《反比例函数》提升训练题及答案
中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
中考数学总复习《反比例函数》专项提升练习题-带答案

中考数学总复习《反比例函数》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.若反比例函数y=−6x的图象一定经过的点是()A.(−1,−6)B.(1,−6)C.(−6,−1)D.(1,6) 2.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.y=300x (x>0)B.y=300x(x≥0)C.y=300x(x≥0)D.y=300x(x>0)3.在同一直角坐标系中,函数y=−k(x−1)与y=kx(k≠0)的图象可能是()A.B.C.D.4.对于反比例函数y=2x,下列说法不正确的是()A.点(−2,−1)在它的图象上B.y随x的增大而减小C.它的图象在第一、三象限D.当x>1时5.已知点A(−4,y1),B(2,y2),C(3,y3)都在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系为()A.y1>y3>y2B.y2>y3>y1C.y3>y2>y1D.y3>y1>y26.如图,在平面直角坐标系中,点A在第一象限。
AB⊥y轴于点B,函数y=kx(x>0)的图象与线段AB交于点C,且AB=3BC.若△AOB的面积为12.则k的值为()A.4 B.6 C.8 D.127.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A .函数解析式为I =13RB .蓄电池的电压是18VC .当I ≤10A 时,R ≥3.6ΩD .当R =6Ω时8.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数 y =kx (k >0,x >0)的图象经过顶点D , 分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,△AEF 的面积为2,则k 的值为 ( )A .2B .4C .6D .8二、填空题9.若点A(a ,b)在反比例函数y =−3x 图象上,则代数式ab = .10.y 与x 的函数解析式为 y =32x ,当-2<x ≤0时, 则y 的范围是 .11.如图,在平面直角坐标系中,直线y=t (t 为常数)与反比例函数y1=6x ,y2=kx 的图象分别交于点A ,B ,连接OA , OB , 若△OAB 的面积为4,则k 的值是 .12.已知点P (a ,1-a )在反比例函数y =kx (k ≠0)的图象上,将点P 先向右平移9个单位,再向下平移6个单位后得到的点仍在该函数图象上,则k 的值是 . 13.如图,在平面直角坐标系中,点A 在函数y =−10x(x <0)的图象上,点B 在函数y =kx(x >0)图象上,若OA=2OB,∠AOB=90°则k的值为.三、解答题14.如图,一次函数y=kx+b的图象与反比例函数myx的图象交于A,B两点,若A(2,a),B(﹣1,﹣4)(1)求该反比例函数的解析式;(2)求△OAB的面积.15.如图,一次函数y=kx+b(k>0)的图象经过点C(−3,0),且与两坐标轴围成的三角形的面积为3.(1)求一次函数的解析式;(2)若反比例函数y=mx的图象与该一次函数的图象交于一、三象限内的A,B两点,且AC=2BC,求m的值.16.某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.(x>0)相交于17.如图,直线y=ax+1与x轴、y轴分别相交于A,B两点,与双曲线y=kx点P,PC⊥x轴于点C,且PC=2,点A的坐标为(−2,0) .(1)求双曲线的解析式;(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q,C,H为顶点的三角形与△AOB相似时,求点Q的坐标.18.如图,一次函数与函数为的图象交于,两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足时的取值范围;(3)点在线段上,过点作轴的垂线,垂足为,交函数的图象于点,若的面积为3,求点的坐标.1.B 2.A 3.A 4.B 5.A 6.C 7.C 8.C 9.-310.−6<y ≤0 11.﹣2 12.-12 13.5214.(1)解:把点B (﹣1,﹣4)代入 ,得﹣4= 1m- 解得m =4∴反比例函数的解析式为y 4x=; (2)解:把A (2,a )代入y 代入得,a =2 ∴A (2,2)把A ,B 的坐标代入y =kx+b则有 224k b k b +=⎧⎨-+=-⎩ ,解得 22k b =⎧⎨=-⎩∴一次函数的解析式为y =2x ﹣2 设直线AB 交x 轴于C ,则C (1,0) ∴S △AOB =S △AOC +S △OBC =×1×(2+4)=3. 15.(1)解:∵一次函数y=kx+b (k >0)的图象经过点C (-3,0) ∴-3k+b=0①,点C 到y 轴的距离是3m y x =4x=12∴b >0∵一次函数y=kx+b 的图象与y 轴的交点是(0,b ) ∴12×3×b=3 解得:b=2.把b=2代入①,解得:k=23,则函数的解析式是y=23x+2. 故这个函数的解析式为y=23x+2;(2)解:如图,作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,则AD ∥BE.∵AD ∥BE ∴△ACD ∽△BCE ∴AD BE =ACBC =2 ∴AD=2BE.设B 点纵坐标为-n ,则A 点纵坐标为2n. ∵直线AB 的解析式为y=23x+2 ∴A (3n-3,2n ),B (-3-32n ,-n ) ∵反比例函数y=mx 的图象经过A 、B 两点 ∴(3n-3)•2n=(-3-32n )•(-n ) 解得n 1=2,n 2=0(不合题意舍去) ∴m=(3n-3)•2n=3×4=12.16.(1)解:当0≤x ≤8时,设y =k 1x+b 将(0,20),(8,100)代入y =k 1x+b 得k 1=10,b =20∴当0≤x ≤8时,y =10x+20;当8<x ≤a 时,设y =2k x将(8,100)代入,得k 2=800 ∴当8<x ≤a 时,y =800x; 故当0≤x ≤8时,y =10x+20;当8<x ≤a 时,y =800x(2)解:将y =20代入y = 800x解得a =40(3)解:8:10﹣8分钟=8:02 ∵10x+20≤40 ∴0<x ≤2 ∵800x≤40 ∴20≤x <40.∴李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前能喝到不超过40℃的热水 则需要在7:50~8:10时间段内接水17.(1)解:把 A(−2,0) 代入 y =ax +1 中,得 a =12 ∴y =12x +1∵PC =2 ,∴把 y =2 代入 y =12x +1 中 得 x =2 即 P(2,2)把 P(2,2) 代入 y =kx 中得 k =4则双曲线解析式为 y =4x ;(2)解:如图, QH ⊥x 轴于点H ,连接 CQ ;设 Q(m,n)∵Q(m,n)在双曲线y=4x上∴n=4m∵点B在y=12x+1上∴B(0,1) .当△CHQ∽△AOB时可得CHAO =QHBO,即m−22=n1∴m−2=2n,即m−2=8m解得m=4或m=−2(舍去)∴Q(4,1);当△QHC∽△AOB时可得CHBO =QHAO,即m−21=n2整理得2m−4=4m解得m=1+√3或m=1−√3(舍)∴Q(1+√3,2√3−2)综上所述,Q(4,1)或(1+√3,2√3−2) .18.(1)解:∵反比例函数的图象经过点∴.∴.∴反比例函数解析式为.把代入,得.∴点坐标为∵一次函数解析式图象经过∴.∴.故一次函数解析式为:.(2)解:由∴,即反比例函数值小于一次函数值.由图象可得,.(3)解:由题意,设且∴.∴.∴.解得.∴或(2,5)。
最新新思维反比例函数提高培优竞赛练习题(含答案及解析)

新思维反比例函数强化训练题(含答案及解析)1、函数y=-4/x的图象与x轴交点的个数是()0个,当与X轴相交时说明函数值为0,即-4/x等于0,分母是不能为0的,所以不可能等于0,不可能和X轴有交点2、如图,A、B、C为反比例函数图像上的三个点,分别从A、B、C向xy轴作垂线,构成三个矩形,它们的面积分别是S1、S2、S3,则S1、S2、S3的大小关系是A:S1=S2>S3B:S1<S2<S3C:S1>S2>S3D:S1=S2=S3D,提示:其中S1=S2=S3=|k|;3、(2012•青岛)点A(x1,y1),B(x2,y2),C(x3,y3)都是反比例函数y=-3/x的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()探究型.根据反比例函数y=-3/x中k的符号判断出此函数图象所在象限,再根据x1<x2<0<x3判断出y1,y2,y3的大小关系即可.:∵反比例函数y=-3/x中,k=-3<0,∴此函数图象在二四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0<x3,∴y3<0,y3<0<y1<y2,∴y3<y1<y2.故选A.考查的是反比例函数图象上点的坐标特点,根据函数解析式判断出函数图象所在的象限是解答此题的关键.4、若反比例函数y=x/k的函数过点(m,3m),则此反比例函数的图象在?在一、三象限k=m乘3mk=3m²∵3m²≥0,且k≠0,∴3m²>0k>0所以在一、三象限5、已知反比例函数y=1+m/x的图象上的两点A(x1,y1)B(x2,y2)当x1<0<x2时,有y1<y2则m的取值范围是。
∵y1<y2∴(1+m)/x1<(1+m)/x2(1+m)/x1-(1+m)/x2<0(1+m)×(x2-x1)/x1x2<0∵x1<0<x2 ∴(x2-x1)/x1x2<0∴1+m>0∴m<-1我选-1是错的啊回答:有可能答案是错的m>06、反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1>y2,则m的取值范围是反比例函数的性质.判断反比例函数所在的象限,再根据其增减性解答即可.:∵x1<0<x2,∴A(x1,y1),B(x2,y2)不同象限,y1>y2,∴点A在第二象限,B在第四象限,∴1-2m<0,m>1/2.故答案为m>1/2.题考查了反比例函数图象的性质和增减性,难度比较大.7、在△ABC的三个顶点A(2,-3),B(-2,-1),C(-3,2)中,可能在反比例函数y=K/X (k>0)的图象上的点是反比例函数的性质,k>0,反比例函数的图象在第一、三象限,则可得出答案.:∵k>0,∴反比例函数的图象在第一、三象限,∵点A在第四象限,点B在第三象限,点C在第二象限,故点B在反比例函数y=K/X (k>0)的图象上.故答案为B.考查了反比例函数图象上点的特点,熟练掌握反比例函数的性质,是解此题的关键.8、如图,△P1OA1、△P2A1A2是等腰直角三角形,点P1、P2在函数y=4/x(x>0)的图象上,斜边OA1、A1A2都在x轴上,则点A2的坐标是()压轴题.先根据等腰直角三角形的性质,知点P1的横、纵坐标相等,再结合双曲线的解析式得到点P1的坐标是(2,2),则根据等腰三角形的三线合一求得点A1的坐标;同样根据等腰直角三角形的性质、点A1的坐标和双曲线的解析式求得A2点的坐标.(a,a),(1)根据等腰直角三角形的性质,可设点P1又y=4/x,则a2=4,a=±2(负值舍去),的坐标是(4,0),再根据等腰三角形的三线合一,得A1设点P的坐标是(4+b,b),又y=4/x,则b(4+b)=4,2即b2+4b-4=0,腰直角三角形的性质以及反比例函数的解析式进行求解.9、是反比例函数,则m、n的取值是反比例函数中未知数的次数为-1,系数不为0列式求值即可.y=kx-1(k≠0),注意未知数的系数和次数的取值范围.10.反比例函数y=(a-3)x a2−2a−4的函数值为4时,自变量x的值是据反比例函数的定义先求出a的值,再求出自变量x的值.:由函数y=(a-3)x a2−2a−4为反比例函数可知a2-2a-4=-1,解得a=-1,a=3(舍去),又a-3≠0,则a≠3,a=-1.将a=-1,y=4代入关于x的方程4=-4/x,解得x=-1.故答案为:-1.题考查了反比例函数的定义,重点是将一般式y=k/x(k≠0)转化为y=kx-1(k≠0)的形式.11、如果反比例函数y= 的图象位于第二、四象限,则n的取值范围是;如果图象在每个象限内,y随x的增大而减小,则n的取值范围是据反比例函数图象的性质可以知道,该函数的系数小于0;函数在每个象限内y随x的增大而减小,可知该函数在其定义域内为减函数,可判断函数的系数大于0.:反比例函数y=的图象位于第二、四象限,所以有4-n<0,即n>4.又函数图象在每个象限内,y随x的增大而减小,可知4-n>0,得n<4.故答案为:n>4、n<4.主要考查了反比例函数及其图象在坐标系中的性质,重点是函数图象所在的象限及函数的增减性.12、已知一次函数y=3x+m与反比例函数y=的图象有两个交点,当m= 时,有一个交点的纵坐标为6.y=6分别代入两个函数可得,然后变形可得.:依题意有,由3x+m=6可得6x=12-2m,再代入m-3=6x中就可得到m=5.故答案为:5.用了函数的知识、方程组的有关知识,以及整体代入的思想.13、函数y1=kx+k,y2=k/x(k≠0)在同一坐标系中的图象大致是()A. B. C. D.一次函数的图象.反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.:若k>0时,反比例函数图象经过一三象限;一次函数图象经过一二三象限,所给各选项没有此种图形;若k<0时,反比例函数经过二四象限;一次函数经过二三四象限,故选C.反比例函数和一次函数图象的性质;若反比例函数的比例系数大于0,图象过一三象限;若小于0则过二四象限;若一次函数的比例系数大于0,常数项大于0,图象过一二三象限;若一次函数的比例系数小于0,常数项小于0,图象过二三四象限.14、一次函数Y=y1-y2,y1与x²成正比,y2与x成反比,其中x=1时,y=3;x= -1时,y=7. (1)求Y与X之间的函数关系式。
反比例函数同步培优提升训练(附答案)2021-2022学年九年级数学鲁教版(五四制)上册

1.1反比例函数同步培优提升训练一、选择题(共7小题).1.已知x与y成反比例,z与x成正比例,则y与z的关系是()A.成正比例B.成反比例C.既成正比例也成反比例D.以上都不是2.下列关系式中,y是x的反比例函数的是()A.y=3x B.y=5x+1C.y=﹣x﹣1D.y=x2﹣33.下列函数不是反比例函数的是()A.y=﹣B.y=C.y=2x﹣1D.xy=14.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A.B.C.D.y=6.已知y与x成反比例函数,且x=2时,y=3,则该函数表达式是()A.y=6x B.y=C.y=D.y=7.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=二、填空题8.某厂计划建造一个容积为5×104m3的长方体蓄水池,则蓄水池的底面积S(m2)与其深度h(m)的函数关系式是.9.若梯形的下底长为x,上底长为下底长的,高为y,面积为20,则y与x的函数关系是.(不考虑x的取值范围)10.已知函数y=(k2+k)x是反比例函数,则k的值为.11.已知一菱形的面积为12cm2,对角线长分别为xcm和ycm,则y与x的函数关系式为12.一批零件200个,一个工人每小时做10个,用关系式表示人数y(个)与完成任务所需的时间x(小时)之间的函数关系式为.三、解答题13.某三角形的面积为15cm2,它的一边长为xcm,且此边上高为ycm,请写出y与x之间的关系式,并求出x=5时,y的值.14.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.15.当k为何值时,y=(k﹣1)x是反比例函数?16.已知函数y=2y1﹣y2,y1与x+1成正比例,y2与x成反比例,当x=1时,y=4,当x =2时,y=3,求y与x的函数关系式.17.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)18.已知函数y=(m2+2m)(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.19.y是x的反比例函数,下表给出了x与y的一些值:x﹣2﹣1﹣13y2﹣1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.20.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.参考答案1.解:∵x与y成反比例,z与x成正比例,∴设x=,z=ax,故x=,则=,故yz=ka(常数),则y与z的关系是:成反比例.故选:B.2.解:A.是正比例函数,不是反比例函数,故本选项不符合题意;B.是一次函数,不是反比例函数,故本选项不符合题意;C.是反比例函数,故本选项符合题意;D.是二次函数,不是反比例函数,故本选项不符合题意;故选:C.3.解:A、y=﹣,是正比例函数,符合题意;B、y=是反比例函数,不合题意;C、y=2x﹣1=,是反比例函数,不合题意;D、xy=1,是反比例函数,不合题意;故选:A.4.解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.5.解:设y=,400度近视眼镜镜片的焦距为0.25m,∴k=0.25×400=100,∴y=.故选:C.6.解:把x=2,y=3代入得k=6,所以该函数表达式是y=.故选:C.7.解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.8.解:由题意得:Sh=5×104,∴S=,故答案为:S=.9.解:∵梯形的下底长为x,上底长为下底长的,高为y,面积为20,∴(x+x)y=20,整理得:y=,∴y与x的函数关系是:y=.故答案为:y=.10.解:由题意得:k2﹣k﹣1=﹣1,且k2+k≠0,解得:k=1,故答案为:1.11.解:由题意得:y与x的函数关系式为y==(x>0).故本题答案为:y=(x>0).12.解:由题意得:人数x与完成任务所需的时间y之间的函数关系式为y=200÷10x=.故答案为:y=.13.解:∵三角形的面积=边长×这边上高÷2,三角形的面积为15cm2,一边长为xcm,此边上高为ycm,∴;当x=5时,y=6(cm).14.解:(1)由平均数,得x=,即y=是反比例函数;(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数;(3)由路程与时间的关系,得t=,即t=是反比例函数.15.解:y=(k﹣1)x是反比例函数,得,解得k=﹣1,当k=﹣1时,y=(k﹣1)x是反比例函数.16.解:由题意得:y1=k1(x+1),y2=∵y=2y1﹣y2,∴y=2k1(x+1)﹣∴,解得:,∴y=(x+1)﹣,即y=x++17.解:(1)设,由题意知,所以k=96,故;(2)当v=1m3时,;(3)当p=140kPa时,.所以为了安全起见,气体的体积应不少于0.69m3.18.解:(1)由y=(m2+2m)是正比例函数,得m2﹣m﹣1=1且m2+2m≠0,解得m=2或m=﹣1;(2)由y=(m2+2m)是反比例函数,得m2﹣m﹣1=﹣1且m2+2m≠0,解得m=1.故y与x的函数关系式y=3x﹣1.19.解:(1)设反比例函数的表达式为y=,把x=﹣1,y=2代入得k=﹣2,y=﹣.(2)将y=代入得:x=﹣3;将x=﹣2代入得:y=1;将x=﹣代入得:y=4;将x=代入得:y=﹣4,将x=1代入得:y=﹣2;将y=﹣1代入得:x=2,将x=3代入得:y=﹣.故答案为:﹣3;1;4;﹣4;﹣2;2;.20.解:(1)∵y1与(x﹣1)成正比例,y2与(x+1)成反比例,∴y1=k1(x﹣1),y2=,∵y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k2=﹣2,k1=1,∴y=x﹣1﹣;(2)当x=﹣,y=x﹣1﹣=﹣﹣1﹣=﹣.。
反比例函数提高题练习题

1反比例函数 技巧训练题1、已知直线()0>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别是A (11,y x ),B (22,y x ),则1221y x y x += 。
2、若点(1,2y -)(2,1y -),(3,1y )在反比例函数xy 2=的图象上,则下列结论中正确的是( ) A 、321y y y >> B 、312y y y >> C 、213y y y >> D 、123y y y >>3、如图,梯形AOBC 的顶点A 、C 在反比例函数图象上,点C 的纵坐标为1,O A ∥BC ,上底边OA 在直线x y =上,下底边BC 交x 轴于E (2,0),则四边形A0EC 的面积是( )A 、3B 、3C 、13-D 、13+4、如图,已知点A 是一次函数x y =的图象与反比例函数xy 2=的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( ) A 、2 B 、22C 、2D 、22 5、如图,在反比例函数()02>=x xy 的图象上,有4321,,,P P P P 四点,它们的横坐标依次为1,2,3,4.分别过这些点作到x 轴与y 轴的垂线段,图中所构成的阴影部分的面积从左到右依次为321,,S S S ,则321S S S ++= 。
6、如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点 且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)ky k x=>的图象于Q32OQC S ∆=,则k 的值和Q 点的坐标分别为涉及面积的反比例函数的相关习题1、如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C . 若点A 的坐标为(6-,4),则△AOC 的面积为( )2y x =xyOP 1 P 2P 3 P 4 12342A .12B .9C .6D .4 2.如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线ky x=交OB 于D ,且OD :DB =1 :2,若△OBC 的面积等于3,则k 的值( )A .2B .34 C .245D .无法确定第1题图 第3题图3.如图,直线y x b =+与y 轴交于点A ,与双曲线k y x =在第一象限交于B 、C 两点,且AB ·AC =4,则k =_________. 4. 如图,A 、B 是双曲线 y = kx (k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= .5.如图,已知双曲线)0k (xk y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.6. 如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1(0)y x x=>的图象上,则点E 的坐标是( )A.⎝⎭; B.⎝⎭ C.⎝⎭ D.⎝⎭解答题训练1、已知一次函数k x y 231-=的图形与反比例函数xk y 32-=的图象相交,其中一个交点的纵坐标为6.(1)求这两个函数的解析式; (2)结合图象求出21y y <时,x 的取值范围。
中考数学总复习《反比例函数综合解答题》专项提升练习(附答案)

中考数学总复习《反比例函数综合解答题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,在Rt △ABC 中AC =8,BC =4,AC ⊥x 轴,垂足为C ,AB 边与y 轴交于点D ,反比例函数y =kx (x >0),的图象经过点A .(1)若BD AB=14,求直线AB 和反比例函数的表达式;(2)若k =8,将AB 边沿AC 边所在直线翻折,交反比例函数的图象于点E ,交x 轴于点F ,求点E 的坐标. 2.如图,点A 在第一象限,AC ⊥x 轴,垂足为C ,OA =2√5,tanA =12反比例函数y =kx的图象经过OA 的中点B ,与AC 交于点D .(1)求点C 坐标; (2)求k 值;(3)求△OBD 的面积.3.如图,矩形OABC 的顶点A ,C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =kx (x>0)的图象经过BC 上的点D 与AB 交于点E ,连接DE ,若E 是AB 的中点. (1)求点D 的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求点F的坐标.(x>0)的图象与矩形OABC相交于D、E两点,点A、4.如图,在平面直角坐标系xOy中反比例函数y=kxC分别在x轴和y轴的正半轴上,点B的坐标为(8,6).连接DE.(1)连接OE,若△EOA的面积为8,则k=______;(2)连接AD,当k为何值时,△AED的面积最大,最大面积是多少?(3)连接AC,当k为何值时,以DE为直径的圆与AC相切(x>0)上一动点5.如图已知直线y=x−2与x轴交于A点与y轴交于B点P(m,n)为双曲线y=−2x过P点分别作x轴y轴的垂线垂足分别为C D射线PC交直线AB于点E射线PD交直线AB于点F.(1)当DF=PC时求m的值;(2)连接OE OF求证:∠EOF的度数为45°;(x>0)上有一点Q(不与点P重合)连接PQ有PQ∥AB将线段PQ沿直线AB翻折得(3)在双曲线y=−2x到线段P′Q′.若线段P′Q′与坐标轴没有交点求此时n的取值范围.(x>0)上一点分别连接MA MB.6.直线l:y=−2x+2m(m>0)与x y轴分别交于A.B两点点M是双曲线y=4x(1)如图当点A(2√30)时恰好AB=AM △MAB=90° 试求M的坐标;3(2)如图当m=3时直线l与双曲线交于C.D两点分别连接OC OD 试求△OCD面积;(3)如图在双曲线上是否存在点M 使得以AB为直角边的△MAB与△AOB相似?如果存在请直接写出点M 的坐标;如果不存在请说明理由.(k>0)的一点点D的纵坐标为6.7.在平面直角坐标系中点D是反比例函数y=kx(k>0)的图象交于A C (1)当一次函数y=ax+3(a>0)的图象与x轴交于点B(−6,0)与反比例函数y=kx两点点P(1,0)是x轴上一定点已知点A的纵坐标为4.求一次函数和反比例函数的解析式;(2)在(1)的条件下在线段AB上找点Q使得△PAQ的面积为7时求点Q的坐标;(3)如图2 在第一象限内在反比例函数上是否存在不同于点D的一点F满足∠ODF=90°且tan∠DOF=1若存在求出点D的坐标.若不存在请说明理由.4(k>0)的图象分别交矩形ABOC的两边8.如图1 平面直角坐标系xOy中A(4 3)反比例函数y=kxAC AB于E F两点(E F不与A重合)沿着EF将矩形ABOC折叠使A D两点重合.(1)AE=_______(用含有k的代数式表示);(2)如图2 当点D恰好落在矩形ABOC的对角线BC上时求CE的长度;(3)若折叠后△ABD是等腰三角形求此时点D的坐标.9.如图在平面直角坐标系xOy中△ABO的边AB垂直于x轴垂足为点B反比例函数的图象经过AO的中点C交AB于点D.若点D的坐标为(−4,n)且AD=3.(1)求反比例函数y=k的解析式;x(2)求经过C D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C D重合)过点E且平行于y轴的直线l与反比例函数的图象交于点F求△OEF面积的最大值.(k≠0)的图象相交于点A和点B(4,1)点M是y 10.如图直线y=mx+4(m≠0)的图象与双曲线y=kx轴上的一个动点.(1)求出点A的坐标.(2)连接AM,BM若△ABM的面积为3求此时点M的坐标.(3)点N为平面内的点是否存在以点A,B,M,N为顶点的四边形为菱形?若存在请直接写出相应的点N的坐标若不存在请说明理由.11.如图已知一次函数y=−x+4与反比例函数的图像相交于点C和点A(−2,a)(1)求反比例函数的表达式及点C的坐标.(2)根据图像回答在什么范围时一次函数的值大于反比例函数的值?(3)求△AOC的面积.的图像交于A B两点与x轴交于点C与y轴12.如图一次函数y=ax+b的图像与反比例函数y=kx交于点D.已知点A(2,1)点B(m,−4).(1)求反比例函数与一次函数的解析式;(2)点M是反比例函数图像上一点当△MAO与△AOD的面积相等时请直接写出点M的横坐标;(3)将射线AC绕点A旋转α度后与双曲线交于另一点Q若tanα=1请求出点Q的坐标.3(k>0)的图象经过点A(1,2)连接AO并延长交双曲线于点C以AC为对角线作13.如图反比例函数y=kx正方形ABCD AB与x轴交于点M AD与y轴交于点N连接OB以AB为直径画弧OA与线段OA围成的阴影面积为S1△OMB的面积为S2.(1)求k的值;(2)求OA的长度及线段OM的长度;(3)求S1+S2的值.14.如图在平面直角坐标系中四边形ABCD为正方形已知点A、D的坐标分别为(0,−6)、(3,−7)点B、C在第四象限内.(1)点B的坐标为;(2)将正方形ABCD以每秒2个单位的速度沿y轴向上平移所得四边形记为正方形A′B′C′D′.若t秒后点B D的对应点B′D′正好落在某反比例函数在第一象限内的图像上请求出此时t值以及这个反比例函数的表达式;(3)在(2)的情况下是否存在x轴上的点P和反比例函数图像上的点Q使得以P Q B′D′四个点为顶点的四边形是平行四边形?若存在请直接写出符合题意的点Q的坐标;若不存在请说明理由.15.如图1 已知正比例函数和反比例函数的图象都经过点A(−1,−2)且点B(−2,−1)为反比例图象上的一点连接AB点M为坐标平面上一动点MN⊥x轴于点N.(1)写出正比例函数和反比例函数的解析式;(2)当点M在直线AO上运动时是否存在点M使得△OMN与△OAB的面积相等?若存在求出点M的坐标;若不存在请说明理由;(3)如图2 当点M在反比例函数图象位于第一象限的一支上运动时求以OB、OM为邻边的平行四边形BOMC周长的最小值并求此时点M的坐标.(x>0,k>0)图象与正比例函数图象y=ax(a>0)交于第16.如图在平面直角坐标系中反比例函数y=kx一象限内的点A(n,n)点B(2n,n−2)也在这个反比例函数图象上过点B作y轴的平行线交x轴与点C交直线y=ax(a>0)与点D.(1)求这两个函数的解析式及点D的坐标;(2)求:△AOB的面积;(3)过反比例函数图象上一点P作PE⊥直线y=ax(a>0)于点E过点E作EF⊥x轴于点F过点P作PG⊥EF于点G记△EOF的面积为S1,△PEG的面积为S2求S1−S2的值.与直线y=x相交于点A(2,a)B(b,−2)两点.17.如图1 在平面直角坐标系xOy中双曲线y=kx(1)求双曲线的函数表达式;(2)在双曲线上是否存在一点P使得△PAB的面积为6?若存在求出点P的坐标若不存在请说明理由;(3)点E是y轴正半轴上的一点直线AE与双曲线交于另一点C直线BE与双曲线交于另一点D直线CD与y轴交于点F求证:OE=EF.18.如图1 在平面直角坐标系xOy 中直线y =kx +52与双曲线y =12x交于A B 两点 直线AB 分别交x 轴 y轴于C D 两点 且S △COD =254.(1)求一次函数的解析式;(2)如图2 E 的坐标为(6,0) 将线段DO 沿y 轴向上(或向下)平移得线段D ′O ′ 在移动过程中是否存在某个位置使AD ′+EO ′的值最小?若存在 求出AD ′+EO ′的最小值及此时点O ′的坐标;若不存在 请说明理由; (3)如图3 在(2)的条件下 将直线OA 沿x 轴平移 平移过程中在第一象限交y =12x的图象于点M (M 可与A 重合) 交x 轴于点N .在平移过程中是否存在某个位置使以M N E 和平面内某一点P 为顶点的四边形为菱形且以MN 为菱形的边?若存在 请直接写出P 的坐标;若不存在 请说明理由.19.平面直角坐标系xOy 中横坐标为a 的点A 在反比例函数y 1△kx (x >0)的图象上 点A′与点A 关于点O 对称 一次函数y 2=mx+n 的图象经过点A′. (1)设a=2 点B (4 2)在函数y 1 y 2的图象上. ①分别求函数y 1 y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图① 设函数y 1 y 2的图象相交于点B 点B 的横坐标为3a △AA'B 的面积为16 求k 的值; (3)设m=12 如图② 过点A 作AD△x 轴 与函数y 2的图象相交于点D 以AD 为一边向右侧作正方形ADEF 试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.20.已知直线y=−x+2k+6(k>0)与双曲线y=m(x>0)交于点M N且点N的横坐标为k. .x(1)如图1 当k=1时.①求m的值及线段MN的长;②在y轴上是否是否存在点Q使∠MQN=90° 若存在请求出点Q的坐标;若不存在请说明理由.(2)如图2 以MN为直径作△P当△P与y轴相切时求k值.参考答案:1.解:解:(1)Rt △ABC 中AC =8 BC =4 AC ⊥x 轴 垂足为C∴AC ∥OD BD AB =BO BC =14 ∴BO 4=14∴BO =1 ∴OC =3 ∴A (3,8)设直线AB 为y =ax +b∴{3a +b =8−a +b =0解得{a =2b =2∴直线AB 为y =2x +2∵反比例函数y =kx (x >0)的图像经过A∴k =3×8=24∴反比例函数的表达式为y =24x;(2)作EH ⊥x 轴于H 由题意可知CF =BC =4 ∴设A (a,8)∴OC =1 ∴OF =5设点E 的坐标为(x,8x )∴OH =x∴FH =5−x∵EH//AC∴EH AC =HF FC 即8x 8=5−x 4解得x 1=1∴点E 的坐标为(4,2).2.(1)解:△AC ⊥x 轴△AC =2OC△OA =2√5由勾股定理得:(2√5)2=OC 2+(2OC )2△OC =2,AC =4△A (2,4),C (2,0)(2)△B 是OA 的中点△B (1,2)△k =1×2=2;(3)当x =2时△D (2,1)△AD =4−1=3△S △OBD =S △OAD −S △ABD=12×3×2−12×3×1 =1.5.3.解:(1)先求出点E 的坐标,求出反比例函数解析式,再求出CD =1,即可得出点D 的坐标,(2) △FBC 和△DEB 相似可以分两种情况进行求解, ①当△FBC △△DEB 时,可得BD BE =BC CF ,求出CF,得出F 点的坐标,利用待定系数法可求出BF 的直线解析式,②当△FBC △△EDB 时,可得BD BE =CFBC ,求出C,F ,OF ,得出F 点坐标,利用待定系数法求出直线BF 的解析式.(1)△四边形OABC为矩形E为AB的中点点B的坐标为(2 3) △点E的坐标为.△点E在反比例函数上△k=3 △反比例函数的解析式为y=.△四边形OABC为矩形△点D与点B的纵坐标相同将y=3代入y=可得x=1 △点D的坐标为(1 3)(2)由(1)可得BC=2 CD=1 △BD=BC-CD=1.△E为AB的中点△BE=.若△FBC△△DEB 则=即=△CF=△OF=CO-CF=3-=△点F的坐标为;若△FBC△△EDB 则=即=△FC=3.△CO=3 △点F与点O重合△点F的坐标为(0 0).综上所述点F的坐标为或(0 0).4.解:(1)连接OE如下图.△E点在反比例函数的图像上且横坐标为8△E点纵坐标为k8即AE=8S△EOA=12×k8×8=8△k=16(2)连接AD如下图.△D在反比例函数图像上△D点的的横坐标为k6.BD=8−k 6S△AED=12×AE×BD=12×k8×(8−k6)=−196k2+12k即S△AED=−196k2+12k=−196(k−24)2+24296=−196(k−24)2+6△当k=24时△AED的面积最大最大面积是6.(3)如下图连接AC以DE为直径的圆与AC相切时设圆心为O切点为N自点D作AC的垂线垂足为M.为计算方便设反比例函数系数k=48b(0<b<1)则E点坐标为(8,6b)D点坐标为(8b,6).△BD=8−8b BE=6−6b.由勾股定理得:DE=√BD2+DE2=√[8(1−b)]2+[6(1−b)]2=10(1−b)∴OD=12DE=5(1−b)△BD BE =8−8b6−6b=43△BD BE =BCBA△DE∥AC.由O为圆心N为⊙O与AC切点可知ON⊥AC.又△DM⊥AC,ON⊥AC,OD=ON△四边形ODMN为正方形.△OD=DM由tan∠DCM=DMCD =ABAC△DM=ABAC ×CD=610×8b=245b.由OD=5(1−b)OD=DM得5(1−b)=245b.△b=2549.△k=48b=48×2549=120049.△当k=120049时以DE为直径的圆与AC相切5.(1)2(2)见详解(3)−2<n<−1【分析】(1)由题意易得四边形ODPC是矩形∠OBA=∠OAB=45°则有BD=DF=PC=−n然后可得OB=−2n=2进而问题可求解;(2)由题意可得E(m,m−2)m=−2n然后可得EP=PF=m−n−2,DF=DB=2+n进而可得OF2=FA⋅FE则有△AOF∽△OEF最后问题可求证;(3)假设线段PQ沿直线AB翻折得到线段P′Q′线段P′Q′恰好与坐标轴有交点然后根据轴对称的性质及等腰直角三角形的性质可进行求解.【详解】(1)解:令y=0时则有x−2=0即x=2△A(2,0)即OA=2令x=0时则有y=−2△B(0,−2)即OB=2△OA=OB=2△∠OBA=∠OAB=45°由题意知:PC⊥x轴PD⊥y轴△四边形ODPC是矩形△DBF是等腰直角三角形△点P(m,n)△OD=PC=−n,DB=DF=PC=−n△OB=−2n=2△n=−1△m=−2−1=2;(2)证明:由题意得:E(m,m−2)△EP=m−n−2由(1)可知四边形ODPC是矩形△DBF是等腰直角三角形△BD=DF=2+n,OD=PC=−n△F(n+2,n)△∠DFB=∠EFP=45°,∠EPD=90°△EF=√2EP=√2m−√2n−2√2△A(2,0)△OF2=n2+(2+n)2=2n2+4n+4△AF⋅FE=−√2n⋅(√2m−√2n−2√2)=−2mn+2n2+4=−2⋅(−2n)n+2n2+4n=2n2+4n+4△OF2=FA⋅FE即OFEF =FAOF△∠OFA=∠EFO△△AOF∽△OEF△∠EOF=∠OAF=45°;(3)解:假设线段PQ沿直线AB翻折得到线段P′Q′线段P′Q′恰好与坐标轴有交点如图所示:连接QQ′,PP′,PA,QB由轴对称的性质可知∠OAB=∠PAB=45°,∠OBA=∠QBA=45°△∠P′AP=∠QBQ′=90°△点P的横坐标为2 点Q的纵坐标为−2△把点P的横坐标代入反比例函数解析式得n=−1△若线段P′Q′与坐标轴没有交点则n的取值范围为−2<n<−1.【点睛】本题主要考查反比例函数与几何的综合相似三角形的性质与判定矩形的判定等腰直角三角形的性质与判定及轴对称的性质熟练掌握各个性质及判定是解题的关键.6.(1)(2√323√3);(2)3;(3)(4 1)(2 2)(√1025√10)(25√10√10).【分析】(1)把A的坐标代入直线的解析式即可求得m的值然后证明△OAB△△EMA 求得ME和AE的长则M 的坐标即可求解;(2)解一次函数与反比例函数的解析式组成的方程组 即可求得C 和D 的坐标 作DF△y 轴于点F CG△y 轴 根据S △OCD =S 梯形CDFG +S △OCG -S △ODF 求解;(3)分类讨论:以△BAM 和△ABM 为直角两种情况.①当△BAM=△BOA=90°时 作MH△x 轴于点H 先求得AM 的长 再根据相似三角形的性质求得AH 和MH 的长 进而求得M 的坐标 代入反比例函数关系式求出m 即可 ②当△ABM=90°时 过点M 作MH△y 轴于点H 同理可求出M 坐标. 【详解】(1)把A(2√33 0)代入y=−2x+2m 得:−4√33+2m=0 解得:m=2√33. 则直线的解析式是:y=−2x+4√33 令x=0,解得y=4√33则B 的坐标是(0,4√33). 如图所示 作ME△x 轴于点E.△△BAM=90°△△BAO+△MAE=90°又△直角△AEM 中,△AME+△MAE=90°△△BAO=△AME.在△OAB 和△EMA 中{∠AOB=∠AEM ∠BAO=∠AME AB=AM△△OAB△△EMA(AAS)△ME=OA=2√33,AE=OB=4√33. △OE=OA+AE=2√3则M 的坐标是(2√3 23√3);(2)当m=3时 一次函数的解析式是y=−2x+6.解不等式组{y =−2x +6y =4x得{x =1y =4 或{x =2y =2则D 的坐标是(1,4),C 的坐标是(2,2).如图 作DF△y 轴于点F CG△y 轴,则F 和G 的坐标分别是(0,4) (0,2).则S △OCG =S △ODF =12×4=2 S 梯形CDFG =12×(1+2)×(4−2)=3 则S △OCD =S 梯形CDFG +S △OCG −S △ODF =3;(3)如图 作MH△x 轴于点H.则△AOB △ABM △AMH 都是两直角边的比是1:2的直角三角形.①当△BAM=△BOA=90°时 OA=m OB=2m 得: AM=12AB=√52m MH=12OA=m 2;从而得到点M 的坐标为(2m, m 2). 代入双曲线解析式为:42m =m 2解得:m=2,则点M 的坐标为(4,1);同理当△BAM=△OBA 时,可求得点M 的坐标为(√10 2√105).②当△ABM=90°时过点M作MH△y轴于点H则△AOB △ABM △BMH都是直角边的比是1:2的直角三角形;当△AMB=△OAB时OB=m OA=2m得:AH=2OB=2m MH=2OA=4m从而点M的坐标为(4m,4m)代入双曲线的解析式得:4m×4m=4解得:m=12,点M的坐标为(2,2);同理,当△AMB=△OBA时,点M的坐标为(2√105,√10).综上所述满足条件的点M的坐标是:(4 1)(2 2)(√1025√10)(25√10√10).【点睛】本题考查反比例函数与几何的综合题熟练掌握反比例函数的性质全等三角形的判定以及相似三角形的性质是解决本题的关键注意分类讨论思想的运用.7.(1)一次函数的表达式为y=12x+3反比例函数的解析式为y=8x(2)Q(−2,2)(3)存在满足题意的点D的横坐标为(3+3√654,6)或(−3+3√654,6)【分析】(1)将点B坐标代入直线AC的解析式中求出a进而得出一次函数解析式进而求出点A坐标最后将点A坐标代入反比例函数解析式中即可求出反比例函数解析式;(2)设点Q(m,12m+3)利用△PAQ的面积为7 建立方程求解即可得出答案;(3)根据题意分两种情况①当点F在D下方时过点D作DE⊥y轴于点E这点F作FN⊥ED于点N②当点F在点D上方时过点D作DG⊥x轴于点G过点F作FM⊥DG于点M分别求解即可.【详解】(1)△点B(−6,0)在直线y=ax+3上.△−6a+3=0△a=12△一次函数的解析式为y=12x+3;△点A在直线y=12x+3上且点A的纵坐标为4△12x+3=4△x=2△A(2,4).△点A在双曲线y=kx上△k=2×4=8.△反比例函数的解析式为y=8x;(2)由(1)知直线AC的解析式为y=12x+3设点Q(m,12m+3)如图1△P(1,0),B(−6,0)△BP=7△△PAQ的面积为7△1 2BP⋅(y A−y P)=12×7×(412m−3)=7△m=−2△Q(−2,2);(3)需要分两种情况:①当点F在D下方时.如图过点D作DE⊥y轴于点E这点F作FN⊥ED于点N △∠OED=∠DNF=90°△∠ODF =90°△∠ODE +∠DOE =∠ODE +∠FDN =90°△∠DOE =∠FDN△△ODE ∽△DFN .△OD:DF =OE:DN =DE:FN△tan∠DOF =14△DF:OD =1:4△OD:DF =OB:DN =DB:FN =4△OE =6 △DN =32设点D 的横坐标为n 则BD =n△FN =14n △D(n,6),F (n +32,6−14n)△6n =(n +32)(6−14n)解得n =−3±3√654(负值舍去). 即此时点D 的坐标为:(−3−3√654,6).②当点F 在点D 上方时 如图 过点D 作DG ⊥x 轴于点G过点F 作FM ⊥DG 于点M△∠OGD =∠DMF =90°△∠ODF =90°△∠ODG +∠DOG =∠ODG +∠FDM =90°△∠DOG =∠FDM△△ODG ∽△DFM△OD:DF =OG:DM =DG:FM△tan∠DOF =14△DF:OD =1:4△OD:DF =OG:DM =DG:FM =4△DG =6.△FM =32设点D 的横坐标为t 则OG =t△DM =14t△D(t,6),F (t −32,6+14t).△6t =(t −32)(6+14t). 解得t =3±3√654(负值舍去). 即此时点D 的横坐标为:(3+3√654,6). 综上 满足题意的点D 的横坐标为:(3+3√654,6)或(−3+3√654,6). 【点睛】本题是反比例函数综合题 主要考查了待定系数法 三角形的面积公式 相似三角形的性质 正确理解题意是解题的关键.8.(1)4−k3(2)CE =2(3)D 点坐标为(238,32)或(115,35)【分析】(1)根据点A 的坐标可得点E 的纵坐标为3 则E (k 3,3) 可得CE =k 3 从而得AE 的长; (2)求出AE AF =AC AB =43 证明△AEF △△ACB 推出EF ∥BC 再利用平行线的性质和等腰三角形的判定和性质证明AE =EC =2即可;(3)连接AD 交EF 于M 过D 点作DN △AB 于N 由折叠的性质得AD △EF 分三种情况讨论:①当BD =AD 时 ②当AB =AD =3时 ③当AB =BD 时 分别计算DN 和BN 的长确定点D 的坐标即可解答.【详解】(1)解:△四边形ABOC 是矩形 且A (4 3)△AC =4 OC =3△点E 在反比例函数y =k x 上 点E 的纵坐标为3△E(k3,3)△CE=k3△AE=4−k3;故答案为:4−k3;(2)解:△A(4 3)△AC=4 AB=3△AC AB =43△点F在y=kx上△F(4,k4)△AE AF =4−k33−k4=43△AE AF =ACAB=43又△△A=△A△△AEF△△ACB△△AEF=△ACB△EF∥BC△△FED=△CDE△△AEF△△DEF△△AEF=△DEF AE=DE△△FED=△CDE=△AEF=△ACB△CE=DE=AE=12AC=2;(3)连接AD交EF于M过D点作DN△AB于N 由折叠的性质得AD△EF①当BD=AD时如图3△△AND=90°△AN=BN=12AB=32△DAN+△ADN=90°△△DAN+△AFM=90°△△ADN=△AFM△tan∠ADN=tan∠AFM=AEAF =43△AN DN =43△AN=32△DN=98△4−98=238△D(238,32 );②当AB=AD=3时如图4在Rt△ADN中△AN DN =43△AN AD =45△AN=45AD=45×3=125△BN=3−AN=3−125=35△DN=34AN=34×125=95△4−95=115△D(115,35 );③当AB=BD时△△AEF△△DEF△DF=AF△DF+BF=AF+BF即DF+BF=AB△DF+BF=BD此时D F B三点共线且F点与B点重合不符合题意舍去△AB≠BD综上所述所求D点坐标为(238,32)或(115,35).【点睛】本题属于反比例函数综合题考查了反比例函数的性质相似三角形的判定和性质翻折的性质矩形的性质解直角三角形等知识等腰三角形的性质解题的关键是正确寻找相似三角形解决问题学会用分类讨论的思想思考问题属于中考压轴题.9.(1)反比例函数解析式为y=−4x(2)直线CD的解析式为y=12x+3(3)最大值为14【分析】本题是反比例函数综合题 主要考查了待定系数法 线段的中点坐标公式:(1)先确定点A 的坐标 进而求得点C 的坐标 将点C D 坐标代入反比例函数中即可得出结论;(2)由n =1 求出点C D 坐标 利用待定系数法即可得出结论;(3)设出点E 坐标 进而表示出点F 坐标 即可建立面积与m 函数关系式 即可得出结论;建立S △OEF 与m 的函数关系式是解题的关键.【详解】(1)解:△AD =3△A (−4,n +3)△点C 是OA 的中点△C (−2,n+32)△点C D 在双曲线y =kx 上△{k =−2×n+32k =−4n△{k =−4n =1 △反比例函数解析式为y =−4x ; (2)解:由(1)知 反比例函数解析式为y =−4x△n =1△C (−2,2)设直线CD 的解析式为y =ax +b△{−2a +b =2−4a +b =1△{a =12b =3△直线CD 的解析式为y =12x +3; (3)解:如图 由(2)知 直线CD 的解析式为y =12x +3设点E (m,12m +3) 由(2)知 C (−2,2)△−4<m <−2△EF ∥y 轴交反比例函数的图像y =−4x 于F△F (m,−4m )△EF =12m +3+4m△S △OEF =12(12m +3+4m )×(−m )=−12(12m 2+3m +4)=−14(m +3)2+14△−4<m <−2△m =−3时 S △OEF 最大 最大值为14. 10.(1)(43,3);(2)(0,74)或(0,254); (3)存在 (83,1+2√213)或(83,1−2√213)或(163,509).【分析】(1)利用代数系数法求出一次函数和反比例函数解析式 联立函数式 解方程组即可求解;(2)分M 在AB 下方和M 在AB 上方两种情况解答即可求解;(3)设M (a,0) 以A 、B 、M 、N 四点为顶点的四边形是菱形时 分AB 为边和对角线三种情况讨论 根据勾股定理和菱形的性质可计算点M 的坐标.【详解】(1)解:△点B (4,1)△4m +4=1△m =−34△直线的关系式为:y =−34x +4 反比例函数的关系式为:y =4x联立得{y =−34x +4y =4x 解得x =43或4△点A 的坐标为(43,3);(2)解:① M 在AB 下方时 过B 作BC ⊥y 轴于C 过A 作AD ⊥BC 于D设M (0,m )△点A 的坐标为(43,3)∵S △ABM =S 梯形AMCD +S △ABD −S △BCM =3△12×43(m −1+3−1)+12×(4−43)×(3−1)−12×4(m −1)=3解得m =74 △点M 的坐标为(0,74); ② M 在AB 上方时设M (0,m ) 直线AB 交y 轴于N△点A 的坐标为(43,3)△S △ABM =S △MBN +S △AMN =3△12×4(m −4)−12×43(m −4)=3解得m =254△点M 的坐标为(0,254); 综上 点M 的坐标为(0,74)或(0,254);(3)解:设M (a,0)△点A 的坐标为(43,3)△AB 2=(4−43)2+(3−1)2=1009AM 2=(43)2+(m −3)2=169+(m −3)2 BM 2=42+(m −1)2=16+(m −1)2①以AB 为边 AM =AB 时169+(m −3)2=1009 解得m =3+2√213或m =3−2√213 △点M 的坐标为(0,3+2√213)或(0,3−2√213) △点A 的坐标为(43,3)△点N 的坐标为(83,1+2√213)或(83,1−2√213); ②以AB 为边 BM =AB 时16+(m−1)2=1009无解△此种情况不存在;③以AB为对角线时AM=BM如图169+(m−3)2=16+(m−1)2解得m=−149△点M的坐标为(0,−149)△点A的坐标为(43,3)△点N的坐标为(163,509);综上所述点N的坐标为(83,1+2√213)或(83,1−2√213)或(163,509).【点睛】本题考查了菱形的性质反比例函数与一次函数的交点问题三角形面积公式待定系数法求函数的解析式运用分类讨论的思想解答是解题的关键.11.(1)反比例函数的表达式为y=−12x点C的坐标为(6,−2)(2)x<−2或0<x<6(3)16【分析】本题考查一次函数与反比例函数的交点问题注意数形结合思想的应用是解题的关键.(1)把A(−2,a)代入一次函数可求得a的值再代入反比例函数解析式可求得k的值联立两函数解析式可求得C点的坐标;(2)当一次函数图象在反比例函数图象的上方时满足条件根据图象可得出x的范围;(3)求出一次函数与x轴的交点坐标根据S△AOC=S△AOB+S△BOC利用三角形的面积公式即可求出△AOC的面积.【详解】(1)解:将A(−2,a)代入一次函数y =−x +4得:a =−(−2)+4=6 ∴ A(−2,6)设反比例函数的表达式为y =kx (k ≠0)将A(−2,6)代入y =k x (k ≠0) 得k =−2×6=−12 ∴反比例函数的表达式为y =−12x 联立{y =−12x y =−x +4解得{x =−2y =6 或{x =6y =−2∴点C 的坐标为(6,−2);(2)解:根据图象可知当x <−2或0<x <6时 一次函数图象在反比例函数图象的上方 ∴当x <−2或0<x <6时 一次函数的值大于反比例函数的值;(3)解:令y =−x +4=0 得x =4∴点B 的坐标为(4,0)∴ OB =4∴ S △AOC =S △AOB +S △BOC=12OB ⋅|y A |+12OB ⋅|y C | =12×4×6+12×4×2 =16.12.(1)反比例解析式为y =2x 一次函数的解析式为y =2x −3 (2)x =3±√13或−3±√13(3)(−17,−14)或(−1,−2)【分析】(1)由待定系数法即可求解;(2)当点M 在AO 下方时 过点D 作DM∥OA 交反比例函数图象于M 得到直线DM 为y =12x −3 即可求解;当点M 在AO 上方时 同理可解;(3)当射线AC 逆时针旋转时 用解直角三角形的方法求出ND =√5m =10 即可求解;当射线AC 顺时针旋转时同理可解.【详解】(1)解:把A(2,1)代入y=kx得k=2则反比例解析式为y=2x;把点B(m,−4)代入y=2x得△−4=2m解得:m=−12△B(−12,−4)把A与B坐标代入一次函数解析式得{2a+b=1−12a+b=−4解得{a=2b=−3△一次函数的解析式为y=2x−3;(2)解:在y=2x−3中令y=0解得:x=−3则D的坐标是(−3,0).即OD=3.则S△AOD=12×3×2=3.设直线OA的解析式为y=kx△点A(2,1)△k=12△直线OA为y=12x过点D作DM∥OA交反比例函数图象于M△直线DM为y=12x−3解{y =12x −3y =2x得:x =3±√13 即点M 的横坐标为:x =3±√13;在AO 上方取点N 使ON =OD 过点N 作直线n∥OA 则直线n 和抛物线的交点也为点M (M ′) 同理可得 点M ′的横坐标为x =−3±√13;综上 点M 的横坐标为:x =3±√13或x =−3±√13; (3)解:当射线AC 逆时针旋转时 如下图: 由点A D 的坐标得设直线AQ 交y 轴于点N 过点N 作NH ⊥AB 于点H 则tan∠NAH =tanα由直线AD 的表达式知 tan∠OCD =2 则tan∠ODC =12在△ADN 中设HN =m 则DH =2m 则ND =√5m 则tanα=HN AH=2√5+2m=13解得:m =2√5 则ND =√5m =10 则点N(0,−13)由点A N 的坐标得 直线AN (AQ )的表达式为:y =7x −13 联立y =7x −13和反比例函数表达式得:7x −13=2x解得:x=−17或2(舍去)则点Q(−17,−14);当射线AC顺时针旋转时同理可得:AQ的表达式为:y=x−1联立y=x−1和反比例函数表达式得:x−1=2x解得:x=−1或2(舍去)则点Q(−1,−2)综上点Q的坐标为:(−17,−14)或(−1,−2).【点睛】本题考查的是反比例函数综合运用涉及到解直角三角形图象的旋转平行线的性质等分类求解是本题解题的关键.13.(1)k=2;(2)OA的长度为√104πOM=53;(3)S1+S2=58π−512.【分析】(1)利用待定系数法即可求解;(2)设AO所在圆的圆心为O1连接OO1利用正方形性质求出OA的半径r=√102即可求出OA的长度过点B作BE⊥x轴于E过点A作AF⊥y轴于F证明△BOE≌△AOF求出B(2,−1)设直线AB的解析式为y=ax+b求出直线AB的解析式即可求解;(3)利用S1+S2=14πr2+S△O1OB−S△AOM解答即可求解.【详解】(1)解:△A(1,2)在反比例函数y=kx的图象上△k=1×2=2;(2)△四边形ABCD为正方形且AC为对角线△OA=√12+22=√5AB=√10∠AOB=90°如图设AO所在圆的圆心为O1连接OO1△OA=OB△OO1⊥AB△∠AO1O=∠BO1O=90°△AB 为直径 △OA 的半径r =√102△OA 的长度为14×2π×r =√104π 过点B 作BE ⊥x 轴于E 过点A 作AF ⊥y 轴于F 则∠OEB =∠OFA =90° △∠AOF +∠AOM =90° △∠BOE =∠AOF 在△BOE 和△AOF 中{∠OEB =∠OFA =90°∠BOE =∠AOF BO =AO△△BOE ≌△AOF (AAS ) △BE =AF =1 △B (2,−1)设直线AB 的解析式为y =ax +b 把A (1,2) B (2,−1)代入得{2=a +b −1=2a +b解得{a =−3b =5直线AB 的解析式为y =−3x +5 当y =0时 △M (53,0)△OM =53;(3)解:△S 1+S 2=14πr 2+S △O 1OB −S △AOM△S1+S2=14π×(√102)2+12×√102×√102−12×53×2=58π−512.【点睛】本题考查了反比例函数的几何综合应用正方形的性质勾股定理全等三角形的判定和性质待定系数法求函数解析式一次函数与x轴的交点求不规则图形面积求出点B的坐标是解题的关键.14.(1)(1,−3)(2)此时t的值为92;反比例函数解析式为y=6x;(3)存在满足要求点Q的坐标为(34,8)或(32,4)或(−32,−4)【分析】(1)过点D作DE⊥x轴于点E过点B作BF⊥x轴于点F由正方形的性质结合同角的余角相等即可证出△ABE≌△DAF从而得出DE=AF AE=BF再结合点A D的坐标即可求出点B的坐标;(2)设反比例函数为y=kx根据平行的性质找出点B′D′的坐标再结合反比例函数图象上点的坐标特征即可得出关于k t的二元一次方程组解方程组解得出结论;(3)先求出点B′D′的坐标再分三种情况利用平行四边形的对角线互相平分建立方程求解即可得出结论.【详解】(1)如图过点B作BE⊥y轴垂足为点E过点D作DF⊥y轴垂足为点F则∠AEB=DFA= 90°∵点A的坐标为(0,6)D的坐标为(3,−7)∴DF=3∵四边形ABCD是正方形∴AB=AD∴∠DAF+∠BAE=∠DAF+∠ADF=90°∴∠BAE=∠ADF∴△ABE≌△DAF∴DF=AE=3∴OE=OA−AE=3所以点B的坐标为(1,−3);(2)由题意得正方形ABCD沿y轴向上平移了2t个单位长度.∵点B的坐标为(1,−3)D的坐标为(3,−7)∴B′和D′的坐标分别为B′(1,−3+2t)设点B′D′落在反比例函数y=kx(k≠0)的图像上则k=1×(−3+2t)=3×(−7+2t)解得t=92所以解得k=6即这个反比例函数的表达式为y=6x;(3)存在x轴上的点P和反比例函数图像上的点Q使得以P Q B′D′四点为定点的四边形是平行四边形.设P(n,0)由(2)知B′和D′点的坐标分别为B′(1,6)当B′D′为平行四边形的边时则PQ△B′D′∴点Q的坐标为(n+2,4)或(n−2,−4)把Q(n+2,4)代入y=6x 中得4(n+2)=6解得n=−12∴点Q的坐标为(32,4)把Q(n−2,−4)代入y=6x 中得4(n−2)=−6解得n=12∴点Q的坐标为(−32,−4);当B′D′为平行四边形的对角线时则B′D′的中点坐标为(2,4)∴PQ的中点坐标为(2,4)∴Q点的坐标为(−4−n,8)把Q点坐标带入y=6x 中得8(−n−4)=6解得n=−194∴点Q的坐标为(34,8)综上所述满足要求的点Q的坐标为(34,8)或(32,4)或(−32,−4)【点睛】本题考查了是反比例函数与正方形结合的综合题主要考查了反比例函数的图象与性质待定系数法全等三角形的性质与判定平行四边形的性质解题的关键是证明全等三角形和分情况讨论.15.(1)y=2x(2)存在(√62,√6)或(−√62,−√6).(3)(√2,√2)【分析】本题考查反比例函数与一次函数的综合应用正确的求出函数解析式利用数形结合的思想进行求解是解题的关键.(1)待定系数法求函数解析式即可;(2)分割法求出△OAB的面积设点M为(m,2m)利用面积公式列式计算即可;(3)根据OM最小时平行四边形的周长最小进行求解即可.【详解】(1)解:设正比例函数的解析式为y=kx反比例函数的解析式为y=mx△正比例函数和反比例函数的图象都经过点A(−1,−2)△−k=−2,m=−1×(−2)=2△k=2△正比例函数的解析式为y=2x反比例函数的解析式为y=2x.(2)△A(−1,−2)△S△OAB=2×2−12×1×2×21×1×1=32设点M为(m,2m)则:12|m|×|2m|=32△m=±√62所以点M的坐标为(√62,√6)或(−√62,−√6).(3)△B(−2,−1)△OB=√12+22=√5△当OM最短时平行四边形的周长最小设点M为(x,y)则:xy=2△OM=√x2+y2≥√2xy=2△平行四边形BOMC的周长最小是2(√5+2)=2√5+4此时点M的坐标为(√2,√2).16.(1)y=16x(2)12(3)8【分析】本题考查了反比例函数与一次函数的综合题目涉及求函数解析式两函数交点问题等腰直角三角形的判定和性质熟练掌握知识点是解题的关键.(x>0,k>0)求出n的值进而得出A点坐标(1)将点A(n,n)点B(2n,n−2)代入反比例函数y=kx利用待定系数法即可求函数解析式再根据过点B作y轴的平行线可得点B D的横坐标相同代入正比例函数解析式求解即可;(2)过点B作BN⊥x轴于点N过点A作AM⊥BN轴于点M根据S△AOB=S梯形AONM−S△ONB−S△ABM求解即可;(3)设E(t,t)则OF=EF=t进而证明△OEF是等腰直角三角形△PEG是等腰直角三角形设EG= PG=k则P(t+k,t−k)将其代入反比例函数解析式可得t2−k2=16进而求解即可.(x>0,k>0)图象上【详解】(1)△点A(n,n)点B(2n,n−2)反比例函数y=kx△k=n2=2n(n−2)解得n=4或0(舍去)△A(4,4),B(8,2),k=16△反比例函数解析式为y=16x将A(4,4)代入y=ax(a>0)得a=1△正比例函数解析式为y=x△过点B作y轴的平行线△点B D的横坐标相同当x=8时△D(8,8);(2)过点B作BN⊥x轴于点N过点A作AM⊥BN轴于点M。
中考数学总复习《反比例函数》专项提升训练题(带答案)
中考数学总复习《反比例函数》专项提升训练题(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,4A -是反比例函数()0ky k x=≠图象上一点,则常数k 的值为( ) A .4 B .14-C .4-D .142.函数6y x=的图象位于第( )象限 A .一、二 B .一、三 C .二、三 D .二、四3.已知反比例函数2y x =图象上有三点()14,A y ,()22,B y 和31,2C y ⎛⎫⎪⎝⎭,则1y 、2y 和3y 的大小关系为( ) A .y y y >>₁₂₃B .y y y >>₂₁₃C .y y y >>₃₂₁D .y y y >>₃₁₂4.已知二次函数2y x bx c =++的图象如图所示,则一次函数y bx c =+与反比例函数bcy x=的图象可能..是( )A .B .B .C .D .5.如图,点P ,Q 在反比例函数4y x=的图象上,点M 在x 轴上,点N 在y 轴上,下列说法正确的是( )A .图1、图2中阴影部分的面积分别为2,4B .图1、图2中阴影部分的面积分别为1,2C .图1、图2中阴影部分的面积之和为8D .图1、图2中阴影部分的面积之和为3 6.下列各点中,不在反比例函数6y x=图像上的点是( ) A .()1,6B .()6,1--C .()6,1D .()2,3-7.如图,OAB 是面积为4的等腰三角形,底边OA 在x 轴上,若反比例函数图象过点B ,则它的解析式为( )A .2y x=B .-2y x=C .4y x =D .4y x=-8.已知如图,一次函数14y x =+图象与反比例函数25y x=图象交于()1,A n ,()5,B m -两点,则12y y >时x 的取值范围是( )A .5x 0-<<或1x >B .5x <-或01x <<C .5x 0-<<或01x <<D .51x -<<二、填空题9.在平面直角坐标系中,将点()2,3A 向下平移5个单位长度得到点B ,若点B 恰好在反比例函数的图象上,则此反比例函数的表达式为 .10.已知点()()1221A yB y --,,,和()34C y ,都在反比例函数8y x=的图象上,则123y y y ,,的大小关系为 .(用“<”连接)11.如图,点A 是反比例函数2y x=-的图象上一点,过点A 向y 轴作垂线,垂足为点B ,点C 、D 在x 轴上,且BC AD ∥,则四边形ABCD 的面积为 .12.如图,直线6y x =-+与y 轴交于点A ,与反比例函数ky x=图象交于点C ,过点C 作CB x ⊥轴于点B ,3AO BO =,则k 的值为 .13.如图,已知点(3,3)A 和(3,1)B ,反比例函数(0)ky k x=≠图象的一支与线段AB 有交点,写出一个符合条件的k 的整数值: .三、解答题14.如图,在ABCD 中(1,0)A -,(2,0)B 和(0,2)D ,反比例函数ky x=在第一象限内的图象经过点C .(1)点C 的坐标为 . (2)求反比例函数的解析式.(3)点E 是x 轴上一点,若BCE 是直角三角形,请直接写出点E 的坐标.15.科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度()cm h 是液体的密度()3g /cm ρ的反比例函数,如图是该反比例函数的图象,且0ρ>.(1)求h 关于ρ的函数表达式;(2)当密度计悬浮在另一种液体中时25cm h =,求该液体的密度ρ.16.通过试验研究发现:一节40分钟的课堂,初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.如图,学生注意力指标y 随时间x (分钟)变化的函数图象,当010x ≤<和1020x ≤<时,图象是线段;当2040x ≤≤时,图象是反比例函数的一部分.(1)求反比例函数解析式和点A 、D 的坐标;(2)陈老师在一节课上讲解一道数学综合题需要16分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32?请说明理由.17.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x 元与日销售量y 之间满足某种函数关系. x (元)3 4 5 6y (个) 20 15 12 10(1)根据表中的数据请你写出请y 与x 之间的函数关系式;(2)设经营此贺卡的销售利润为w 元,试求出w 与x 之间的函数关系式,若物价局规定此贺卡的销售价每个最高不能超过10元,请你求出当日销售单价x 定为多少元时,才能使日销售获得最大利润?18.如图,一次函数()10y kx b k =+≠的图象与x 轴,y 轴分别交于点A ,B ,与反比例函数()20my x x=>的图象交于点()1,2C 和()2,D n .(1)分别求出两个函数的解析式; (2)当12y y >时,直接写出x 的取值范围. (3)连接OC ,OD ,求COD △的面积;(4)点P 是反比例函数上一点,PQ x ∥轴交直线AB 于Q ,且3PQ =请直接写出点P 的坐标.答案第1页,共1页参考答案:1.C 2.B 3.C 4.B 5.A 6.D 7.D 8.A9.4y x =-10.213y y y << 11.2 12.16-13.4(答案不唯一) 14.(1)()3,2 (2)6y x=(3)(3,0)或(7,0) 15.(1)20h ρ=(2)0.8ρ=16.(1)反比例函数的解析式为800y x=,()0,20A 和()40,20D (2)陈老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32 17.(1)60y x=(2)1018.(1)一次函数的解析式为13y x =-+,反比例函数的解析式为22y x=; (2)12x <<; (3)32; (4)()37,37P +-或()37,37P -+.。
反比例函数测试题及答案
反比例函数测试题及答案一、选择题1. 反比例函数y= \frac{k}{x}(k≠0)的图象是双曲线,下列说法正确的是()A. 函数图象在一、三象限内,k>0B. 函数图象在二、四象限内,k<0C. 函数图象在一、三象限内,k<0D. 函数图象在二、四象限内,k>0答案:A2. 若点(2,3)在反比例函数y= \frac{k}{x}(k≠0)的图象上,则k的值是()A. 6B. -6C. 2D. -2答案:A二、填空题3. 反比例函数y= \frac{k}{x}(k≠0)的图象经过点(1,-2),则k的值为______。
答案:-24. 反比例函数y= \frac{k}{x}(k≠0)的图象是中心对称图形,若点(a,b)在函数图象上,则点(-a,-b)也在函数图象上,且k=ab,若点(2,-1)在函数图象上,则点(-2,1)也在函数图象上,且k=______。
答案:-2三、解答题5. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(3,-1),求k的值,并判断图象在哪个象限。
解:将点(3,-1)代入反比例函数y= \frac{k}{x}得,-1=\frac{k}{3},解得k=-3。
因为k=-3<0,所以图象在第二、四象限。
6. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(2,3),求k的值,并写出函数的表达式。
解:将点(2,3)代入反比例函数y= \frac{k}{x}得,3=\frac{k}{2},解得k=6。
因此,函数的表达式为y= \frac{6}{x}。
结束语:通过以上题目的练习,可以检验你对反比例函数性质和图象特征的掌握程度,希望同学们能够通过这些题目加深对反比例函数的理解。
最新《反比例函数》解题能力提升训练试题含答案
《反比例函数》解题能力提升训练试题一.选择题1.反比例函数y=﹣中常数k 为( )A .﹣3B .2C .﹣D .﹣2.函数y=﹣图象上有两点A (x 1,y 1)和B (x 2,y 2),若y 1<y 2<0,则下列关于x 1、x 2的大小关系正确的是( )A .x 1>x 2B .x 1=x 2C .x 1<x 2D .无法确定3.若反比例函数y=图象经过点(5,﹣1),该函数图象在( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限4.在同一坐标系中函数y=kx 和y=的大致图象必是( )A .B .C .D .5.如图,平行四边形ABCD 中,点A 在反比例函数y=(k ≠0)的图象上,点D 在y 轴上,点B 、点C 在x 轴上.若平行四边形ABCD 的面积为10,则k 的值是( )A.﹣10 B.﹣5 C.5 D.10 6.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,=3.则k的值为()若S△AOCA.2 B.1.5 C.4 D.67.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,且与直角边AB相交于点C.若点B的坐标为(4,6),则△AOC的面积为()A.3 B.6 C.9 D.129.已知直线y=x与函数y=(k≠0)图象的一个交点的横坐标为4,则另一个交点的纵坐标是()A.2 B.C.﹣D.﹣210.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△=.则k的值为()ADCA.B.16 C.D.10 二.填空题11.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,=3,则S 连接OA,BC,已知点C(2,0),BD=2,S△BCD= .△AOC12.若正比例函数y=﹣x的图象与反比例函数y=(k≠)的图象有公共点,则k的取值范围是13.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD 的面积为6,则k= .14.如图,△ABC是等边三角形,顶点C在y轴的负半轴上,点A(1,),点B在第一象限,经过点A的反比例函数y=(x>0)的图象恰好经过顶点B,则△ABC的边长为.15.如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为.16.如图:M为反比例函数y=图象上一点,MA⊥y轴于A,S=4时,k= .△MAO17.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB 斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为.三.解答题18.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n 为常数,且n≠0)的图象在第二象限交于点C.CD⊥x 轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.19.如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥x轴于C.(1)求出k,b及m的值.(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是.(3)若P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.20.如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k≠0)的图象经过点B .(1)求反比例函数的解析式;(2)若点E 恰好落在反比例函数y=上,求平行四边形OBDC 的面积.21.如图,直线y 1=﹣x+4,y 2=x+b 都与双曲线y=交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式x+b >的解集;(3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.22.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.23.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B (0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P 的坐标.参考答案一.选择题(共10小题)1.解:反比例函数y=﹣中常数k 为﹣, 故选:D .2.解:∵函数y=﹣中,k=﹣2,∴在每个象限内,y 随着x 的增大而增大, 又∵A (x 1,y 1)和B (x 2,y 2)中y 1<y 2<0, ∴点A 和点B 在第四象限,∴x 1<x 2,故选:C .3.解:∵反比例函数y=的图象经过点(5,﹣1), ∴k=5×(﹣1)=﹣5<0,∴该函数图象在第二、四象限.故选:D .4.解:在同一坐标系中函数y=kx 和y=的大致图象必是,故选:C .5.解:作AE ⊥BC 于E ,如图,∵四边形ABCD 为平行四边形,∴AD ∥x 轴,∴四边形ADOE 为矩形,∴S 平行四边形ABCD =S 矩形ADOE ,而S 矩形ADOE =|﹣k|,∴|﹣k|=10,∵k <0,∴k=﹣10.故选:A .6.解:如图,分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y 轴于点G ,BE ⊥x 轴于点E ,∵k >0,点A 是反比例函数图象上的点,∴S △AOD =S △AOF =|k|,∵A 、B 两点的横坐标分别是a 、3a ,∴AD=3BE ,∴点B 是AC 的三等分点,∴DE=2a ,CE=a ,∴S △AOC =S 梯形ACOF ﹣S △AOF =(OE+CE+AF )×OF ﹣|k|=×5a ×﹣|k|=3,解得k=1.5.故选:B .7.解:作DH ⊥OA 于H .∵B (4,6),OD=DB ,∴D (2,3),∴S △ODH =×2×3=3,∵S △AOC =S △ODH =,∴S △AOC =3,故选:A .8.解:A 、由反比例函数图象得函数y=(k 为常数,k ≠0)中k >0,根据一次函数图象可得﹣k >0,则k <0,则选项错误;B 、由反比例函数图象得函数y=(k 为常数,k ≠0)中k >0, 根据一次函数图象可得﹣k >0,则k <0,则选项错误;C 、由反比例函数图象得函数y=(k 为常数,k ≠0)中k <0,根据一次函数图象可得﹣k <0,则k >0,则选项错误;D 、由反比例函数图象得函数y=(k 为常数,k ≠0)中k >0,根据一次函数图象可得﹣k <0,则k >0,故选项正确. 故选:D .9.解:把x=4代入y=x ,可得y=2,即一个交点的坐标为(4,2),∵直线y=x 与函数y=(k ≠0)图象的两个交点关于原点对称,∴另一个交点为(﹣4,﹣2),∴另一个交点的纵坐标是﹣2,故选:D .10.解:作AE ⊥OD 于E ,CF ⊥OD 于F .∵BC :CD=2:1,S △ADC =,∴S △ACB =,∵OA=AB ,∴B (2m ,2n ),S △AOC =S △ACB =,∵A 、C 在y=上,BC=2CD ,∴C (m , n ),∵S △AOC =S △AOE +S 梯形AEFC ﹣S △OCF =S 梯形AEFC ,∴•(n+n )×m=,∴mn=16,故选:B .二.填空题(共7小题)11.解:∵BD ⊥CD ,BD=2,∴S △BCD =BD •CD=3,即CD=3,∵C (2,0),即OC=2,∴OD=OC+CD=2+3=5,∴B (5,2),代入反比例解析式得:k=10,即y=,则S △AOC =5,故答案为:512.解:∵正比例函数y=﹣x 的图象与反比例函数y=(k≠)的图象有公共点,∴﹣x=, ∴x 2+4k ﹣2=0有解,∴△=0﹣16k+8≥0,解得k ≤且k ≠∴k <故答案为:k <13.解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO =S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣314.解:如图延长AB到D,使得AB=BD,连接CD,作AH ⊥y轴于H,DE⊥y轴于E.设C(0,c).∵△ABC是等边三角形,∴AB=AC=BC,∵AB=BD,∴BA=BC=BD,∴△ACD是直角三角形,∵∠CAD=60°,∴DC=AC,∵∠ACD=∠AHC=∠DEC=90°,∴∠ACH+∠DCE=90°,∵∠ECD+∠CDE=90°,∴∠ACH=∠CDE,∴△ACH∽△CDE,∴===,∵A(1,),∴AH=1,CH=﹣c,∴EC=,DE=﹣c,∴D(﹣c,c﹣),∵BA=BD,∴B(,),∵A、B在y=上,∴=×,整理得:4c2﹣16c﹣11=0,解得c=﹣或(舍弃),∴C(0,﹣),∴AC===2,15.解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴==,∵点A的坐标为(4,2),∴AC=2,OC=4,∴AO==2,∴==即BD=8,DO=4,∴B(﹣4,8),∵反比例函数y=的图象经过点B,∴k的值为﹣4×8=﹣32.16.解:∵MA⊥y轴,∴S=|k|=4,△AOM∵k<0,∴k=﹣8.故答案为﹣8.17.解:∵点B的坐标为(2,3),点C为OB的中点,∴C点坐标为(1,1.5),∴k=1×1.5=1.5,即反比例函数解析式为y=,∴S=×1.5=.△OAD故答案为:.三.解答题(共6小题)18.解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C 坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A (6,0),B (0,12)代入y=kx+b 得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x 1=10,x 2=﹣4当x=10时,y=﹣8∴点E 坐标为(10,﹣8)∴S △CDE =S △CDA +S △EDA =(3)不等式kx+b ≤,从函数图象上看,表示一次函数图象不高于反比例函数图象∴由图象得,x ≥10,或﹣4≤x <019.解:(1)把B (﹣1,2)代入y=得m=﹣1×2=﹣2,把A (﹣4,a )代入y=﹣得a=﹣=,把A (﹣4,),B (﹣1,2)代入y=kx+b ,得,解得:,∴k=,b=,m=﹣2;(2)结合图象可得:在第二象限内,当y 1>y 2时,x 的取值范围是﹣4<x <﹣1,故答案为﹣4<x <﹣1;(3)设点P 的横坐标为x P ,∵AC ⊥x 轴,点A (﹣4,),∴AC=.∵△PCA 的面积等于,∴××[x P ﹣(﹣4)]=,解得x P =﹣2,∵P 是线段AB 上的一点,∴y P =×(﹣2)+=,∴点P 的坐标为(﹣2,).20.解:(1)把B 坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=36.=﹣x+4,可得m=﹣1+4=3,21.解:(1)把A(1,m)代入y1∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;=﹣x+4,令y=0,则x=4,(3)y1∴点B的坐标为(4,0),=x+b,可得3=+b,把A(1,3)代入y2∴b=,=x+,∴y2令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P (﹣,0)或(,0).22.解:(1)由题意得,10xy=100,∴y=(x >0);(2)当x=2cm 时,y==5(cm ).23.解:(1)∵反比例函数y=(m ≠0)的图象过点A (3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b 的图象过点A (3,1)和B (0,﹣2).∴,解得:,∴一次函数的表达式为y=x ﹣2;(2)令y=0,∴x ﹣2=0,x=2,∴一次函数y=x ﹣2的图象与x 轴的交点C 的坐标为(2,0). ∵S △ABP =3,PC ×1+PC ×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).。
反比例函数 北师大版数学九年级上册素养提升卷(含解析)
第六章反比例函数单元大概念素养目标1反比例函数基础过关全练知识点1反比例函数1.(2023四川成都十八中月考)下列函数中,不是反比例函数的是()A.xy=-5B.y=−5x C.y=x5D.y=13x2.若y=m+1x是y关于x的反比例函数,则m的取值范围是()A.m>-1B.m≠-1C.m<-1D.m≠03.在下列关系式中,x均为自变量,哪些是反比例函数?每一个反比例函数相应的k值是多少?(1)y=5x ;(2)y=0.4x-1;(3)y=x2;(4)xy=2;(5)y=6x+3;(6)xy=-7;(7)y=5x2;(8)y=13x.知识点2反比例函数表达式的确定4.已知y是x的反比例函数,且x=-2时,y=3,则y与x的函数关系式为.5.【教材变式·P150T3】y是x的反比例函数,下表给出了x与y的一些值.(1)请你根据表格信息写出y与x之间的函数关系式;(2)根据函数关系式完成上表.知识点3根据实际问题列反比例函数的表达式6.(2022山东泰安泰山期中)若等腰三角形的面积为6,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=12x B.y=x12C.y=6xD.y=3x7.下列各组的两个变量间满足反比例函数关系的是()A.圆的面积S与它的半径rB.等腰三角形的周长l一定时,它的底边长y与腰长xC.三角形面积S一定时,它的一边长a与该边上的高hD.圆的周长C与它的半径r8.【新课标例72变式】(2023河南漯河临颍月考)某工人打算利用一块不锈钢加工一个面积为0.8 m2的矩形模具.假设模具的长与宽分别为y m 与x m.(1)你能写出y与x之间的函数表达式吗?变量y与x之间是什么函数?(2)若想使此模具的长比宽多1.6 m,分别求它的长和宽.能力提升全练9.(2023贵州铜仁石阡质检,18,★★☆)已知函数y=(m2-2m)x m2−m−1.(1)若y是关于x的正比例函数,求m的值;(2)若y是关于x的反比例函数,求m的值,并写出此时y与x的函数关系式.10.(2021上海静安期末,23,★★☆)已知y=y1+y2,y1与(x-1)成反比例,y2与x成正比例,且当x=2时,y1=4,y=2.(1)求y关于x的函数解析式;(2)求当x=3时y的值.素养探究全练11.【模型观念】在生活中不难发现这样的例子:三个量a,b和c之间存在着数量关系a=bc.例如:长方形的面积=长×宽,匀速运动的路程=速度×时间.(1)如果三个量a,b和c之间有着数量关系a=bc,那么:①当a=0时,必须且只需;②当b(或c)为非零定值时,a与c(或b)之间是函数关系;③当a(a≠0)为定值时,b与c之间是函数关系.(2)请你编一道有实际意义的应用题,解题所列的方程符合数量关系:ax =bx−c(其中x为未知数,a,b,c为已知数,不必解方程).答案全解全析基础过关全练(k为常数,k≠0);②xy=k(k为常1.C反比例函数的三种形式为①y=kx数,k≠0);③y=kx-1(k为常数,k≠0).由此可知:只有y=x不是反比例函数,其5他都是反比例函数,故选C.2.B∵y=m+1是y关于x的反比例函数,∴m+1≠0,∴m≠-1,故选B.x3.解析(1)(2)(4)(6)是反比例函数,相应的k值分别是5,0.4,2,-7.4.y=-6x(k≠0),因为x=-2时,y=3,所以k=-6,解析设y与x的函数关系式为y=kx.所以y=-6x,5.解析(1)设y与x之间的函数关系式为y=kx.由题表可知,当x=1时,y=4,∴k=4,∴y与x之间的函数关系式为y=4x (2)补全表格如下:xy=6, 6.A∵等腰三角形的面积为6,底边长为x,底边上的高为y,∴12.∴y与x的函数关系式为y=12x7.C选项A,S=πr2,不是反比例函数关系,故本选项不符合题意;选项B,y=l-2x,不是反比例函数关系,故本选项不符合题意;,是反比例函数关系,故本选项符合题意;选项C,a=2Sℎ选项D,C=2πr,不是反比例函数关系,故本选项不符合题意.故选C.8.解析 (1)由题意可得xy =0.8,∴y =0.8x,∴y 是x 的反比例函数.(2)∵长比宽多1.6 m ,∴y =x +1.6,∴x (x +1.6)=0.8,解得x 1=-2(不合题意,舍去),x 2=0.4,∴y =0.4+1.6=2.答:长为2 m ,宽为0.4 m . 能力提升全练9.解析 (1)由y =(m 2-2m )x m 2−m−1是正比例函数,得m 2-m -1=1且m 2-2m ≠0,解得m =-1. (2)由y =(m 2-2m )xm 2−m−1是反比例函数,得m 2-m -1=-1且m 2-2m ≠0,解得m =1.故y 与x 的函数关系式为y =-x -1. 10.解析 (1)设y 1=k 1x−1(k 1≠0),y 2=k 2x (k 2≠0),∴y =k 1x−1+k 2x ,把x =2,y 1=4和x =2,y =2分别代入得{k 1=4,k 1+2k 2=2,解得{k 1=4,k 2=−1,∴y 关于x 的函数解析式为y =4x−1-x.(2)当x =3时,y =43−1-3=-1.素养探究全练11.解析 (1)①b 或c 中至少有一个为零.②正比例.③反比例. (2)(答案不唯一)某零件厂举行零件加工竞赛,参赛的有甲、乙两名选手,甲选手每小时比乙选手多加工c 个零件,已知甲选手加工a 个零件用的时间和乙选手加工b 个零件用的时间相同,请问甲选手每小时加工多少个零件?解:设甲选手每小时加工x 个零件,则乙选手每小时加工(x -c )个零件, ∵甲选手加工a 个零件用的时间和乙选手加工b 个零件用的时间相同,∴ax =b x−c.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《反比例函数》提高训练一、选择题(本大题共5小题,共25.0分)1.(5分)下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数B.等边三角形的面积与它的边长C.长方形的长a不变时,长方形的周长C与它的宽bD.货物的总价A一定时,货物的单价a与货物的数量x2.(5分)下列函数中,y与x之间是反比例函数关系的是()A.xy=B.3x+2y=0C.y=D.y=3.(5分)若函数y=kx k﹣2是反比例函数,则k=()A.1B.﹣1C.2D.34.(5分)若函数y=(m+1)是反比例函数,则m的值为()A.m=1B.m=﹣1C.m=±1D.m≠﹣1 5.(5分)下列函数中,不是反比例函数的是()A.xy=2B.y=﹣(k≠0)C.y=D.x=5y﹣1二、填空题(本大题共5小题,共25.0分)6.(5分)已知函数y=(m+1)是反比例函数,则m的值为.7.(5分)若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为.8.(5分)若函数y=(m﹣2)x|m|﹣3是反比例函数,则m=;使分式有意义的x的取值范围是.9.(5分)判断下面哪些式子表示y是x的反比例函数?①;②y=5﹣x;③;④;解:其中是反比例函数,而不是.10.(5分)已知函数y=(k+1)x|k|﹣3是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为.三、解答题(本大题共5小题,共50.0分)11.(10分)函数y=(m﹣2)x是反比例函数,则m的值是多少?12.(10分)列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.13.(10分)如果函数y=m是一个经过二、四象限的反比例函数,则求m 的值和反比例函数的解析式.14.(10分)给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例.15.(10分)已知关于x、y的反比例函数的解析式为y=,确定a的值,求这个函数关系式.《反比例函数》提高训练参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数B.等边三角形的面积与它的边长C.长方形的长a不变时,长方形的周长C与它的宽bD.货物的总价A一定时,货物的单价a与货物的数量x【分析】形如y=(k为常数,k≠0)的函数称为反比例函数.看两个变量是否具有反比例关系,主要看它们的乘积是否为非0常数.【解答】解:A、商一定时(不为零),被除数与除数是正比例函数,故A错误;B、等边三角形的面积与它的边长是二次函数,故B错误;C、长方形的长a不变时,长方形的周长C与它的宽b是一次函数,故C错误;D、货物的总价A一定时,货物的单价a与货物的数量x是反比例函数,故D正确;故选:D.【点评】本题考查了反比例函数,正确区分正比例函数与反比例函数是解题关键.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系.2.(5分)下列函数中,y与x之间是反比例函数关系的是()A.xy=B.3x+2y=0C.y=D.y=【分析】根据反比例函数的定义,解析式符合y=(k≠0)的形式为反比例函数.【解答】解:A、xy=属于反比例函数,故此选项正确;B、3x+2y=0是一次例函数,故此选项错误;C、y=(k≠0),不属于反比例函数,故此选项错误;D、y=,是y与x+1成反比例,故此选项错误.故选:A.【点评】本题考查了反比例函数的定义,注意在解析式的一般式y=(k≠0)中,特别注意不要忽略k≠0这个条件.3.(5分)若函数y=kx k﹣2是反比例函数,则k=()A.1B.﹣1C.2D.3【分析】根据反比例函数的定义列出关于k的方程,然后解方程即可.【解答】解:根据题意,得k﹣2=﹣1,且k≠0,解得,k=1.故选:A.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y =kx﹣1(k≠0)的形式.4.(5分)若函数y=(m+1)是反比例函数,则m的值为()A.m=1B.m=﹣1C.m=±1D.m≠﹣1【分析】根据反比例函数的定义.即y=(k≠0),只需令m2﹣2=﹣1、m+1≠0即可.【解答】解:由题意得:m2﹣2=﹣1且m+1≠0;解得m=±1,又m≠﹣1;∴m=1.故选:A.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y =kx﹣1(k≠0)的形式.5.(5分)下列函数中,不是反比例函数的是()A.xy=2B.y=﹣(k≠0)C.y=D.x=5y﹣1【分析】根据反比例函数的定义,反比例函数的一般式是y=(k≠0)判定即可.【解答】解:A、B、D选项都符合反比例函数的定义;C选项不是反比例函数.故选:C.【点评】本题考查了反比例函数的定义,重点是掌握反比例函数解析式的一般式y=(k≠0).二、填空题(本大题共5小题,共25.0分)6.(5分)已知函数y=(m+1)是反比例函数,则m的值为1.【分析】根据反比例函数的定义知m2﹣2=﹣1,且m+1≠0,据此可以求得m的值.【解答】解:∵y=(m+1)x m2﹣2是反比例函数,∴m2﹣2=﹣1,且m+1≠0,∴m=±1,且m≠﹣1,∴m=1;故答案是:1.【点评】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.7.(5分)若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为2.【专题】11:计算题.【分析】由于函数y=(m+2)x|m|﹣3是反比例函数,根据反比例函数的定义得到m+2≠0且|m|﹣3=﹣1,然后去绝对值和解不等式即可得到m的值.【解答】解:∵函数y=(m+2)x|m|﹣3是反比例函数,∴m+2≠0且|m|﹣3=﹣1,解得m=±2,∴m=2.故答案为2.【点评】本题考查了反比例函数的定义:若两个变量x与y满足y=(k≠0)的关系式,则y与x称为反比例函数.8.(5分)若函数y=(m﹣2)x|m|﹣3是反比例函数,则m=﹣2;使分式有意义的x的取值范围是x≥﹣2且x≠0.【分析】由反比例函数的定义得到|m|﹣3=﹣1且m﹣2≠0,由此求得m的值.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:依题意得:|m|﹣3=﹣1且m﹣2≠0,解得m=﹣2.根据题意得:x+2≥0且x≠0,解得:x≥﹣2且x≠0.故答案为:﹣2;x≥﹣2且x≠0.【点评】本题考查了反比例函数的定义,反比例函数的一般形式是(k≠0)或y=kx﹣1.同时考查了分式、二次根式有意义的条件:分式有意义,分母不为0;二次根式的被开方数是非负数.应注意在求得取值后应排除不在取值范围内的值.9.(5分)判断下面哪些式子表示y是x的反比例函数?①;②y=5﹣x;③;④;解:其中①③④是反比例函数,而②不是.【分析】x,y相乘为一个常数,或者形如(k≠0)的函数为反比例函数,不属于上述两个形式的函数不是反比例函数.【解答】解:①x,y相乘为一个常数,可以整理为(k≠0)的形式,是反比例函数;③④符合(k≠0)的形式,是反比例函数;②不符合反比例函数的一般形式;故答案为①③④;②.【点评】考查反比例函数的定义,用到的知识点为:x,y相乘为一个常数,或者形如(k≠0)的函数为反比例函数.10.(5分)已知函数y=(k+1)x|k|﹣3是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为2.【分析】此题应根据反比例函数的定义求得k的值,再由正比例函数图象的性质确定出k的最终取值.【解答】解:∵y=(k+1)x|k|﹣3是反比例函数,且正比例函数y=kx的图象经过第一、三象限,∴解之得k=2.【点评】本题考查了反比例函数的定义及正比例函数的性质,涉及的知识面较广,需重点掌握.三、解答题(本大题共5小题,共50.0分)11.(10分)函数y=(m﹣2)x是反比例函数,则m的值是多少?【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的定义去判断.【解答】解:∵y=(m﹣2)x是反比例函数,∴3﹣m2=﹣1,m﹣2≠0,解得:m=﹣2.故m的值为﹣2.【点评】此题主要考查了反比例函数的定义,正确把握定义是解题关键.反比例函数的形式为y=kx﹣1(k为常数,k≠0).12.(10分)列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【分析】根据反比例函数的定义,可得答案.【解答】解:(1)由平均数,得x=,即y=是反比例函数;(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数;(3)由路程与时间的关系,得t=,即t=是反比例函数.【点评】本题考查了反比例函数,利用反比例函数的定义是解题关键.13.(10分)如果函数y=m是一个经过二、四象限的反比例函数,则求m 的值和反比例函数的解析式.【分析】根据反比例函数的性质可知,反比例函数过二、四象限则比例系数为负数,据此即可写出函数解析式.【解答】解:∵反比例函数y=m是图象经过二、四象限,∴m2﹣5=﹣1,m<0,解得m=﹣2,∴解析式为y=.【点评】此题考查了反比例函数的图象和性质,解题的关键是利用定义列出方程.14.(10分)给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例.【分析】根据反比例函数的定义及形式y=(k≠0)可判断各个命题的真假.【解答】解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.故正确.(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.【点评】本题考查了反比例函数的定义,属于基础题,关键是掌握反比例函数解析式的一般形式(k≠0).15.(10分)已知关于x、y的反比例函数的解析式为y=,确定a的值,求这个函数关系式.【分析】根据(k≠0)是反比例函数,可得答案.【解答】解:由反比例函数的解析式为y=,得,解得a=3,a=﹣3(不符合题意要舍去).【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y =kx﹣1(k≠0)的形式.《反比例函数的图象与性质》提高训练一、选择题(本大题共5小题,共25.0分)1.(5分)若点A(3,4)是反比例函数图象上一点,则下列说法正确的是()A.图象分别位于二、四象限B.点(2,﹣6)在函数图象上C.当x<0时,y随x的增大而减小D.当y≤4时,x≥32.(5分)已知点M(﹣3,4)在双曲线y=上,则下列各点在该双曲线上的是()A.(3,4)B.(﹣4,﹣3 )C.(4,3 )D.(3,﹣4)3.(5分)对于每一象限内的双曲线y=,y都随x的增大而增大,则m的取值范围是()A.m>﹣4B.m>4C.m<﹣4D.m<44.(5分)如图所示,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+8于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤12B.2≤k≤7C.7≤k≤12D.2≤k≤16 5.(5分)若点(﹣6,y1)、(﹣2,y2)、(5,y3)都在反比例函数y=(k<0)的图象上,则有()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y1>y2二、填空题(本大题共5小题,共25.0分)6.(5分)如图,若点A在反比例函数y=(k≠0)的图象上,M⊥x轴于点M,△AMO的面积为5,则k=.7.(5分)如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△P AB,使AB落在x轴上,则△POB的面积为.8.(5分)已知反比例函数y=,点A(m,y1),B(m+2,y2)是函数图象上两点,且满足=﹣,则k的值为9.(5分)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是.10.(5分)如果一个正比例函数的图象与反比例函数y=﹣的图象交于A(x1,y1),B(x2,y2)两点,那么(x2﹣x1)(y2﹣y1)的值为.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,求矩形ABCD的周长.12.(10分)如图,在平面直角坐标系xOy中,直线y1=kx+6与函数y2=(x >0)的图象的两个交点分别为A(a,1)、B.(1)求k,a的值及点B的坐标;(2)过点P(n,0)作x轴的垂线,与直线y1=kx+6和函数y2=(x>0)的图象分别交于点M,N,当点M在点N上方时,写出n的取值范围.13.(10分)如图,直线y=x+2与坐标轴相交于A,B两点,与反比例函数y=在第一象限交点C(1,a).求:(1)反比例函数的解析式;(2)△AOC的面积;(3)不等式x+2﹣<0的解集(直接写出答案).14.(10分)如图所示,在平面直角坐标系中,一次函数y=ax+1(a≠0)与反比例函数y=(k≠0)的图象交于A、D两点,AB⊥x轴于点B,tan∠AOB =,△AOB的面积为3.(1)求反比例函数和一次函数的解析式;(2)求△AOD的面积;(3)当x为何值时,一次函数值不小于反比例函数值.15.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.《反比例函数的图象与性质》提高训练参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)若点A(3,4)是反比例函数图象上一点,则下列说法正确的是()A.图象分别位于二、四象限B.点(2,﹣6)在函数图象上C.当x<0时,y随x的增大而减小D.当y≤4时,x≥3【分析】先根据点A(3、4)是反比例函数图象上一点求出k的值,求出函数的解析式,由此函数的特点对四个选项进行逐一分析.【解答】解:∵点A(3,4)是反比例函数图象上一点,∴k=xy=3×4=12,∴此反比例函数的解析式为y=,A、因为反比例函数的解析式为y=,k=12>0,所以此函数的图象位于一、三象限,故本选项错误;B、因为2×(﹣6)=﹣12≠12,所以点(2、﹣6)不在此函数的图象上,故本选项错误;C、因为此反比例函数的解析式为y=,k=12>0,所以在每一象限内y随x的增大而减小,故本选项正确;D、当y≤4时,即y≤4,解得x<0或x≥3,故本选项错误.故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,根据题意求出反比例函数的解析式是解答此题的关键.2.(5分)已知点M(﹣3,4)在双曲线y=上,则下列各点在该双曲线上的是()A.(3,4)B.(﹣4,﹣3 )C.(4,3 )D.(3,﹣4)【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k进行分析即可.【解答】解:∵M(﹣3,4)在双曲线y=上,∴k=﹣3×4=﹣12,A、3×4=12≠﹣12,故此点一定不在该双曲线上;B、﹣4×(﹣3)=12≠﹣12,故此点一定不在该双曲线上;C、4×3=12≠﹣12,故此点一定不在该双曲线上;D、3×(﹣4)=﹣12,故此点一定在该双曲线上;故选:D.【点评】此题主要考查了反比例函数图象上点的坐标特征,关键是掌握凡是反比例函数y=经过的点横纵坐标的积是定值k.3.(5分)对于每一象限内的双曲线y=,y都随x的增大而增大,则m的取值范围是()A.m>﹣4B.m>4C.m<﹣4D.m<4【分析】根据反比例函数的性质可以得到m的取值范围,本题得以解决.【解答】解:∵对于每一象限内的双曲线y=,y都随x的增大而增大,∴m+4<0,解得,m<﹣4,故选:C.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.4.(5分)如图所示,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+8于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤12B.2≤k≤7C.7≤k≤12D.2≤k≤16【分析】根据题意可知当k最小时正好过点C,当直线y=﹣x+8与反比例函数y =(x>0)只有一个交点时,k取得最大值,从而可以求得k的取值范围,本题得以解决.【解答】解:∵反比例函数y=(x>0)的图象与△ABC有公共点,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+8于A、B两点,∴1×2≤k且y=﹣x+8与y=(x>0)至少一个交点,∴k≥2且﹣x+8=(x>0)至少有一个解,解得,2≤k≤16,故选:D.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.5.(5分)若点(﹣6,y1)、(﹣2,y2)、(5,y3)都在反比例函数y=(k<0)的图象上,则有()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y1>y2【分析】根据点在反比例函数图象上可用含k的代数式表示出y1、y2、y3的值,再根据k<0,即可得出结论.【解答】解:∵点(﹣6、y1),(﹣2、y2),(5、y3)都在反比例函数y=(k <0)的图象上,∴y1=﹣,y2=﹣,y3=,∵k<0,∴<0<﹣<﹣,即y2>y1>y3.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是用含k的代数式表示出y1、y2、y3的值.本题属于基础题,难度不大,解决该题型题目时,根据点在反比例函数图象上,找出点的横纵坐标之间的关系是关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,若点A在反比例函数y=(k≠0)的图象上,M⊥x轴于点M,△AMO的面积为5,则k=﹣10.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【解答】解:因为△AMO的面积为5,所以|k|=2×5=10.又因为图象在二,四象限,所以k<0,所以k=﹣10.故答案为:﹣10.【点评】主要考查了反比例函数y=中k的几何意义,即在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.7.(5分)如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△P AB,使AB落在x轴上,则△POB的面积为2+.【分析】易求得点P的坐标,即可求得点B坐标,即可解题.【解答】解:作PD⊥OB,∵P(m,m)是反比例函数y=在第一象限内的图象上一点,∴m=,解得:m=2,∴PD=2,∵△ABP是等边三角形,∴BD=PD=,=OB•PD=(OD+BD)•PD=2+,∴S△POB故答案为:2+.【点评】本题考查了等边三角形的性质,考查了反比例函数点坐标的特性,本题中求得m的值是解题的关键.8.(5分)已知反比例函数y=,点A(m,y1),B(m+2,y2)是函数图象上两点,且满足=﹣,则k的值为4【分析】根据题意可以用含k的式子表示出y1和y2,然后根据=﹣,即可求得k的值.【解答】解:∵反比例函数y =,点A (m ,y 1),B (m +2,y 2)是函数图象上两点, ∴y 1=,y 2=,∵=﹣, ∴=﹣,解得,k =4, 故答案为4.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,求出k 的值,利用反比例函数的性质解答. 9.(5分)如图,A ,B 是反比例函数y =在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是 3 .【分析】先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S梯形ABDC,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =(BD +AC )•CD =(1+2)×2=3,从而得出S △AOB =3. 【解答】解:∵A ,B 是反比例函数y =在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4, ∴当x =2时,y =2,即A (2,2), 当x =4时,y =1,即B (4,1).如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =×4=2.∵S四边形AODB =S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB =S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,∴S△AOB=3.故答案是:3.【点评】主要考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.10.(5分)如果一个正比例函数的图象与反比例函数y=﹣的图象交于A(x1,y1),B(x2,y2)两点,那么(x2﹣x1)(y2﹣y1)的值为﹣16.【分析】正比例函数的图象与反比例函数y=﹣的图象交于的两交点坐标关于原点对称,依此可得x1=﹣x2,y1=﹣y2,将(x2﹣x1)(y2﹣y1)展开,依此关系即可求解.【解答】解:∵正比例函数的图象与反比例函数y=﹣的图象交于A(x1,y1),B(x2,y2)两点,关于原点对称,依此可得x1=﹣x2,y1=﹣y2,∴(x2﹣x1)(y2﹣y1)=x2y2﹣x2y1﹣x1y2+x1y1=x2y2+x2y2+x1y1+x1y1=﹣4×4=﹣16.故答案为:﹣16.【点评】本题考查了反比例函数与正比例函数的交点问题,正比例函数与反比例函数的两交点坐标关于原点对称.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,求矩形ABCD的周长.【分析】根据题意可以求得点D和点B的坐标,然后根据点A的坐标,即可求得AD和AB的长,再根据矩形的周长计算公式即可解答本题.【解答】解:当x=2时,y=3,当y=1时,x=6∵矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,∴点D的坐标为(2,3),点B的坐标为(6,1),∴AD=3﹣1=2,AB=6﹣2=4,∴矩形ABCD的周长是:(2+4)×2=12.【点评】本题考查反比例函数图象上点的坐标特征、矩形的性质,解答本题的关键是明确题意,利用反比例函数的性质和矩形的性质解答.12.(10分)如图,在平面直角坐标系xOy中,直线y1=kx+6与函数y2=(x >0)的图象的两个交点分别为A(a,1)、B.(1)求k,a的值及点B的坐标;(2)过点P(n,0)作x轴的垂线,与直线y1=kx+6和函数y2=(x>0)的图象分别交于点M,N,当点M在点N上方时,写出n的取值范围.【分析】(1)将点A坐标代入两个解析式,可求a的值,k的值,两个解析式组成方程组,可求点B的坐标;(2)由图象可直接得到.【解答】解:(1)∵函数y2=(x>0)的图象过点A(a,1)∴a=5∵直线y1=kx+6过点A(5,1)∴1=5k+6∴k=﹣1∴直线解析式:y1=﹣x+6∴∴,∴点B的坐标为(1,5)(2)由图象可得:当1<n<5时,点M在点N上方.【点评】本题考查了反比例函数和一次函数的交点问题,利用待定系数法求解析式是本题的关键.13.(10分)如图,直线y=x+2与坐标轴相交于A,B两点,与反比例函数y=在第一象限交点C(1,a).求:(1)反比例函数的解析式;(2)△AOC的面积;(3)不等式x+2﹣<0的解集(直接写出答案).【分析】(1)将点C坐标分别代入直线y=x+2和反比例函数y=,可求点C 坐标,即可求反比例函数的解析式;(2)由题意可得点A(0,2),点B(﹣2,0),即可求△AOC的面积;(3)列出方程组可求直线y=x+2和反比例函数y=的交点坐标,根据图象可求不等式x+2﹣<0的解集.【解答】解:(1)∵点C(1,a)在直线y=x+2上,∴a=1+2=3∴点C(1,3)∵点C在反比例函数y=图象上,∴k=1×3=3∴反比例函数的解析式y=(2)∵直线y=x+2与坐标轴相交于A,B两点,∴点A(0,2),点B(﹣2,0)∴OA=2∴S=×1×2=1△AOC(3)∵解得:,∴直线y=x+2与反比例函数y=的交点为(1,3),(﹣3,﹣1)∴不等式x+2﹣<0的解集为:x<﹣3或0<x<1【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求解析式,利用数形结合思想解不等式是本题的关键.14.(10分)如图所示,在平面直角坐标系中,一次函数y=ax+1(a≠0)与反比例函数y=(k≠0)的图象交于A、D两点,AB⊥x轴于点B,tan∠AOB =,△AOB的面积为3.(1)求反比例函数和一次函数的解析式;(2)求△AOD的面积;(3)当x为何值时,一次函数值不小于反比例函数值.【分析】(1)求出A的坐标,代入两函数的解析式,求出即可;(2)求出两函数的解析式组成的方程组,求出方程组的解,即可得出D的坐标,求出C的坐标,根据三角形的面积公式求出即可;(3)由图象直接可得.【解答】解:(1)∵tan∠AOB==,∴设AB=3a,BO=2a,∵△ABO 的面积为3,∴•3a •2a =3,解得a =1,∴AB =3,OB =2,∴A 的坐标是(2,3),把A 的坐标代入y =得:k =6,∴反比例函数的解析式是:y =, 把A 的坐标代入y =ax +1得:3=2a +1得:a =1,∴一次函数的解析式是:y =x +1;(2)解方程组,得:,,∵A (2,3),∴D (﹣3,﹣2).把y =0代入y =x +1得:0=x +1,解得x =﹣1,设AD 与x 轴交于点C ,则OC =1,∴S △AOD =S △AOD +S △DOC =×1×3+×1×2=(3)由图象可得:当﹣3≤x <0或x ≥2时,一次函数值不小于反比例函数值.【点评】本题考查了一次函数与反比例函数的交点问题的应用,主要考查学生的计算能力,用了数形结合思想.15.(10分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.【分析】(1)把B(2,﹣4)代入反比例函数y=,得出m的值,再把A(﹣4,n)代入一次函数的解析式y=kx+b,运用待定系数法分别求其解析式;(2)设直线AB与y轴交于点C,把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算.【解答】(1)∵B(2,﹣4)在y=图象上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣图象上,∴n=2,∴A(﹣4,2).∵一次函数y=kx+b图象经过A(﹣4,2),B(2,﹣4),∴,解得.∴一次函数的解析式为y=﹣x﹣2;(2)设一次函数y=﹣x﹣2的图象与y轴交于C点,当x=0时,y=﹣2,∴点C(0,﹣2).∴OC=2,∴S△AOB =S△ACO+S△BCO=×2×4+×2×2=6.【点评】本题考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式;要能够熟练借助直线和y轴的交点运用分割法求得不规则图形的面积.《反比例函数的应用》提高训练一、选择题(本大题共5小题,共25.0分)1.(5分)某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V的反比例函数,其图象如图所示,当气球内的气压大于160kPa时,气球将爆炸,为了安全,气球的体积应该()A.不大于m3B.小于m3C.不小于m3D.小于m3 2.(5分)随着私家车的增加,交通也越来越拥挤,通常情况下,某段公路上车辆的行驶速度(千米/时)与路上每百米拥有车的数量x(辆)的关系如图所示,当x≥8时,y与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x应该满足的范围是()A.x<32B.x≤32C.x>32D.x≥323.(5分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()。