维与界面吸振能力强,故振动阻尼性好,即便发生振动也会很快衰减。

2.4.断裂安全性好纤维复合材料中有大量独立的纤维,当构件过载而有少数纤维断裂时,载荷会迅速重新分配到未破坏的纤维上,使整个构件不至于在极短时间内有整体破坏的危险,所以断裂安全性好。

2.5.热性能良好玻璃纤维增强的聚合物基复合材料具有较小的导热系数,一般在室温下为0.3-0.4 kcal/(m.h.K),只有金属的1/1000-1/100,是一种优良的绝热材料。

2.6.电性能好复合材料具有优良的电性能,通过选择不同的树脂基体、增强材料和辅助材料,可以将其制成绝缘材料或导电材料。

例如玻璃纤维增强的树脂基复合材料是一种优良的电气绝缘材料,用于制造仪表、电机与电器中的绝缘零部件。

2.7.有很好的加工工艺性连续纤维增强的聚合物基复合材料具有优良的工艺性能,可以通过手糊成型、缠绕成型和拉挤成型等复合材料特有的工艺方法制造制品。

它能满足各种类型制品的制造需要,特别适合于大型制品、形状复杂、数量少制品的制造。

3、聚合物基复合材料的应用领域复合材料范围广,产品多,在国防工业和国民经济各部门中都有广泛的应用。

在复合材料中,聚合物基复合材料的应用最广,发展也最快。

例如在汽车、船舶、飞机、通讯、建筑.电子电气、机械设备、体育用品等各个方面部有应用。

3.1.玻璃纤维增强塑料(GFRP)的应用(1)GFRP在石油化工工业中的应用石油化工工业利用GFRP的特点,解决了许多工业生产过程中的关健问题,尤其是耐腐蚀性和降低设备维修费等方向。

GFRP管道和罐车是原油陆上运输的主要设备。

聚酯和环氧GFRP均可做输油管和储油设备,以及天然气和汽油GFRP罐车和贮槽。

(2).GFRP在建筑业中的应用建筑业使用GFRP,主要是代替钢筋、树木、水泥、砖等。

并己占有相当的地位。

其中应用最多的是GFRP透明瓦,这是一种聚酯树脂浸渍玻璃布压制而成的。

(3).GFRP在造船业中的应用用GFRP可制造各种船舶,如赛艇、警艇、游艇、碰碰船、交通艇、救生艇、帆船、鱼轮、扫雷艇等。

(4).GFRP在铁路运输上的应用GFRP在铁路上主要是用在造车生产中。

铁路车辆有冲多部件可以用GFRP创造,如内燃机车的驾驶室、车门、车窗、框、行里架、座椅、车上的整体厕所等。

(5).GFRP在冶金工业中的应用耐腐蚀性的容器、管道、泵、阀门等设备,GFRP烟囱。

(7)GFRP在宇航工业中的应用(6).飞机上的雷达罩,机身、机翼、螺旋桨、起落架、尾舵、门、窗等。

3.2.高强度、高模量纤维增强塑料的应用(1).碳纤维增强塑料。

碳纤维增强塑料主要是火箭和人造卫星最好的结构材料。

因为它不但强度高,而且具有良好的减振性,用它制造火箭和人造卫星的机架、壳体、无线构架是非常理想的—种材料。

(2).芳香族聚酰胺纤维增强塑料。

它主要的应用是制造飞机上的板材、门、流线型外壳、座席、机身外壳、天线罩和火箭发动机、马达的外壳。

其次由于它的综合性能超过了玻璃钢、尤其是它具有减振耐损伤的持点,适合用于船舶制造方面。

(3).硼纤维增强塑料。

硼纤维增强塑料主要用于制造飞机上的方向舵、安定面、翼端、起落架门、襟翼、机缀箱、襟翼前缘等。

由于它的价格比碳纤维增强塑料还要昂贵。

目前还仅限于在上述的飞机制造业中应用。

(4).碳化硅纤维增强塑料。

它可用来制造飞机的门、降落传动装置箱、机翼等。

3.3.其他纤维增强塑料的应用石棉纤维增强聚丙烯,由于石棉纤维和聚丙烯的电绝缘性都好,所以复合以后电绝缘性仍然很好、因此主要用作制造电器绝缘件的材料。

矿物纤维增强塑料主要用于制造耐磨材料。

4、总结与展望复合材料以其高比强度和比模量,优异的抗疲劳性以及耐腐蚀性极强的可设计性等特点已广泛应用于航空航天、汽车、船舶、建筑等领域。

但聚合物基复合材料在自然环境下使用,性能会受到许多环境因子(如紫外辐射、氧、臭氧、水、温度、湿度、化学介质、微生物等)的影响。

这些环境因子通过不同的机制作用于复合材料,导致其性能下降、状态改变。

因此要控制聚合物基复合材料的老化速度。

从发展来看,热固性树脂还需进一步改进质量,研制新品种,以满足新加工工艺开发的要求,用弹性体和热塑性树脂进行改性、开发注塑级热固性模塑料以及反应注射成型用专用树脂及配方,近年来已受到很大重视。

采用互穿聚合物网络技术将成为热固性树脂的合成开辟新途径。

另外,一些先进的聚合物基复合材料还有望在一下几个方面进行深度研究。

1. 连续玄武岩纤维与CF、PPTA、超高分子PE纤维,中国重点发展的四大11 高新技术纤维。

2.低压片状模塑料片。

3.复合材料自动铺丝技术。

4.有机硅改型双酚F环氧树脂研究。

5.聚合物材料列车构件。

6.天然纤维复合材料的应用。

7.耐高温高性能复合材料规模化制备技术。

乙烯基复合树脂复合材料的研究。

参考文献:1.复合材料概论杨建文编著北京:化学工业出版社,2008.2.复合材料学/张以河主编——北京化学工业出版社,2011.13.复合材料/周曦亚编——北京:化学工业出版社,2004.10。

相关文档
最新文档