电磁感应基础

合集下载

高考物理电磁感应基础概念及典型题解析

高考物理电磁感应基础概念及典型题解析

高考物理电磁感应基础概念及典型题解析在高考物理中,电磁感应是一个重要且具有一定难度的知识点。

理解电磁感应的基础概念,并能够熟练解决相关的典型题目,对于在高考中取得优异成绩至关重要。

一、电磁感应基础概念1、磁通量磁通量是指穿过某一面积的磁感线的条数。

其计算公式为Φ =B·S·cosθ,其中 B 是磁感应强度,S 是面积,θ 是 B 与 S 法线方向的夹角。

如果 B 是均匀的,且 S 与 B 垂直,那么磁通量就可以简单地表示为Φ = B·S。

2、电磁感应现象当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电动势,这种现象称为电磁感应现象。

产生的感应电动势如果形成了闭合回路,就会产生感应电流。

3、楞次定律楞次定律指出,感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

简单来说,就是“来拒去留,增反减同”。

例如,当磁通量增加时,感应电流产生的磁场会阻碍磁通量的增加;当磁通量减少时,感应电流产生的磁场会阻碍磁通量的减少。

4、法拉第电磁感应定律法拉第电磁感应定律表明,感应电动势的大小与穿过回路的磁通量的变化率成正比。

公式为 E =nΔΦ/Δt,其中 n 是线圈的匝数。

二、典型题解析1、动生电动势问题例如:一根长度为 L 的导体棒,在磁感应强度为 B 的匀强磁场中,以速度 v 垂直于磁场方向做匀速直线运动。

求导体棒产生的感应电动势。

解析:根据动生电动势的公式 E = BLv,可直接得出感应电动势为E = BLv。

2、感生电动势问题假设一个面积为 S 的闭合线圈,处于均匀变化的磁场中,磁场的变化率为ΔB/Δt。

求线圈中产生的感应电动势。

解析:由法拉第电磁感应定律 E =nΔΦ/Δt,磁通量Φ = B·S,所以感应电动势 E = n SΔB/Δt 。

3、楞次定律的应用有一个闭合回路,其中的磁场在逐渐增强。

判断回路中感应电流的方向。

解析:由于磁场增强,根据楞次定律,感应电流的磁场要阻碍磁通量的增加,所以感应电流的磁场方向与原磁场方向相反。

电磁学中的电磁感应与法拉第定律

电磁学中的电磁感应与法拉第定律

电磁学中的电磁感应与法拉第定律电磁感应是电磁学中的重要概念之一,它描述了磁场和电场相互作用时产生电流的现象。

电磁感应的理论基础是法拉第定律,该定律由英国科学家迈克尔·法拉第于1831年提出。

本文将详细介绍电磁感应和法拉第定律的原理和应用。

一、电磁感应的原理电磁感应是通过磁场和电场之间的相互作用来产生电流的现象。

当磁场改变时,相应的磁通量也会发生变化,从而在电路中产生感应电流。

根据法拉第电磁感应定律,感应电动势的大小与磁场变化速率成正比,与电路中的线圈匝数成正比。

即:ε = -dΦ/dt其中,ε为感应电动势,Φ表示磁通量,t表示时间。

负号表示感应电动势的方向与磁场变化的方向相反。

二、法拉第定律的表达式迈克尔·法拉第在研究电磁感应时总结出了法拉第定律,该定律指出感应电动势与磁通量的变化成正比。

在闭合电路中,感应电动势等于磁通量的变化率乘以电路的匝数。

即:ε = -dΦ/dt = N*dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间,N表示电路中的线圈匝数。

三、电磁感应的应用电磁感应在日常生活中具有重要的应用价值。

以下是一些常见的应用示例:1. 发电机:电磁感应的原理被应用于发电机中。

通过旋转的磁场与线圈的相互作用,将机械能转换为电能。

2. 变压器:变压器利用电磁感应的原理实现电能的传输和变换。

将电能从一个线圈传到另一个线圈,根据线圈匝数的比例可以实现电压的升降。

3. 感应炉:感应炉利用高频交变电磁感应热产生热能,可用于熔炼金属、加热金属等工业领域。

4. 电动机:电动机是利用电磁感应和安培力原理实现的。

当通过电流作用于导线时,导线会受到力的作用,从而产生机械运动。

5. 感应式传感器:电磁感应也用于制造感应式传感器,例如接近开关、速度传感器等。

这些传感器能够检测周围环境中的物体或运动。

四、电磁感应的实验为了验证电磁感应的理论,可以进行一系列实验。

以下是一个简单的电磁感应实验:材料:1. 铜线圈2. 磁铁3. 电流表步骤:1. 将铜线圈绕在磁铁周围,使其成为一个闭合电路。

物理电磁感应的原理有哪些

物理电磁感应的原理有哪些

物理电磁感应的原理有哪些电磁感应是指当磁场发生变化时,在磁场中的导体中产生感应电动势和感应电流的现象。

物理电磁感应的原理涉及到法拉第电磁感应定律、楞次定律和电磁场的相互作用等方面。

首先,电磁感应的基础是法拉第电磁感应定律。

法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年发现的。

根据法拉第电磁感应定律,当磁通量通过一个闭合线圈发生变化时,线圈中将产生感应电动势,大小与磁通量的变化率成正比。

即ε= -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间。

从法拉第电磁感应定律可以看出,感应电动势的产生是由于磁通量的变化,而磁通量的变化可以是由于磁场的变化,也可以是由于线圈的位置或形状发生变化。

其次,电磁感应的原理还涉及到楞次定律。

楞次定律是由法国物理学家亨利·楞次于1834年提出的。

根据楞次定律,感应电动势的方向总是使产生它的磁通量发生变化的方式相反。

也就是说,如果磁场的变化导致线圈中产生感应电动势,那么这个感应电动势的方向将使磁场的变化受到一定的阻碍。

这样,由于相互作用,线圈和磁场就会相互影响,产生电磁感应。

此外,电磁感应的原理还与电磁场的相互作用密切相关。

根据麦克斯韦方程组,变化的磁场会产生变化的电场,变化的电场会产生变化的磁场。

这种相互作用是通过电磁波的传播来实现的。

在电磁感应中,当磁场发生变化时,产生的感应电动势将引起电流在导体中的流动,从而通过电磁场的相互作用来实现电能与磁能之间的转换。

总结起来,物理电磁感应的原理包括法拉第电磁感应定律、楞次定律和电磁场的相互作用等方面。

通过这些原理的相互作用,我们可以解释磁场变化和导体中感应电流产生的原理,也可以解释电磁感应的应用,如电磁感应发电机、变压器等的工作原理。

电磁感应是电磁学的重要基础,也是现代科技中许多应用和发展的基础之一。

电磁感应知识点总结

电磁感应知识点总结

电磁感应知识点总结电磁感应是指导体中的电流或电荷在外加磁场的作用下产生感应电动势的现象。

电磁感应是电磁学中的重要内容,也是电磁学与电动力学的基础知识之一。

下面我们将对电磁感应的相关知识点进行总结。

1. 法拉第电磁感应定律。

法拉第电磁感应定律是电磁感应的基本规律之一,它描述了磁场变化引起感应电动势的现象。

定律表述为,当导体回路中的磁通量发生变化时,回路中就会产生感应电动势。

这一定律为电磁感应现象提供了定量的描述,为电磁感应现象的应用提供了基础。

2. 感应电动势的方向。

根据法拉第电磁感应定律,我们可以得出感应电动势的方向规律。

当磁通量增加时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相同;当磁通量减小时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相反。

这一规律在电磁感应现象的分析和应用中具有重要的指导意义。

3. 感应电动势的大小。

感应电动势的大小与磁通量的变化率成正比,即。

ε = -dΦ/dt。

其中,ε表示感应电动势的大小,Φ表示磁通量,t表示时间。

这一关系式说明了磁通量的变化越快,感应电动势的大小就越大。

这一规律在电磁感应现象的定量分析中起着重要的作用。

4. 涡旋电场。

当磁场发生变化时,会在空间中产生涡旋电场。

这一现象是电磁感应的重要特征之一,也是电磁学中的重要内容。

涡旋电场的产生使得电磁感应现象更加复杂和丰富,为电磁学的研究提供了新的视角。

5. 涡旋电流。

涡旋电场的存在导致了涡旋电流的产生。

涡旋电流是一种特殊的感应电流,它的存在对电磁场的分布和能量传递产生了重要影响。

涡旋电流的研究不仅有助于理解电磁感应现象的本质,也为电磁学的应用提供了新的思路。

通过以上对电磁感应知识点的总结,我们对电磁感应现象有了更深入的理解。

电磁感应作为电磁学的重要内容,不仅在理论研究中具有重要意义,也在实际应用中发挥着重要作用。

希望我们能够深入学习和理解电磁感应的知识,为电磁学的发展和应用做出贡献。

电磁感应知识点

电磁感应知识点

第四章电磁感应知识点(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章电磁感应第一模块:电磁感应、楞次定律(先介绍右手螺旋定则)『基础知识』一、划时代的发现1、奥斯特梦圆“电生磁”奥斯特实验:在1820年4月的一次讲演中,奥斯特碰巧在南北方向的导线下面放置了一枚小磁针、当电源接通时,小磁针居然转动了(如右图)。

随后的实验证明了电流的确能使磁针偏转,这种作用称为电流的磁效应。

突破:电与磁是联系的2、法拉第心系“磁生电”1831年8月29日,法拉第终于发现了电磁感应:把两个线圈绕在同一铁环上(如右图),一个线圈接入接到电源上,另一个线圈接入“电流表”,在给一个线圈通电或断电瞬间,另一个线圈也出现了电流,这种磁生电的效应终于被发现了。

物理学中把这种现象叫做电磁感应.由电磁感应产生的电流叫做感应电流.二、感应电流的产生1、N极插入、停在线圈中和抽出(S极插入、停在线圈中和抽出)有无感应电流(如图)。

磁铁动作表针摆动方向磁铁动作表针摆动方向极插入线圈偏转S极插入线圈偏转N极停在线圈中不偏转S极停在线圈中不偏转N极从线圈中抽出偏转S极从线圈中抽出偏转实验表明产生感应电流的条件与磁场的变化有关。

2、闭合回路中的一部分导体在磁场中做切割磁感应线运动时,导体中就产生感应电流。

实验表明磁场的强弱没有变化,但是导体棒切割磁感的运动是闭合的回路EFAB包围的面积在发生变化。

这种情况下线圈中同样有感应电流。

3、磁通量定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角)单位:韦伯(Wb)物理意义:表示穿过磁场中某个面的磁感线条数磁通量虽然是标量,但有正负之分。

三、楞次定律1、S极插入线圈和抽出线圈中会有感应电流,那么他的方向会如何呢。

条形磁铁运动的情况N 极向下插入线圈N 极向上拔出线圈S极向下拔出线圈S极向上插入线圈原磁场方向(向上或向下)?向下?向下?向上?向上穿过线圈的磁通量变化情况(增加或减少)?增加?减少?减少?增加感应电流的方向(流过灵敏电流计的方向)?向左?向右?向左?向右结论:楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化2、对楞次定律中阻碍二字的正确理解“阻碍”不是阻止,这里是阻而未止。

电磁感应基础知识

电磁感应基础知识

电磁感应基础知识知识网络12、通量Φ、磁通量变化∆Φ、磁通量变化率t∆∆Φ对比表34、感应电动势在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。

a) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生感应电动势,它相当于一个电源b) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动势,磁通量发生变化的那部分相当于电源。

5、公式n E ∆Φ=与E=BLvsin θ 的区别与联系6、楞次定律a)感应电流方向的判定方法碍产生感应电流的原因i.阻碍原磁通量的变化或原磁场的变化;ii.阻碍相对运动,可理解为“来拒去留”。

iii.使线圈面积有扩大或缩小趋势;iv.阻碍原电流的变化。

知识点一—磁通量▲知识梳理磁通量1.穿过某一面积的磁感线条数,在匀强磁场中, =BS,单位是韦伯,简称韦,符号是Wb.使用条件是B为匀强磁场,S为平面在磁场方向上的投影.磁通量虽然是标量,但有正负之分.2.磁通量的物理意义磁通量指穿过某一面积的磁感线条数。

3.磁通量的单位:Wb。

4.磁通密度垂直穿过单位面积的磁感线条数,即磁感应强度的大小。

:如图所示,矩形线圈的面积为S (),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。

求线圈平面在下列情况的磁通量的改变量:绕垂直磁场的轴转过(1);(2);(3)。

解析:初位置时穿过线圈的磁通量;转过时,;转过时,;转过时,,负号表示穿过面积S的方向和以上情况相反,故:(1);(2);(3)。

负号可理解为磁通量在减少。

变式练习:1.如图所示,平面M的面积为S,垂直于匀强磁场B,求平面M由此位置出发绕与B垂直的轴线转过60°时磁通量的变化为____________,转过180°时磁通量的变化量为____________。

电磁感应基础知识

电磁感应基础知识总结【基础知识梳理】一、电磁感应现象1.磁通量(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积。

(2)公式:①二坠。

(3)单位:1Wb=1T・m2。

(4)物理意义:相当于穿过某一面积的磁感线的条数。

2.电磁感应现象(1)电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。

(2)产生感应电流的条件①条件:穿过闭合电路的磁通量发生变化。

②特【典例】闭合电路的一部分导体在磁场内做切割磁感线的运动。

(3)产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。

(4)能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。

二、楞次定律1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)适用范围:适用于一切回路磁通量变化的情况。

(3)楞次定律中“阻碍”的含义£SAAt2.右手定则(1) 内容① 磁感线穿入右手手心。

② 大拇指指向导体运动的方向。

③ 其余四指指向感应电流的方向。

(2) 适用范围:适用于部分导体切割磁感线。

三、法拉第电磁感应定律的理解和应用1.感应电动势(1) 概念:在电磁感应现象中产生的电动势。

(2) 产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。

⑶方向判断:感应电动势的方向用楞次定律或右手定则判断。

2.法拉第电磁感应定律⑴内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。

A ①(2) 公式:E=njt ,其中n 为线圈匝数。

E(3) 感应电流与感应电动势的关系:遵守闭合电路欧姆定律,即1=越。

3.磁通量变化通常有三种方式 (1) 磁感应强度B 不变,垂直于磁场的回路面积发生变化,此时E=nB-(2) 垂直于磁场的回路面积不变,磁感应强度发生变化,此时E=nA^S ,其中普是B —t图象的斜率。

电磁感应产生的电压和电流

电磁感应产生的电压和电流电磁感应是一种重要的物理现象,通过改变磁场的强度和方向可以产生电压和电流。

这一原理被广泛应用于发电机、变压器和电动机等电器设备中。

本文将系统地介绍电磁感应产生的电压和电流,并探讨其在实际应用中的重要性。

一、电磁感应基础电磁感应是由英国物理学家迈克尔·法拉第于1831年首次发现的。

他通过实验发现,当磁场的强度或方向发生变化时,可以在导体内感应出电压和电流。

这一现象被称为电磁感应。

根据法拉第电磁感应定律,导体中产生的感应电动势与导体所受磁场变化率成正比。

二、电磁感应的原理电磁感应的原理可以通过法拉第电磁感应定律来解释。

该定律表明,磁通量的变化会在导体中产生感应电动势。

磁通量是磁场通过一个平面的量度,与磁场的强度和面积有关。

如果磁通量发生变化,导体内会感应出电场力,并导致电子在导体内运动形成电流。

根据法拉第电磁感应定律,感应电动势E的大小与磁通量的变化率成正比,可以用以下公式表示:E = - N * Δ(Φ) / Δt其中,E为感应电动势,N为线圈匝数,Φ为磁通量,Δ表示变化量,t为时间。

三、电磁感应产生的电压根据电磁感应的原理,当导体与磁场相互作用,导体中就会感应出电压。

当导体处于一个恒定的磁场中,如果该导体运动或者磁场方向发生变化,都会导致磁通量的变化,从而感应出电压。

以发电机为例,当导体线圈绕过磁场时,进入磁场区域和离开磁场区域时,都会改变磁通量。

这时,导体中就会感应出交流电压。

这种电压的正负周期性变化,并且随着导体的运动而改变方向。

通过导线连接导体,就可以利用这种交流电压驱动电器设备。

四、电磁感应产生的电流除了感应电压,电磁感应还会引起导体中的电流。

当导体形成闭合回路,感应电动势就会导致电子在导体内运动形成电流。

以变压器为例,当交流电通过一个线圈时,会在另一个线圈中感应出电动势,进而产生电流。

这一过程实现了电能的传递和变压的功能。

变压器广泛应用于电力系统中,实现了高压输电、低压供电的转换。

物理电磁感应复习题集及答案

物理电磁感应复习题集及答案第一题:电磁感应基础知识1. 什么是电磁感应?2. 法拉第电磁感应定律是什么?3. 在一个圆形线圈中,磁场的变化如何影响感应电动势的大小?4. 什么是自感现象?5. 自感现象与互感现象有何异同?答案:1. 电磁感应是指当一个导体中的磁通量发生变化时,在导体中就会产生感应电动势和感应电流的现象。

2. 法拉第电磁感应定律是指导体中感应电动势的大小与磁场的变化率成正比,方向由右手定则确定。

3. 在一个圆形线圈中,磁场的变化越快,感应电动势就越大。

当磁场增强或减弱时,感应电动势的方向也会相应变化。

4. 自感现象是指一个导体中的电流变化时,导体本身会产生感应电动势和感应电流。

5. 自感现象与互感现象都是电磁感应现象,不同之处在于自感发生在导体本身,而互感发生在两个或多个相邻的线圈之间。

第二题:电磁感应的应用1. 什么是变压器?它如何工作?2. 什么是感应电动机?3. 什么是发电机?它是如何产生电能的?4. 什么是涡流?它对电磁感应有什么影响?5. 什么是励磁?6. 举例说明一种电磁感应的实际应用。

答案:1. 变压器是一种通过电磁感应原理来改变交流电压大小的电器设备。

它由一个主线圈和一个副线圈组成,通过磁场的感应作用,将输入电压变换为输出电压,实现电能的传输和变换。

2. 感应电动机是利用电磁感应原理来转换电能和机械能的装置。

它由一个定子和一个转子组成,当定子上的交流电流变化时,就会在转子上产生感应电流,从而使转子转动。

3. 发电机是一种将机械能转换为电能的装置。

它通过电磁感应原理,在导体中产生感应电动势,并通过电路系统将这种电动势转化为电流和电能的装置。

4. 涡流是指当导体中有磁场变化时,在导体内部会形成的电流环流动现象。

涡流的产生会导致能量损耗,并且会对电磁感应产生一定的影响。

5. 励磁是指为了使发电机和变压器等设备工作正常,需要通过外部电源向设备提供一定的励磁电流,以产生足够的磁场。

电磁感应的基本原理

电磁感应的基本原理电磁感应是指当导体中的磁场发生变化时,在导体内部就会产生感应电流。

这一现象是由迈克尔·法拉第于1831年首次发现,并被称为法拉第电磁感应定律。

电磁感应是现代电磁理论的基础之一,广泛应用于发电、变压器、电动机和感应加热等领域。

本文将介绍电磁感应的基本原理以及其实际应用。

一、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的基础原理,它描述了导体中感应电流的产生规律。

该定律可以用以下方程表示:ε = -dΦ/dt其中,ε代表感应电动势,Φ代表磁通量,t代表时间。

根据该定律,当磁场的磁通量发生变化时,感应电动势就会在导体中产生。

这一定律实际上是由安培定律和电磁场的相互作用推导得出的。

二、磁通量和磁感应强度磁通量表示磁场通过一个平面的总磁场量。

磁通量的计算公式为:Φ = B * A * cosθ其中,B代表磁感应强度,A代表磁场垂直平面的面积,θ代表磁场与法线方向的夹角。

根据法拉第电磁感应定律,当磁通量发生变化时,导体中就会产生感应电动势。

三、导体中的感应电流导体中感应电动势的产生会引起电子在导体内部的运动,从而形成感应电流。

导体中的感应电流遵循洛伦兹力定律,即感应电流会产生磁场,并且该磁场的方向与原磁场相反。

这一原理可以通过右手定则来理解,即让右手的拇指指向感应电流方向,食指指向磁感应强度方向,则中指的方向即为产生的磁场方向。

四、电磁感应的应用电磁感应的应用非常广泛,以下是其中几个重要的应用领域:1. 发电发电是利用电磁感应产生电能的过程。

常见的电力发电方式包括燃煤发电、水力发电和核能发电等。

在这些发电过程中,通过旋转的磁场和线圈之间的相互作用,产生感应电动势,进而产生电流,最终转化为电能。

2. 变压器变压器是利用电磁感应传输电能的重要设备。

变压器的工作原理是利用交流电的磁场变化,产生感应电动势,从而通过互感传输电能,并改变电压的大小。

通过变压器的使用,可以将电能从高压输送到低压,以满足不同用电设备的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应- 基本概念电磁感应1、磁通量设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。

(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。

(2)公式:Φ=BS当平面与磁场方向不垂直时:Φ=BS⊥=BScosθ(θ为两个平面的二面角)(3)物理意义穿过某个面的磁感线条数表示穿过这个面的磁通量。

(4)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb。

1Wb=1T·1m2=1V·s。

2、电磁感应现象(1)电磁感应现象:闭合电路的磁通量发生变化而产生电流的现象。

(2)感应电流:在电磁感应现象中产生的电流。

(3)产生电磁感应现象的条件:①两种不同表述a.闭合电路中的一部分导体与磁场发生相对运动b.穿过闭合电路的磁场发生变化②两种表述的比较和统一a.两种情况产生感应电流的根本原因不同闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。

穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流有时称为感生电流。

电磁感应b.两种表述的统一两种表述可统一为穿过闭合电路的磁通量发生变化。

③产生电磁感应现象的条件不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。

条件:a.闭合电路;b.磁通量变化3、电磁感应现象中能量的转化能的转化守恒定律是自然界普遍规律,同样也适用于电磁感应现象。

4、感应电动势(1)定义:在电磁感应现象中产生的电动势,叫做感应电动势。

从低电势位置指向高电势位置。

(2)产生感应电动势的条件:穿过回路的磁通量发生变化。

(3)物理意义:感应电动势是反映电磁感应现象本质的物理量。

(4)方向规定:内电路中的感应电流方向,为感应电动势方向。

5、反电动势:在电动机转动时,线圈中也会产生感应电动势,这个感应电动势总要削弱电源电动势的的作用,这个电动势称为反电动势。

电磁感应- 涉及知识范围电磁感应式电磁感应部分涉及两个方面的知识:一是电磁感应现象的规律。

电磁感应研究的是其他形式能转化为电能的特点和规律,其核心是法拉第电磁感应定律和楞次定律。

楞次定律表述为:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

即要想获得感应电流(电能)必须克服感应电流产生的安培力做功,需外界做功,将其他形式的能转化为电能。

法拉第电磁感应定律是反映外界做功能力的,磁通量的变化率越大,感应电动势越大,外界做功的能力也越大。

二是电路及力学知识。

主要讨论电能在电路中传输、分配,并通过用电器转化成其他形式能的特点规律。

在实际应用中常常用到电路的三个规律(欧姆定律、电阻定律和焦耳定律)和力学中的牛顿定律、动量定理、动量守恒定律、动能定理和能量守恒定律等概念。

电磁感应- 计算公式电磁感应灯1.感应电动势的大小计算公式1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}。

2)E=BLVsinA(切割磁感线运动) E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sinA为v或L与磁感线的夹角。

{L:有效长度(m)}3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}。

4)E=B(L^2)ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s),(L^2)指的是L的平方}。

2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 计算公式△Φ=Φ1-Φ2 ,△Φ=B△S=BLV△t。

3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}。

4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,∆t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}。

△特别注意Φ,△Φ ,△Φ/△t无必然联系,E与电阻无关E=n△Φ/△t 。

电动势的单位是伏V ,磁通量的单位是韦伯Wb ,时间单位是秒s。

电磁感应- 重要实验手持式电磁感应在一个空心纸筒上绕上一组和电流计联接的导体线圈,当磁棒插进线圈的过程中,电流计的指针发生了偏转,而在磁棒从线圈内抽出的过程中,电流计的指针则发生反方向的偏转,磁棒插进或抽出线圈的速度越快,电流计偏转的角度越大.但是当磁棒不动时,电流计的指针不会偏转。

对于线圈来说,运动的磁棒意味着它周围的磁场发生了变化,从而使线圈感生出电流.法拉第终于实现了他多年的梦想——用磁的运动产生电!奥斯特和法拉第的发现,深刻地揭示了一组极其美妙的物理对称性:运动的电产生磁,运动的磁产生电。

不仅磁棒与线圈的相对运动可以使线圈出现感应电流,一个线圈中的电流发生了变化,也可以使另一个线圈出现感应电流。

将线圈通过开关k与电源连接起来,在开关k合上或断开的过程中,线圈2就会出现感应电流. 如果将与线圈1连接的直流电源改成交变电源,即给线圈1提供交变电流,也引起线圈出现感应电流. 这同样是因为,线圈1的电流变化导致线圈2周围的磁场发生了变化。

电磁感应- 麦克斯韦-法拉第方程∇×E = –∂B/∂t本节是一段题外话,作用是区分本条目中的“法拉第定律”及麦克斯韦方程组中用同一个名字的∇×E方程。

于本条目中∇×E方程会被称为麦克斯韦-法拉第方程。

麦克斯韦于1855年开发出法拉第定律的旋度版本,而黑维塞则于1884年将定律重写成旋度方程:其中E和B为电场及磁场∇×代表的是旋度代表的是当方位向量r不变时的时间偏导数。

方程的意义是,如果电场的空间依赖在页面上成逆时针方向(经右手定律,得旋度向量会从页面指出),那么磁场会因时间而更少指出页面,更多地指向页面(跟旋度向量异号)。

方程跟磁场的变量有关系。

故磁场不一定要指向页面,只需向该方向转动即可。

本方程(在本条目中被称为麦克斯韦-法拉第方程)最著名的地方在于它是麦克斯韦方程组中的四条方程之一。

在麦克斯韦-法拉第方程中,亥维赛用的是时间偏导数。

不使用麦克斯韦用过的时间全导数,而使用时间偏导数,这样做使得麦克斯韦-法拉第方程不能说明运动电动势。

然而,麦克斯韦-法拉第方程很多时候会被直接称为“法拉第定律”。

在本条目中“法拉第定律”一词指的是通量方程,而“麦克斯韦-法拉第方程”指的则是亥维赛的旋度方程,也就是现在的麦克斯韦方程组中的那一条。

通过表面的磁通量及圈中的电动势图一:面积分的定义需要把面分成小的面积元。

每个元素跟一个向量dA联系,该向量的大小等于面积元的面积,而方向则是跟面积元垂直并向外。

图二:于空间内有定义的一向量场F(r,t),及以曲线∂Σ为边界的一表面Σ,在场的积分范围内以速度v移动。

法拉第电磁感应定律用到通过一表面Σ的磁通量ΦB,其积分形式定义如下:其中dA为移动面Σ(t)的面积元,B为磁场,B•dA为向量点积。

见图一。

更多细节见面积分及磁通量条目。

设该表面有一个开口,边界为闭合曲线∂Σ(t)。

见图二。

当通量改变时,把一电荷在闭合曲线中∂Σ(t)移一圈(每单位电荷)所作的功,也就是电动势,可由法拉第电磁感应定律求得:其中:为电动势,单位为伏特;ΦB为磁通量,单位为韦伯。

电动势的方向(公式中的负号)由楞次定律提供。

设有一紧缠线圈,圈数为N,每圈通量皆为ΦB,法拉第电磁感应定律指出:N为线圈圈数;ΦB为通过一圈的磁通量,单位为韦伯。

在选择路径∂Σ(t)求电动势时,路径须满足两个基本条件:(一)路径闭合;(二)路径必需能描述到电路各部分的相对运动(这就是∂Σ(t)中变量为时间的原因)。

路径并不一定要跟随电流的流动路线,但用通量定律求出的电动势,理所当然地会是通过所选路径的电动势。

假若路径并不跟随电流的话,那么那电动势可能不是驱动着电流的那一电动势。

例一:空间变强磁场图三:闭合的长方形线圈,以速率v沿x轴移动,其所处的磁场B随x的位置而变。

考虑图三的长方形线圈,它在xy平面上向x方向以速率v移动。

因此,线圈中心xC满足v = dxC/dt。

线圈在y方向的长度为ℓ,x方向的宽度为w。

一不随时间改变,而随x方向改变的磁场B(x)指向z方向。

左边的磁场为B(xC − w/2),右边的磁场为B(xC + w/2)。

电动势可直接求得,或由上述的法拉第电磁感应定律求得。

洛伦兹力法在线圈左边的一电荷q,所受的洛伦兹力为qv×Bk = −qvB(xC − w/2)j(j、k分别为y方向及z方向的单位向量,见向量积),因此左边整段电线的电动势(单位电荷所作的功)为v ℓB(xC − w/2)。

可用相同的论述,求出右边电线的电动势为vℓB(xC + w/2)。

两股电动势互相抵抗,将正电荷推向线圈底部。

由于这时磁场的强度会向x方向增强,所以右边的力最强,电流会顺时针流动:使用右手定则,电流所产生的磁场会抵抗外加的磁场。

驱动电流的电动势必须向逆时针方向增加(抵抗电流)。

把电动势向逆时针方向加起来得:法拉第定律法线圈上任何位置通过线圈的磁通量为其正负取决于表面的垂直线是否跟B同一方向,或相反方同。

如果表面垂直线跟感应电流的B同一方向,式子为负。

此时通量的时间导数(使用微分的链式法则或莱布尼茨定则的通用形式求出)为:(其中v = dxC/dt为线圈于x方向的运动速率),所以跟之前一样。

这两种方法一般来说都一样,但视乎例子而定,其中一种有时可能会比较实用。

例二:均匀磁场中的运动环路图四:矩形线圈以角速率ω转动,其所处的磁场B大小固定,并向外呈放射状指出。

上下两块碟片的边沿会导电,而电流则由旁边的电刷收集。

图四为由上下两块带导电边沿的碟片所组成的转轴,上面的电线环路垂直地连接着两块碟片。

整组装置在磁场中旋转,该磁场向外呈放射状指出,但其大小不随方向变化。

一向外的回路从边沿上把电流收集起来。

在收集回路的位置上,向外的磁场与回路位于同一个平面上,因此收电回路并不对电路的磁通量造成影响。

电动势可直接求出,或使用上文的法拉第定律求出。

洛伦兹力法这个案中,在移动环路中那两根垂直的电线里,洛伦兹力向下驱动着电流,因此电流从上碟片流向下碟片。

在碟片的导电边沿内,洛伦兹力与边沿垂直,所以边沿上并没有电动势,环路中的水平部分也没有。

电流通过外加的回路从下边沿传到上边沿,而该回路位于磁场的平面上。

因此,回路中的洛伦兹力与回路平行,在这回路中并没有生成电动势。

穿过电流通道,到达电流反方向流动的地方,功只在移动环路垂直电线中抵抗洛伦兹力,其中因此电动势为其中ℓ为环路中的垂直长度,与角转动率相关的速度可由v = r ω求出,而r = 碟片半径。

相关文档
最新文档