液相色谱质谱分析
液相色谱-质谱联用技术简介

中国科学院烟台海岸带研究所分析测试中心刘莺主要内容液相色谱-质谱联用技术简介 我们的仪器测试准备阶段的注意事项结果的解读第一章液相色谱-质谱联用技术简介 质谱基本原理质谱分析法是通过对被测样品离子质荷比的测定来进行分析的一种分析方法。
电离装置把样品电离为离子质量分析器把不同质荷比的离子分开检测器检测色谱-质谱联用技术体现了色谱和质谱优势的互补,它将色谱对复杂样品的高分离能力与质谱的高选择性、高灵敏度及能够提供相对分子质量与结构信息的优点结合起来,实现对复杂混合物更准确的定量和定性分析。
气相色谱-质谱联用技术(GC-MS)液相色谱-质谱联用技术(LC-MS)以液相色谱作为分离系统,质谱为检测系统。
样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。
液相色谱-质谱联用仪LC-MS, LC-ITMS, LC-TOF, LC-QqQ, LC-Q-TOF,LC-IT-TOF, LC-Q-IT等适用于不挥发性化合物、极性化合物、热不稳定化合物、大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定液相色谱-质谱联用仪LC离子源离子传输系统质量分析器检测器数据系统真空系统大气与质谱联用的液相色谱液相色谱柱●规格:50×2.1mm、100×2.1mm、150×2.1mm、150×4.6mm,250×4.6mm●填料粒径:亚二微米(1.7-1.9μm)、2.5 μm 、3μm、3.5μm、5μm●填料类型:C18、C8、-NH2、-CN等与质谱联用的液相色谱流动相◆溶剂◆推荐使用水、甲醇、乙腈、异丙醇◆不能使用四氢呋喃、二氯甲烷、正己烷、氯仿◆酸◆不能使用无机酸(可能会导致腐蚀)◆推荐使用醋酸和甲酸◆三氟乙酸(TFA)会产生离子抑制作用与质谱联用的液相色谱流动相◆碱◆不要使用碱金属碱(可能会导致腐蚀)◆推荐使用氨水◆三乙胺/三甲胺(TEA/TMA)有助于形成负离子◆表面活性剂不能使用◆清洁剂和其他表面活性剂会产生离子抑制◆缓冲盐◆避免使用非挥发性盐,特别是碱金属磷酸盐、硼酸盐、柠檬酸盐等。
高效液相色谱和质谱技术在化学分析中的应用

高效液相色谱和质谱技术在化学分析中的应用随着科学技术的发展,化学分析也得到了长足的发展。
高效液相色谱和质谱技术作为一种新型、高效的化学分析方法,已经广泛应用于生物医药、环境监测、食品安全等各个领域中。
一、高效液相色谱技术高效液相色谱技术(High Performance Liquid Chromatography,HPLC)是一种在液相体系中进行分离和分析的色谱技术。
在化学分析中,它广泛应用于生物医药、环境监测、石油化工、食品安全等方面。
其主要优点是样品制备简单,灵敏度高,重现性好,可以同时测定多种复杂化合物,毫克至微克级别的物质都可以进行定量分析。
高效液相色谱技术的原理是,将混合物按照一定的分离机理,在色谱柱中分离出单个组分,并采用检测器进行检测。
在分离机理上,HPLC分为离子交换、反相、凝胶、Southeast University 金属螯合、亲和等不同类型。
其中,反相HPLC用得最为广泛,它对水相溶液中的非极性或弱极性化合物有效。
例如,反相HPLC可以对生物样品中的蛋白质、多肽、核酸、小分子化合物进行分离。
在HPLC分析之前,常常需要对样品进行前处理,如样品处理、色谱柱的选择、流动相的组成等方面的选择。
二、质谱技术质谱技术(Mass Spectrometry,MS)是一种将化合物或样品中的分子转化为离子,经过分析后获得分子结构和组成的分析方法。
质谱技术可以分为质谱分析和代谢组学分析等。
质谱分析可以获得分子的结构和相对分子质量(M)。
它通常是通过电子轰击、电子喷雾和大气压化学离子化等多种方式发生的,形成的离子可以通过质谱分析和分离进一步分析。
代谢组学分析可以在分析样品中的代谢产物时提供全局分析。
通过代谢组学,可以检测代谢产物,并发现与特定代谢网络相关的代谢物。
三、高效液相色谱和质谱联用技术高效液相色谱和质谱联用技术(High Performance Liquid Chromatography-Mass Spectrometry,HPLC-MS)将这两种技术有效地结合起来,逐渐成为化学分析中的重要手段。
液相色谱-质谱联用技术及使用注意事项

主要内容
• 液相色谱-质谱联用技术简介 • 我们的仪器 • 测试准备阶段的注意事项 • 结果的解读
• 质谱基本原理
第一章 液相色谱-质谱联用技术 简介
质谱分析法是通过对被测样品离子质荷比的测定来进 行分析的一种分析方法。
电离装置把样品电离为离子 质量分析器把不同质荷比的离子分开 检测器检测
清洁剂和其他表面活性剂会产生离子抑制
不能使用
表面活性剂
缓冲盐
避免使用非挥发性盐,特别是碱金属磷酸盐、硼酸盐、 柠檬酸盐等。 推荐使用甲酸铵、乙酸铵
第一章 LC-MS技术简 介
与质谱联用的液相色谱
• 流动相的流速
Column ID 4.6 mm 3.0 mm 2.1 mm 1.0 mm Capillary
Q 1 q 2 Q 2
MS 1
流量。
高流速需进行分流
需要提高毛细管温度
第一章 LC-MS技术简 介
电喷雾电离源(ESI)
第一章 LC-MS技术简 介
电喷雾电离源(ESI)
第一章 LC-MS技术简 介
大气压化学电离源(APCI)
第一章 LC-MS技术简 介
液质联用仪的离子源
• ESI
• 离子在液态产生 • 有益于热不稳定化合物的分
第一章 LC-MS技术简 介
离子源与液相色谱的流速
• ESI
• APCI
1 μ L/min - 1mL/min 最佳使用流速: 200 μ L/min 一般来说, 高流速需要高的 毛细管温度和鞘气、辅助气
200 μ L/min - 2mL/min 最佳使用流速: 500 μ L/min 一般来说,高流速需要更高 的鞘气和辅助气流量,但不
高相液相色谱质谱联用技术及实例.ppt

三、HPLC-MS联用的应用
◇在双酚A,壬基酚及表面活性剂分析中的应用 ◇在食品中兽药残留和毒素分析中的应用 ◇在食品及饮用水中农药残留检测中的应用 ◇天然产物分析或中草药的品质控制 ◇化妆品中违禁激素的测定 ◇保健食品中违禁药物的检测
12
13
7
化合物3: 色谱峰 3 在 26.8 min 时的 1 级质谱给出准分子离 子峰 m/z 433.2 [M - H]-; 2 级质谱给出的主要碎片离子峰 m/z 301.0 可能是分子离子峰失去1 个阿拉伯糖基的槲皮素 苷元碎片的离子峰[( M - H) -132]-,符合广寄生苷的裂解 规律,并结合文献推断为槲皮素 -3 -O -阿拉糖苷,即 广寄生苷( 萹蓄苷)。
质谱负离子模式的总离子流图与 356 nm 波长下紫外色谱图基本吻合, 但总离子流图的基线噪声较大。
5
化合物1: 色谱峰 1 在 22.3 min 时的1 级质谱给出准分子离 子峰 m/z 463.2 [M-H ]-; 2 级质谱给出的主要碎片离子峰 m/z 301.1, 可能是分子离子峰失去1 个半乳糖的槲皮素苷 元碎片的离子峰[( M-H) -162 ]-,且符合金丝桃苷的裂解 规律,并结合文献推断为槲皮素 -3 -O -半乳糖苷,即金丝 桃苷,且与对照品数据一致。
一、概述
色谱:化合物分离 质谱:纯物质结构分析
43
29 15
57
71 85 99 113 142
m/z
1ቤተ መጻሕፍቲ ባይዱ
三、高效液相色谱-质谱联用 (HPLC-MS)
自1957年首次出现GC-MS联用以来, GC-MS 得到了迅速发展和广泛的应用,然而实际分析中 ,只有20%左右的样品可以通过GC-MS进行分析 ,绝大多数化合物由于具有极性大、低挥发度、 高分子量或不稳定性等特点,不能够采用这一方 法进行分析,但是可以通过HPLC-MS来完成。
液相质谱法实验报告(3篇)

第1篇一、实验目的本实验旨在通过液相质谱法(LC-MS/MS)检测胶原蛋白多肽,验证该方法在胶原蛋白检测中的灵敏度和特异性,为胶原蛋白的定量分析提供实验依据。
二、实验原理液相质谱法是一种高效、灵敏的分析技术,结合了液相色谱(LC)和质谱(MS)的优点。
本实验采用液相色谱-质谱联用技术,通过检测胶原蛋白特异的多肽片段,实现对胶原蛋白的定性和定量分析。
三、实验材料1. 仪器:液相色谱-质谱联用仪、高效液相色谱仪、分析天平、水浴锅、涡旋仪等。
2. 试剂:胶原蛋白试样、胰蛋白酶、甲醇、磷酸、流动相储备液、标准品、内标品等。
3. 试剂规格:胰蛋白酶(1mg/mL)、甲醇(分析纯)、磷酸(分析纯)、流动相储备液(甲醇:水=65:35)。
四、实验步骤1. 样品制备(1)将胶原蛋白试样溶解于适量去离子水中,加入适量胰蛋白酶,在37℃水浴中酶解过夜。
(2)酶解结束后,将样品用滤膜过滤,取滤液进行液相色谱分析。
2. 液相色谱-质谱条件(1)色谱柱:Eclipse XDB C18色谱柱(250mm×4.6mm,5μm)。
(2)流动相:甲醇-水(65:35)。
(3)流速:0.8mL/min。
(4)柱温:30℃。
(5)进样量:10μL。
3. 质谱条件(1)电离方式:电喷雾电离(ESI)。
(2)扫描方式:多反应监测(MRM)。
(3)碰撞能量:20eV。
4. 数据分析(1)根据质谱图谱,使用肽段序列信息和数据库匹配算法鉴定胶原蛋白。
(2)通过计算肽段的峰面积或峰高,定量样品中的胶原蛋白。
五、实验结果1. 胶原蛋白多肽的鉴定根据质谱图谱,成功鉴定出胶原蛋白特异的多肽片段,如Gly-Pro-Gly-Gly等。
2. 胶原蛋白的定量分析通过液相色谱-质谱联用技术,对样品中的胶原蛋白进行定量分析,结果显示胶原蛋白含量为0.5mg/mL。
六、实验讨论1. 液相质谱法在胶原蛋白检测中的应用具有高灵敏度和高特异性,可以准确检测出不同来源的胶原蛋白。
液相色谱质谱原理

液相色谱质谱原理
液相色谱质谱(LC-MS)是将液相色谱与质谱技术结合起来的一种分析方法。
它的原理是通过液相色谱将样品中的化合物分离,并以流动相作为载体使其在色谱柱中逐渐流动。
然后,在流出色谱柱的过程中,将化合物分子通过电喷雾离子源(ESI)或大气压化学电离(APCI)等方式转化为带电离子。
接着,这些带电离子进入质谱仪中进行分析。
质谱仪将离子根据其质量-电荷比(m/z)进行分离,并在检测器中产生相应的电信号。
这些信号会被放大、转换为数字信号,并通过计算机进行处理和分析。
LC-MS的优势在于其高分离能力、高灵敏度和高选择性。
其分离能力由液相色谱提供,可以将复杂的样品分离为单个化合物,使得分析更准确。
而质谱技术则可以通过分析离子的m/z 比值来确定化合物的分子结构,提高鉴定的可靠性。
液相色谱质谱的应用非常广泛,可以用于分析各种样品中的化合物,如生物样品中的代谢产物、环境样品中的污染物、食品中的添加剂等。
同时,由于LC-MS技术的不断发展,其在药物研发、毒理学研究、食品安全等领域也有着广泛的应用。
液质色谱仪的工作原理
液质色谱仪的工作原理
液质色谱仪(Liquid chromatography-mass spectrometer, LC-MS)是一种将液相色谱和质谱相结合的分析技术。
其工作原理如下:
1. 样品准备:将待测物溶解于合适的溶液中,并注入进样器中。
2. 液相色谱分离:样品从进样器中进入色谱柱,通过在固定相和移动相之间扩散,被分离、纯化,得到不同的化合物分离峰。
3. 质谱离子化:分离后的化合物进入质谱部分,经过离子化处理。
通常采用电子轰击离子源(EI)或电喷雾离子源(ESI)。
4. 质谱分析:经过离子化处理后分离出来的化合物分子离子(M+)进入质谱分析器内部,根据它们的质量和荷电性被分离、检测。
LC-MS技术可检测分子离子及其裂解产物的高灵敏度、高分辨率和高精确性。
5. 数据处理:通过数据处理、分析、比对和谱库查询,得到化合物的结构信息、分析结果及定量结果。
总的来说,液质色谱仪是将液相色谱和质谱有机结合起来的分析技术,它可以充分发挥两种技术的优势,分离纯化化合物和获取其结构信息,是分析各种化学和
生物样品的好工具。
液相色谱法及质谱分析练习题带答案
液相色谱法及质谱分析练习题带答案一、单选题1、高压、高效、高速是现代液相色谱的特点,下列哪一个不是采用高压的原因()。
A、可加快流速,缩短分析时间B、高压可使分离效率显著提高C、采用了细粒度固定相所致D、采用了填充毛细管柱正确答案: D2、吸附作用在下面哪种色谱方法中起主要作用。
()A、液一液色谱法B、液一固色谱法C、键合相色谱法D、离子交换色谱法正确答案: B3、在液相色谱中,常用作固定相又可用作键合相基体的物质是()。
A、分子筛B、硅胶C、氧化铝D、活性炭正确答案: B4、水在下述色谱中,洗脱能力最弱(作为底剂)的是()。
A、正相色谱法B、反相色谱法C、吸附色谱法D、空间排阻色谱法正确答案: B5、在液相色谱中,提高色谱柱柱效的最有效途径是()。
A、减小填料粒度B、适当升高柱温C、降低流动相的流速D、增大流动相的流速正确答案: A6、液相色谱中不影响色谱峰扩展的因素是()。
A、涡流扩散项B、分子扩散项C、传质扩散项D、柱压效应正确答案: B7、高效液相色谱仪与气相色谱仪比较增加了()A、恒温箱B、进样装置C、程序升温D、梯度淋洗装置正确答案: D二、判断题1、高效液相色谱适用于大分子,热不稳定及生物试样的分析。
正确答案:正确2、反相分配色谱适于非极性化合物的分离。
正确答案:正确3、液相色谱的流动相又称为淋洗液,改变淋洗液的组成、极性可显著改变组分分离效果。
正确答案:正确4、高效液相色谱法采用梯度洗脱,是为了改变被测组分的保留值,提高分离度。
正确答案:正确5、高压输液泵是高效液相色谱仪的关键部件之一,按其工作原理分为恒流泵和恒压泵。
正确答案:正确6、高效液相色谱柱柱效高,凡是能用液相色谱分析的样品不用气相色谱法分析。
正确答案:错误。
液相色谱-质谱联用法
液相色谱-质谱联用法液相色谱-质谱联用法是一种用于分离及分析化学分子中微量成分的有效方法。
它是通过在两个色谱电器仪器中,分别对原始样品进行分离和分离后的色谱物质进行定性和定量的分析,来检测微量的化学物质各自的活性分子结构的总体宏观成分。
这种方法不仅可以确定和测定样品中各自的化学成分,而且可以识别组分及其构成以及相对价值,从而得到样品中具体原子和分子的结构信息。
液相色谱-质谱联用法是将液相色谱仪和离子化质谱仪相结合,来分析及鉴定各类样品成分。
在液相色谱-质谱联用法中,液相色谱-质谱联用法是根据样品的分子量和分子结构,把它们进行加速和减速的离子化,由检测系统加以分析,从中获得原子结构的分析数据,也可以进行定量分析。
液相色谱-质谱联用法的优势在于,其能够检测分子中极为微量的成分,比传统的液相色谱能力更 is 。
它可以检测分子的总体特性、反应活性成分和相对价值。
此外,液相色谱-质谱联用法中,质谱仪可以实现样品的细微分离及进一步检测,从而可对样品中的活性分子结构和宏观成分进行定性和定量分析,从而较大限度地判断样品的复杂性、活性及特定分子键的分子结构。
液相色谱-质谱联用法在物质特性分析中的应用,可以更全面、准确的反映样品的总体特征,包括其成分的宏观构成和相对价值、以及分子结构的分布等因素。
另外,该技术也可以获得原子结构、反应活性成分及各类指标的定量数据,这在比较复杂的材料及生物样品中特别有用。
液相色谱-质谱联用法作为一种新兴的分析技术,已广泛应用于食品及制药行业的科学研究,以及汽车、矿山、石油等工业应用。
由于它可以更准确快速地反映样品的化学组成及分布,它也被广泛应用于药物开发、气体分析、生物分析、环境分析等多个领域中,帮助人们更好更准确地分析样品成分,由此发现新物质,为新药物开发和新产品开发提供理论依据。
液相色谱 - 质谱联用法既能够检测出样品中的微量成分,又能够检测出样品中构成其特性和反应活性成分的结构,使更复杂的物质特征分析变得更加可靠准确。
液相色谱质谱分析
质谱图是以质荷比(m/z)为横坐标、相对强度为纵坐标构 成,将原始质谱图上最强的离子峰定为基峰并定为相对强度 100%,其他离子峰以对基峰的相对百分值表示。
丙酮的质谱图
(2)离子峰的主要类型
分子在离子源中可产生各种电离,即同一分子可产生多 种离子峰:分子离子峰、同位素离子峰、碎片离子峰、重排 离子峰、亚稳离子峰等。 设有机化合物由A,B,C和D组成,当蒸汽分子进入离子 源,受到电子轰击可能发生下列过程而形成各种类型的离子:
CH3
1) 根据质谱峰的质荷比测定化合物的分子量, 推测分子式及结构式 2) 根据峰强度进行定量分析
2.质谱仪的结构
(1) 进样系统
作用:将样品分子引入到离子源中。 方式: 蠕动泵连续进样
六通阀直接进样 色谱进样系统
(2) 离子源
作用:
1. 将导入质谱仪系统的样品去溶剂化 2. 将离子源处的大气压与质谱仪系统一级 真空阻隔开 3. 被分析物离子化或将溶剂中的离子转化 成气相 4. 去除中性物质和带反极性电荷离子,否 则会对分析产生干扰
电喷雾电离源(ESI)
多电荷离子 测定的样品分子量大
(3) 质量分析器
作用: 是将不同碎片按质荷比m/z分开。 质量分析器类型:磁分析器、飞行时间、四 极杆、离子捕获、离子回旋等。
a 单聚焦型磁分析器
b 四级杆分析器
(4) 检测器
质谱仪常用的检测器有法拉第杯(Faraday Cup)、 电子倍增器及闪烁计数器、照相底片等。
分配比变化范围宽的 复杂样品应采取 梯度洗脱方式分离
流动相溶剂选 择的一般要求
1) 对样品有一定的溶解度,以防在柱头产生沉淀。 2) 适用于所选择的检测器。 3) 化学惰性好,以免破坏固定相。 4) 低粘度,增加样品的扩散系数,提高柱效。 5) 纯度高。溶剂不纯会增加检测器噪声,产生伪峰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效液相色谱的优点
1)高效液相色谱法比起经典液相色谱法的最大优点在于高速、高效、 高灵敏度、高自动化。高速是指在分析速度上比经典液相色谱法快 数百倍。由于经典色谱是重力加料,流出速度极慢;而高效液相色 谱配备了高压输液设备,流速最高可达 10cm3·min-1. 2)气相色谱法分析对象只限于分析气体和沸点较低的化合物,它们 仅占有机物总数的20%。对于占有机物总数近80%的那些高沸点、 热稳定性差、摩尔质量大的物质,目前主要采用高效液相色谱法进 行分离和分析。
2.大多数反相色谱柱的pH稳定范围是2-7.5,尽量不超过该色谱 柱的pH范围。
3.避免流动相组成及极性的剧烈变化。 4.流动相使用前必须经脱气和过滤处理。 5.如果使用极性或离子性的缓冲溶液作流动相,应在实验完毕柱
子冲洗干净,并保存大乙腈中。 6.压力升高是需要更换预柱的信号。
(4) 液相色谱检测器
一些常用溶剂的紫外截止波长
溶剂
CS2 氯仿 四氢 苯 乙腈 甲醇 水 呋喃
紫外截 380 245 212 210 190 205 187 止波长
/nm
三、高效液相色谱法的类型及分离机理
类型
吸附色谱 分配色谱 凝胶色谱 离子交换色谱 离子排斥色谱 离子对色谱 疏水作用色谱 手性色谱 亲和色谱
主要分离机理
梯度淋洗装置
(内梯度)
梯度淋洗装置
(外梯度)
等度洗脱与梯度洗脱
梯度洗脱 的特点
改善分离, 加快分析速度; 改善峰形, 减少拖尾; 可能引起基线漂移
分配比变化范围宽的 复杂样品应采取 梯度洗脱方式分离
流动相溶剂选 择的一般要求
1) 对样品有一定的溶解度,以防在柱头产生沉淀。 2) 适用于所选择的检测器。 3) 化学惰性好,以免破坏固定相。 4) 低粘度,增加样品的扩散系数,提高柱效。 5) 纯度高。溶剂不纯会增加检测器噪声,产生伪峰。
(2) 进样系统 进样针
六通阀Βιβλιοθήκη 六通阀进样 装置准备状态
进样状态
六通阀进样 装置的使用及保养
1、进样样品要求无微粒和能阻死针头及进样阀的物质,样品 溶液均要用0.45微米的滤膜过滤。
2、进样时,针头外侧紧贴进样器密封管内侧,以免漏液和引 入空气;另外,也防止了针头刺坏密封组件及定子。
3、进样时,要求完全置换样品定量环内残留的溶液,以此提 高精密度及重现性。
二、 HPLC仪器构成
2 、 HPLC仪器组成: • 高压输液装置 →进样系统 →分离系统→
检测系统
高压输液系统
(1) 贮液器
用来供给足够数量的合乎要求的流动相以完成分析 工作。
➢材质:玻璃、不锈钢、氟塑料或特种塑料聚醚醚酮 (PEEK) ➢ 容积:0.5~2.0L ➢ 放置位置:高于泵体,保持一定的输液静压差 ➢ 注意:密封、过滤
主要分析对象或应用领域
吸附能,氢键
异构体分离、族分离,制备
疏水分配作用
各种有机化合物的分离、分析与制备
溶质分子大小
高分子分离,分子量及其分布的测定
库仑力
无机离子、有机离子分析
Donnan膜平衡
有机酸、氨基酸、醇、醛分析
疏水分配作用
离子性物质分析
疏水分配作用
蛋白质分离与纯化
立体效应
手性异构体分离,药物纯化
生化特异亲和力 蛋白、酶、抗体分离,生物和医药分析
2. 分配色谱(液-液分配色谱)
液相色谱质谱分析
主要内容
一、 液相色谱概述
二、 HPLC仪器构成
三、高效液相色谱法的类型及分离机理 四、色谱分离方法的选择 五、质谱仪
一、 概 述
1 、高效液相色谱
高效液相色谱(HPLC)是一种以液体为流
动相的快速分离分析色谱技术。具有高压、高速、 高效、高灵敏度的特点,对于那些沸点高,热稳 定性差,相对分子质量大的有机化合物如烷烃、 烯烃、芳烃、染料、蛋白质、氨基酸、核酸等均 可进行分离分析。
流动相过滤与脱气装置 ➢ 流动相过滤装置
分为在线过滤和真空过滤 ➢ 流动相脱气装置
分为在线真空脱气和超声波脱气
(2) 高压输液泵 泵体材料耐腐蚀
能在高压下连续 工作,耐压4050MPa. cm2
高压输液泵
输出流量稳定, 重复性高,输出 流量范围宽
泵腔的体积要小, 以便快速更换 溶剂
压力平稳,无 脉冲
高效液相色谱的优点
3)气相色谱采用流动相是惰性气体,它对组分没有亲和力,即不产 生相互作用力,仅起运载作用。而高效液相色谱法中流动相可选用 不同极性的液体,选择余地大,它对组分可产生一定亲和力,并参 与固定相对组分作用的剧烈竞争。因此,流动相对分离起很大作用, 相当于增加了一个控制和改进分离条件的参数,这为选择最佳分离 条件提供了极大方便。
a. 紫外检测器 b. 光电二极管阵列检测器 c. 示差折光检测器 d. 荧光检测器 e. 电导检测器 f. 质谱检测器
a. 紫外检测器
应用最广,对大部分有机 化合物有响应。 特点:
灵敏度高; 线形范围高; 流通池可做的很小(1mm ×10mm,容积 8μL); 对流动相的流速和温度变 化不敏感; 波长可选,易于操作; 可用于梯度洗脱。
4、进样时,手柄处于Load和Inject之间时,应尽快转阀,不 能停留在中途。
5、每次结束后应反复冲洗进样器再用无纤维纸擦净注射器针 头的外侧。
(3) 分离系统 色谱柱
柱体为直型不锈钢管,内径1~6 mm,柱长5~ 40 cm。发展趋势是减小填料粒度和柱径以提高柱效。
色谱柱的使用和维护
1.使用预柱保护分析柱(硅胶在极性流动相/离子性流动相中有 一定的溶解度)。
b. 光电二极管阵列检测器
紫外检测器的重要进展; 光电二极管阵列检测器:1024个二极管阵列,各检测特 定波长,计算机快速处理,三维立体谱图,如图所示。
254 nm
两种检测器的色谱图 (a):可变波长紫外检测器;(b):二极管阵列检测器
紫外检测器灵敏度高,精密度及线性范围较好 , 可用于梯度洗脱。 流动相选择有限制。
4)气相色谱一般都在较高温度下进行的,而高效液相色谱法则经常 可在室温条件下工作。
2 、液相色谱仪器
(high performance liquid chromatograph)
液相色谱仪(1)
液相色谱仪(2)
液相色谱仪(3)
液相色谱仪(4)
LCQ Deca XP MAX液相色谱质谱联用仪
1 、流程