高三数学递归数列(整理2019年11月)
历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。
高中数学知识点归纳数学归纳法与递归数列

高中数学知识点归纳数学归纳法与递归数列高中数学知识点归纳:数学归纳法与递归数列数学归纳法和递归数列是高中数学中非常重要的知识点,它们在解决数列、证明问题以及推理推广中发挥着重要的作用。
下面将对数学归纳法与递归数列进行归纳总结,以帮助同学们更好地掌握和应用这两个概念。
一、数学归纳法数学归纳法是一种用于证明以及构造数学问题解决方案的重要方法。
它分为三个步骤:基础步骤、归纳假设和归纳推理。
基础步骤:首先,我们需要证明当n取某个特定值时,命题成立。
这个特定值通常是一个自然数,比如n = 1 或 n = 0。
通过验证这个基础步骤,我们确保了对于第一个自然数命题成立。
归纳假设:接下来,我们假设当n = k时,命题成立,其中k是一个正整数。
这个假设被称为“归纳假设”。
归纳推理:最后,我们需要证明当n = k+1时,命题也成立。
这一步通常是通过使用归纳假设,并根据命题的规律进行推理得出的。
通过这样的步骤,我们可以推广这个命题对于所有自然数n成立的结论。
数学归纳法在证明数学命题中使用广泛,特别是在数列和等式的证明中。
二、递归数列递归数列是指一个数列的每一项都是前面一些项的函数。
通常,递归数列的第一项和第二项是已知的,而后面的项则通过递归关系得到。
常见的递归数列有斐波那契数列和阶乘数列。
1. 斐波那契数列:斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2), n≥2斐波那契数列的特点是每一项都是前两项的和。
通过递归关系,我们可以计算出任意一项的值。
2. 阶乘数列:阶乘数列的定义如下:n! = n * (n-1) * (n-2) * ... * 2 * 1阶乘数列的特点是每一项都是前一项与当前项的乘积。
通过递归关系,我们可以计算出任意一项的值。
递归数列在数学中具有重要的应用,例如在组合数学、概率论以及计算机科学等领域有广泛的应用。
综上所述,数学归纳法和递归数列是高中数学中重要的知识点。
数列的递推与递归关系知识点总结

数列的递推与递归关系知识点总结数列是数学中的一个重要概念,在数学和计算机科学中都有广泛的应用。
数列的递推和递归关系是数列研究中的重要内容,通过递推和递归可以得到数列中后一项和前一项之间的关系。
本文将总结数列的递推和递归关系的知识点。
一、数列的递推关系数列的递推关系是指数列中后一项和前一项之间的关系,通过这种关系可以求解数列中的任意一项。
数列的递推公式分为线性递推和非线性递推两种。
1. 线性递推关系线性递推关系是指数列中后一项和前一项之间的关系为线性函数的情况。
线性递推关系可以表示为:an = a(n-1) + b其中an为数列的第n项,a(n-1)为数列的第n-1项,b为常数。
通过这个递推公式,可以根据已知的第一项和递推关系求得数列中的其他项。
2. 非线性递推关系非线性递推关系是指数列中后一项和前一项之间的关系不为线性函数的情况。
非线性递推关系可以表示为:an = f(a(n-1))其中an为数列的第n项,a(n-1)为数列的第n-1项,f为一个非线性函数。
通过这个递推关系,可以根据已知的第一项和递推关系求得数列中的其他项。
二、数列的递归关系数列的递归关系是指数列中后一项和前一项之间的关系通过递归定义的情况。
数列的递归关系可以表示为:an = f(an-1)其中an为数列的第n项,an-1为数列的第n-1项,f为一个递归函数。
递归关系中的数列可以通过给定的初始条件,即数列的第一项或前几项,求解数列中的其他项。
三、递推与递归的关系递推和递归是两种不同的求解数列的方法,但它们之间存在紧密的联系。
递推是通过前一项和递推公式来计算后一项,递归则是通过前一项和递归函数来计算后一项。
实际上,递推公式可以看作是递归关系的一种特殊形式,即递归函数是一个线性函数的情况。
通过递推和递归,可以发现数列中的规律,预测数列的未知项,解决各种与数列相关的问题。
在数学和计算机科学领域中,递推和递归在数列求解、算法设计等方面有着重要的作用。
2019年高考数学数列复习指导(最适用、最全面)

2019年高考数学数列复习指导第一节数列的概念与简单表示法教材细梳理1.数列的有关概念概念含义数列按照一定顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式数列{a n}的第n项a n与n之间的关系能用公式a n=f(n)表示,这个公式叫做数列的通项公式前n项和数列{a n}中,S n=a1+a2+…+a n叫做数列的前n项和n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[1.数列的通项公式不一定唯一.2.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) (5)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√2.数列的通项a n =2n 与函数f (x )=2x 有何区别与联系?提示:数列a n =2n 是特殊函数,其定义域为N *,而函数f (x )=2x 的定义域为R ,a n =2n 的图象是离散点且在f (x )=2x 的图象上.3.数列{a n }中,由a n +1=n +1能得到{a n }的通项a n =n 吗? 提示:不能.由a n +1=n +1得到a n =n ,这里n ≥2.若a 1=1时,数列的通项a n =n ;若a 1=2时,则通项a n =⎩⎨⎧2 (n =1),n (n ≥2).四基精演练1.(必修5·2.1例3改编)在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 4=( )A.32 B.53 C.74D.85解析:选B.由题意知,a 1=1,a 2=1+1a 1=2,a 3=1+1a 2=32,a 4=1+1a 3=53.2.(实践题)(必修5·2.1教材引例改编)把1,3,6,10,15,21,…这些数叫作三角形数,这是因为以这些数目的点可以排成一个正三角形(如图).则第7个三角形数是( ) A .27 B .28 C .29D .30解析:选B.观察规律可知三角形数为1,3,6,10,15,21,28,36,….3.(必修5·2.1练习改编)数列1,23,35,47,59,…的一个通项公式a n 是 .解析:由已知得,数列可写成11,23,35,…,故通项公式可以为n2n -1.答案:a n =n2n -14.(2018·山东日照期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是 .解析:根据题意并结合二次函数的性质可得a n =-2n 2+29n +3=-2⎝⎛⎭⎫n 2-292n +3=-2⎝⎛⎭⎫n -2942+3+8418, ∴n =7时,a n 取得最大值,最大项a 7的值为108. 答案:1085.(2016·高考浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .解析:法一:∵a n +1=2S n +1,∴a 2=2S 1+1,即S 2-a 1=2a 1+1,又∵S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,由S 2=4,可求出S 3=13,S 4=40,S 5=121. 法二:由a n +1=2S n +1,得a 2=2S 1+1,即S 2-a 1=2a 1+1,又S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,则S n +1+12=3⎝⎛⎭⎫S n +12,又S 1+12=32,∴⎩⎨⎧⎭⎬⎫S n +12是首项为32,公比为3的等比数列,∴S n +12=32×3n -1,即S n =3n -12,∴S 5=35-12=121.答案:1;121考点一已知数列的前几项求通项[简单型]——发展数学抽象由数列的前几项求数列通项公式的策略1.对数列的前几项进行归纳、联想,具体如下:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等.2.根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n或(-1)n+1来调整.写出下列数列的一个通项公式: (1)1,3,5,7,…; (2)-11×2,12×3,-13×4,14×5,…; (3)1,5,1,5,1,5,…; (4)9,99,999,9 999,….解:(1)数列的前4项都是序号的2倍减去1,所以它的一个通项公式为a n =2n -1.事实上,该数列是由连续的正奇数组成的.(2)此数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n 1n (n +1).(3)已知数列可以变换为3-2,3+2,3-2,3+2,…,所以已知数列的一个通项公式为a n=3+(-1)n ·2.(4)数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式为a n =10n -1.考点二 已知递推关系求通项[探究型]——发展数学运算[例1] (1)(2018·湖南四校联考)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n解析:由已知,a n +1-a n =ln n +1n ,a 1=2,所以a n -a n -1=ln nn -1(n ≥2),a n -1-a n -2=ln n -1n -2, …a 2-a 1=ln 21,将以上n -1个式子叠加,得 a n -a 1=ln n n -1+ln n -1n -2+…+ln 21=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2 (21)=ln n .所以a n =2+ln n (n ≥2), 经检验n =1时也适合.故选A. 答案:A(2)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n = .解析:因为(n +1)a 2n +1+a n +1·a n -na 2n =0, 所以(a n +1+a n )[(n +1)a n +1-na n ]=0, 又a n +1+a n >0,所以(n +1)a n +1-na n =0, 即a n +1a n =n n +1, 所以a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,所以a n =1n .答案:1n[母题变式]1.若把本例(1)中条件“a n +1=a n +ln ⎝⎛⎭⎫1+1n ”改为“a n +1=2a n +1”,则a n = . 解析:由题意知a n +1+1=2(a n +1),所以数列{a n +1}是以3为首项,2为公比的等比数列,所以a n +1=3×2n -1,所以a n =3× 2n -1-1.答案:3×2n -1-1(n ∈N *)2.若把本例(1)中条件“a n +1=a n +ln ⎝⎛⎭⎫1+1n ”改为a n +1=2a n 2+a n ,则a n = . 解析:∵a n +1=2a na n +2,a 1=2,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12, 又a 1=2,则1a 1=12,∴⎩⎨⎧⎭⎬⎫1a n 是以12为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2,∴a n =2n . 答案:2n3.若把本例(2)中条件改为“a 1=1,a n +1+a n =2n ”,则a n = . 解析:∵a n +1+a n =2n ,∴a n +2+a n +1=2n +2, 故a n +2-a n =2,即数列{a n }是奇数项与偶数项都是公差为2的等差数列. 当n 为偶数时,a 2=1,故a n =a 2+2⎝⎛⎭⎫n 2-1=n -1.当n 为奇数时,∵a n +1+a n =2n ,a n +1=a 1+2×n -12=1+n -1=n (n +1为偶数),故a n=n .综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -1,n 为偶数.答案:a n =⎩⎪⎨⎪⎧n ,n 为奇数n -1,n 为偶数已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.[提醒] 在求出通项公式后,一定要验证是否满足公式.考点三 a n 与S n 的关系应用[高频型]——发展数学运算[例n n 为 .解析:当n =1时,a 1=S 1=2, 当n ≥2时 ,a n =S n -S n -1=6n -5,故a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.答案:a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2(2)已知数列{a n }的前n 项和S n =5-4×2-n ,则其通项公式为 .解析:a 1=S 1=5-4×2-1=3,a n =S n -S n -1=(5-4×2-n )-(5-4×2-n +1)=42n (n ≥2).当n =1时,42n =2≠a 1,∴a n =⎩⎪⎨⎪⎧3,n =1,42n ,n ≥2答案:a n =⎩⎪⎨⎪⎧3,n =1,42n,n ≥2[例n n 1n +1S n S n +1,则S n = .解析:由已知得a n +1=S n +1-S n =S n +1S n ,两边同时除以S n +1S n ,得1S n +1-1S n =-1,故数列{1S n }是以-1为首项,-1为公差的等差数列,则1S n =-1-(n -1)=-n ,所以S n =-1n.答案:-1n(2)(2018·南昌模拟)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则S n 等于 .解析:由a n +1=3S n 得S n +1-S n =3S n , ∴S n +1=4S n ,又S 1=a 1=1≠0,∴{S n }是首项为1,公比为4的等比数列,∴S n =4n -1. 答案:4n -1数列的通项a n 与前n 项和S n 的关系是a n =当n=1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.1.(2018·陕西四校联考)已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1B .a n =⎩⎪⎨⎪⎧14(n =1)2n +1(n ≥2)C .a n =2nD .a n =2n +2解析:选B.由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则12a 1+122a 2+123a 3+…+12n -1a n -1 =2(n -1)+5,n >1,两式相减可得:a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n >1,n ∈N *. 当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为:a n =⎩⎪⎨⎪⎧14 (n =1),2n +1 (n ≥2).故选B.2.数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N ),则数列{a n }的前n 项和S n = .解析:由a n +1=2S n +1,可得a n =2S n -1+1(n ≥2),两式相减,得a n +1-a n =2a n ,a n +1=3a n (n ≥2).∵a 2=2S 1+1=3,∴a 2=3a 1,故数列{a n }是首项为1,公比为3的等比数列. ∴a n =3n -1,由a n +1=2S n +1,得S n =a n +1-12=3n -12.答案:3n -12发展数学建模、数学运算(创新型)模型 数列的单调性与函数不等式、导数的交汇创新数列是特殊函数,所以可用函数的观点和方法研究数列的性质、单调性,最大(小)项.数列与函数、不等式、导数等交汇命题是高考的热点,解决这类问题的策略是:1.用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列.2.用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.3.结合相应函数的图象直观判断.[例4] (1)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为 .解析:设等差数列{a n }的首项为a 1,公差为d ,由等差数列前n 项和公式可得⎩⎨⎧10a 1+10×92d =0,15a 1+15×142d =25,解得⎩⎪⎨⎪⎧a 1=-3,d =23.∴nS n =n 2a 1+n 2(n -1)2d =-3n 2+13(n 3-n 2)=13n 3-10n 23. 构造函数f (x )=13x 3-103x 2(x >0).令f ′(x )=0,解得x =0(舍去)或x =203.当x >203时,f (x )单调递增;当0<x <203时,f (x )单调递减.∵n ∈N *,∴当n =7时,nS n 取最小值, ∴(nS n )min =13×73-10×723=-49.答案:-49(2)(2018·烟台质检)已知数列{a n }的通项为a n =2n -1,又数列{b n }满足b n =2log 2a n +1,记S n =b 1+b 2+…+b n ,若∀n ∈N *都有S n a n ≤S ka k成立,则正整数k 的值为 .解析:∵a n =2n -1,∴b n =2log 2a n +1=2n . 所以S n =b 1+b 2+…+b n =n (2+2n )2=n 2+n ,令c n =S n a n =n 2+n2n -1.则c n +1-c n =S n +1a n +1-S n a n =(n +1)(n +2)2n -n (n +1)2n -1=(n +1)(2-n )2n .所以当n =1时,c 1<c 2; 当n =2时,c 3=c 2;当n ≥3时,c n +1-c n <0,即c 3>c 4>c 5>…,所以数列{c n }中最大项为c 2和c 3.所以存在k =2或3,使得任意的正整数n ,都有S k a k ≥S na n .答案:2或3课时规范训练(限时练·夯基练·提能练)A 级 基础夯实练(30分钟,55分)1.(2018·合肥模拟)数列{a n }的前n 项和为S n ,若S n -S n -1=2n -1(n ≥2),且S 2=3,则a 1+a 3的值为( )A .1B .3C .5D .6解析:选C.依题意,S 2-S 1=3, 所以a 1=S 1=S 2-3=3-3=0,又因为a 3=S 3-S 2=5,所以a 1+a 3=0+5=5.2.(2018·株洲模拟)数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( )A .10B .15C .-5D .20 解析:选D.当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.3.(2018·西安模拟)在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n . ∴a 6=a 3·a 3=64,a 3=8. ∴a 9=a 6·a 3=64×8=512.4.数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1.若a 1=35,则a 2 019=( )A.15B.25C.35D.45解析:选B.由递推关系得,a 1=35,a 2=2a 1-1=2×35-1=15,a 3=2a 2=2×15=25,a 4=2a 3=2×25=45,a 5=2a 4-1=2×45-1=35,…,所以a 5=a 1,即a n +4=a n .所以数列{a n }是周期为4的周期数列,a 2 019=a 504×4+3=a 3=25,故选B.5.(2018·洛阳模拟)设数列{a n }满足a 1+2a 2+22a 3+…+2n -1a n =n 2(n ∈N *),则通项公式是( )A .a n =12nB .a n =12n -1C .a n =12nD .a n =12n +1解析:选C.设{2n -1·a n }的前n 项和为T n ,∵数列{a n }满足a 1+2a 2+22a 3+…+2n -1a n =n 2(n ∈N *),∴T n =n 2,∴2n -1an =T n -T n -1=n 2-n -12=12, ∴a n =122n -1=12n ,经验证,n =1时也成立,故a n =12n .故选C.6.(2018·济南模拟)设曲线f (x )=x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·x 3·x 4·…·x 2 018=( )A.2 0172 018 B.12 018 C.2 0182 019D.12 019解析:选D.由f (x )=x n +1得f ′(x )=(n +1)x n ,切线方程为y -1=(n +1)(x -1),令y =0得x n =n n +1,故x 1·x 2·x 3·x 4·…·x 2 018=12×23×…×2 0182 019=12 019.7.(2018·长春模拟)设数列{a n }的前n 项和为S n ,且a 1=1,数列{S n +na n }为常数列,则a n =( )A.13n -1 B.2n (n +1)C.6(n +1)(n +2) D.5-2n 3解析:选B.由题意知当n =1时,S n +na n =2,当n ≥2时, S n -1+(n -1)a n -1=2,所以(n +1)a n =(n -1)a n -1,即a n a n -1=n -1n +1,从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,则a n =2n (n +1),当n =1时上式成立,所以a n =2n (n +1). 8.(2018·广州二模)设数列{a n }的各项都是正数,且对任意n ∈N *,都有4S n =a 2n +2a n ,其中S n 为数列{a n }的前n 项和,则数列{a n }的通项公式为a n = .解析:当n =1时,由4S 1=a 21+2a 1,a 1>0,得a 1=2;当n ≥2时,由4a n =4S n -4S n -1=(a 2n +2a n )-(a 2n -1+2a n -1),得(a n +a n -1)(a n -a n -1-2)=0. 因为a n +a n -1>0,所以a n -a n -1=2, 则数列{a n }是首项为2,公差为2的等差数列, 故a n =2+(n -1)×2=2n . 答案:2n9.(2018·厦门调研)若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为 .解析:a 1·a 2·a 3·…·a n =(n +1)(n +2), 当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =(n +1)(n +2),a 1·a 2·a 3·…·a n -1=n (n +1),故当n ≥2时,a n =n +2n,所以a n=⎩⎨⎧6,n =1,n +2n ,n ≥2,n ∈N *.答案:a n =⎩⎪⎨⎪⎧6,n =1,n +2n,n ≥2,n ∈N *.10.(10分)已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n=⎩⎨⎧23 (n =1),1n(n ≥2).(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴{c n }是递减数列.B 级 能力升级练(25分钟,40分)1.对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件解析:选B.当a n +1>|a n |(n =1,2,…)时, ∵|a n |≥a n ,∴a n +1>a n , ∴{a n }为递增数列.当{a n }为递增数列时,若该数列为-2,0,1,则a 2>|a 1|不成立,即a n +1>|a n |(n =1,2,…)不一定成立.综上知,“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的充分不必要条件. 2.(2018·潍坊模拟)定义:称nP 1+P 2+…+P n为n 个正数P 1,P 2,…,P n 的“均倒数”.若数列{a n }的前n 项的“均倒数”为12n -1,则数列{a n }的通项公式为( )A .a n =2n -1B .a n =4n -1C .a n =4n -3D .a n =4n -5解析:选C.∵n a 1+a 2+…+a n =12n -1,∴a 1+a 2+…+a n n =2n -1,∴a 1+a 2+…+a n =(2n -1)n ,a 1+a 2+…+a n -1=(2n -3)(n -1)(n ≥2),当n ≥2时,a n =(2n -1)n -(2n -3)(n -1)=4n -3; a 1=1也适合此等式,∴a n =4n -3.3.(2018·苏州调研)已知数列{a n }满足a 1=1,a n +1=a n +n +1,则8+a nn的最小值为 .解析:由a 1=1,a n +1=a n +n +1得 a 2-a 1=2,a 3-a 2=3,…… a n -a n -1=n .以上等式相加得a n =a 1+2+3+…+n =n (n +1)2,∴8+a n n =n 2+8n +12≥24+12=412,当且仅当n =4时上式取到等号. 答案:4124.(12分)已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞).5.(13分)(2018·沈阳期末)已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,数列{b n }中,b n =1+a na n.(1)求公差d 的值;(2)若a 1=-52,求数列{b n }中的最大项和最小项的值;(3)若对任意的n ∈N *,都有b n ≤b 8成立,求a 1的取值范围. 解:(1)∵S 4=2S 2+4,∴4a 1+3×42d =2(2a 1+d )+4,解得d =1. (2)∵a 1=-52,∴数列{a n }的通项公式为a n =-52+(n -1)=n -72,∴b n =1+1a n =1+1n -72.∵函数f (x )=1+1x -72在⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上分别是单调减函数, ∴b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4, ∴数列{b n }中的最大项是b 4=3,最小项是b 3=-1. (3)由b n =1+1a n ,得b n =1+1n +a 1-1.又函数f (x )=1+1x +a 1-1在(-∞,1-a 1)和(1-a 1,+∞)上分别是单调减函数,且x <1-a 1时,y <1;当x >1-a 1时,y >1.∵对任意的n ∈N *,都有b n ≤b 8, ∴7<1-a 1<8,∴-7<a 1<-6, ∴a 1的取值范围是(-7,-6).第二节 等差数列及其前n 项和教材细梳理1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }是等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }(p ,q ∈N *)也是等差数列.(5)若{a n }是等差数列,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)组成公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(7)S 2n -1=(2n -1)a n .(8)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项). [易错易混]1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有 2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( )(6)设S n 是{a n }的前n 项和,那么{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 为常数).( )答案:(1)× (2)√ (3)√ (4)× (5)× (6)√2.设S n 是{a n }的前n 项和,若S n =n 2+1,则{a n }是等差数列,对吗?提示:不对,由S n =n 2得当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又a 1=2,所以数列{a n }去掉首项后,才是等差数列.四基精演练1.(必修5·2.1例1改编)已知等差数列-5,-2,1,…,则该数列的第20项为 . 解析:依题意得,该等差数列的首项为-5,公差为3,所以a 20=-5+19×3=52,故第20项为52.答案:522.(必修5·习题2.3T 5改编)在100以内的正整数中有 个能被6整除的数. 解析:由题意知,能被6整除的数构成一个等差数列{a n }, 则a 1=6,d =6,得a n =6+(n -1)6=6n .由a n =6n ≤100,即n ≤1646=1623,所以在100以内有16个能被6整除的数. 答案:163.(实践题)(必修5·2.2练习T 2改编)某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,则剧场总共的座位数为 .解析:设第n 排的座位数为a n (n ∈N *),数列{a n }为等差数列,其公差d =2,则a n =a 1+(n -1)d =a 1+2(n -1).由已知a 20=60,得60=a 1+2×(20-1),解得a 1=22,则剧场总共的座位数为20(a 1+a 20)2=20×(22+60)2=820.答案:8204.(2017·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C.等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8, 得d =4,故选C.5.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.∵S 4+S 6>2S 5⇔S 4+S 4+a 5+a 6>2(S 4+a 5)⇔a 6>a 5⇔a 5+d >a 5⇔d >0,∴“d >0”是“S 4+S 6>2S 5”的充分必要条件.故选C.考点一等差数列的性质及基本量运算[简单型]——发展数学运算等差数列运算的思想方法1.方程思想:设出首项a1和公差d,然后将通项公式或前n项和公式转化为方程(组)求解.2.整体思想:当所给条件只有一个时,可将已知和所求结果都用a1,d表示,寻求两者的联系,整体代换即可求解.3.利用性质:运用等差数列性质,可以化繁为简、优化解题过程.1.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ) A .3 B .4 C .5D .6解析:选C.由已知得,a m =S m -S m -1=2,a m +1=S m +1-S m =3,因为数列{a n }为等差数列,所以d =a m +1-a m =1,又因为S m =m (a 1+a m )2=0,所以m (a 1+2)=0,因为m ≠0,所以a 1=-2,又a m =-2+(m -1)1=2,解得m =5.2.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= .解析:根据等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=25,解得a 5=5.又a 2+a 8=2a 5,所以a 2+a 8=10.答案:103.(2016·高考江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 .解析:因为S 5=5a 3=10,所以a 3=2.又a 1+a 22=-3,所以2-2d +(2-d )2=-3,所以d =3,所以a 9=a 3+6d =2+6×3=20.答案:20考点二 等差数列的判定与证明[探究型]——发展逻辑推理[例1] (2018·南昌一模)已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n+n -4(n ∈N *).(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:当n=1时,有2a1=a21+1-4,即a21-2a1-3=0,解得a1=3(a1=-1舍去).当n≥2时,有2S n-1=a2n-1+n-5,又2S n=a2n+n-4,两式相减得2a n=a2n-a2n-1+1,即a2n-2a n+1=a2n-1,也即(a n-1)2=a2n-1,因此a n-1=a n-1或a n-1=-a n-1.若a n-1=-a n-1,则a n+a n-1=1.而a1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此数列{a n}为首项为3,公差为1的等差数列.(2)由(1)知a1=3,d=1,所以数列{a n}的通项公式为a n=3+(n-1)×1=n+2,即a n=n+2.[母题变式]1.若本例条件变为“数列{a n}的前n项和为S n,且满足2S n-na n=n”,判断{a n}是不是等差数列.证明:因为2S n-na n=n,①所以当n≥2时,2S n-1-(n-1)a n-1=n-1,②所以①-②得:(2-n)a n+(n-1)a n-1=1,(1-n)a n+1+na n=1,∴(2-n)a n+(n-1)a n-1=(1-n)a n+1+na n,所以2a n=a n-1+a n+1(n≥2),所以数列{a n}为等差数列.2.本例的条件不变,若数列⎩⎨⎧⎭⎬⎫S n n -λ为等差数列,则非零常数λ的值为 .解析:由例1解答知a n =n +2, ∴S n =n 22+52n ,设b n =S nn -λ=n (n +5)2(n -λ).由{b n }为等差数列,∴2b 2=b 1+b 3,解得λ=-5或λ=0(舍去),经检验符合题意. 答案:-5判定数列{a n }是等差数列的常用方法1.定义法:对任意n ∈N *,a n +1-a n 是同一个常数. 2.等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1. 3.通项公式法:数列的通项公式a n 是n 的一次函数.4.前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0.考点三 等差数列前n 项和及性质的应用[高频型]——发展数学运算[例n 1357910等于( )A .45B .60C .75D .90解析:由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45.答案:A(2)(2018·山师附中月考)在等差数列{a n }中,S 10=100,S 100=10,则S 110= . 解析:法一:设数列{a n }的公差为d ,首项为a 1, 则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.法二:因为S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.答案:-110[例n 1n 717n 的值为 .解析:法一:由S 7=S 17得2a 1+23d =0, 即(a 1+11d )+(a 1+12d )=0, 故a 12+a 13=0.又由a 1<0,S 7=S 17,可知d >0,所以a 12<0,a 13>0,所以n =12时,S n 最小. 法二:由S 7=S 17得d =-223a 1,从而S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =-a 123(n -12)2+14423a 1.因为a 1<0,所以-a 123>0,所以n =12时,S n 最小.答案:121.求等差数列前n 项和S n 最值的两种方法(1)利用S n =an 2+bn 转化为二次函数求最值时要注意n 的取值. (2)若{a n }是等差数列,求其前n 项和的最值时,①若a 1>0,d <0,且满足⎩⎪⎨⎪⎧a n ≥0,a n +1<0,前n 项和S n 最大.②若a 1<0,d >0,且满足⎩⎨⎧a n ≤0a n +1>0,前n 项和S n 最小.2.运用等差数列的性质,可以化繁为简、优化解题过程,但要注意性质运用的条件,灵活应用.1.(2018·沈阳一模)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27解析:选B.由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6),得到a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=45.2.(2018·桂林一模)在等差数列{a n }中,其前n 项和是S n ,若S 15>0,S 16<0,则在S 1a 1,S 2a 2,…,S 15a 15中最大的项是( ) A.S 1a 1 B.S 8a 8 C.S 9a 9D.S 15a 15解析:选B.由于S 15=15(a 1+a 15)2=15a 8>0,S 16=16(a 1+a 16)2=8(a 8+a 9)<0,所以可得a 8>0,a 9<0.这样S 1a 1>0,S 2a 2>0,…,S 8a 8>0,S 9a 9<0,S 10a 10<0,…,S 15a 15<0,而S 1<S 2<…<S 8,a 1>a 2>…>a 8,所以在S 1a 1,S 2a 2,…,S 15a 15中最大的是S 8a 8.发展数学建模、数学运算(应用型)模型 巧用三点共线解等差数列问题用函数观点深入研究通项公式和前n 项和公式,得到一些重要结论,将大大提高解题速度.1.由等差数列与一次函数的关系可知:对于公差为d (d ≠0)的等差数列{a n },其通项公式为a n =dn +(a 1-d ),则点(n ,a n )(n ∈N *)共线,又d =a n -a mn -m (n ≠m ),所以d 为过(m ,a m ),(n ,a n )两点的直线的斜率.由此可用三点共线解决等差数列问题.2.在等差数列前n 项和公式的变形S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n 中,两边同除以n 得S n n =d 2n +⎝⎛⎭⎫a 1-d 2.该式说明对任意n ∈N *,所有的点⎝⎛⎭⎫n ,S n n 都在同一条直线上,从而对m ,n ∈N *(m ≠n )有S n n -S mm n -m =d 2(常数),即数列{S n n }是一个等差数列.[例4] (1)(2017·石家庄三模)已知{a n }为等差数列,且a 100=304,a 300=904,则a 1 000= .解析:因为{a n }为等差数列,则(100,304),(300,904),(1 000,a 1 000)三点共线. 所以904-304300-100=a 1 000-9041 000-300,解得a 1 000=3 004.答案:3 004(2)设S n 是等差数列{a n }的前n 项和,若S n =33,S 2n =44,则S 6n 的值为 . 解析:由题意知,⎝⎛⎭⎫n ,33n ,⎝⎛⎭⎫2n ,442n ,⎝⎛⎭⎫6n ,S 6n6n 三点共线,从而有442n -33n 2n -n =S 6n 6n -442n 6n -2n ,解得S 6n =-132.答案:-132课时规范训练(限时练·夯基练·提能练)A 级 基础夯实练(30分钟,55分)1.(2018·广东六校联考)已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64解析:选A.因为a 7+a 9=2a 8=16,所以a 8=8.因为S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.(2018·山东威海质检)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A .1B .-1C .2D.12解析:选A.S 11S 9=11(a 1+a 11)29(a 1+a 9)2=11a 69a 5=119×911=1.3.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( ) A .22 B .21 C .24D .23解析:选D.因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.4.(2018·广州模拟)等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,若a n b n =2n 3n +1,则S 21T 21的值为( )A.1315 B.2335 C.1117D.49解析:选C.由a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=(2n -1)(a 1+a 2n -1)2(2n -1)(b 1+b 2n -1)2=S 2n -1T 2n -1=2n 3n +1,显然S 21T 21=S 2×11-1T 2×11-1=a 11b 11=2×113×11+1=1117,选C.5.(2018·浙江名校联考)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *,且n ≥2),则a 81=( )A .641B .640C .639D .638解析:选B.由已知S nS n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,∴{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,∴a 81=S 81-S 80=1612-1592=640.故选B.6.下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列; p 3:数列{a nn }是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3D .p 1,p 4解析:选D.{a n }是等差数列,则a n =a 1+(n -1)d =dn +a 1-d ,因为d >0,所以{a n }是递增数列,故p 1正确;对p 2,举反例,令a 1=-3,a 2=-2,d =1,则a 1>2a 2,故{na n }不是递增数列,p 2不正确;a n n =d +a 1-d n ,当a 1-d >0时,{a nn }递减,p 3不正确;a n +3nd=4nd +a 1-d,4d >0,{a n +3nd }是递增数列,p 4正确.故p 1,p 4是正确的,选D.7.(2018·揭阳质检)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11解析:选B.∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∴a 8-3=0,∴a 8=3.故选B.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|= . 解析:由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0;当n >5时,a n >0.∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.答案:1309.(2018·广东潮州二模)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选 B.设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1 125×2,整理得n 2+31n -360=0,解得n =9(负值舍去),故选B.10.(10分)(2017·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n ·2n +13.由于S n +2+S n +1=-43+(-1)n ·2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.B 级 能力升级练(20分钟,40分)1.(2018·潍坊模拟)设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析:选D.由条件得S n n <S n +1n +1,即n (a 1+a n )2n <(n +1)(a 1+a n +1)2(n +1),所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D.2.(2016·高考浙江卷)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n}是等差数列 解析:选A.作A 1C 1,A 2C 2,A 3C 3,…,A n C n 垂直于直线B 1B n ,垂足分别为C 1,C 2,C 3,…,C n ,则A 1C 1∥A 2C 2∥…∥A n C n .∵|A n A n +1|=|A n +1A n +2|, ∴|C n C n +1|=|C n +1C n +2|.设|A 1C 1|=a ,|A 2C 2|=b ,|B 1B 2|=c ,则|A 3C 3|=2b -a ,…,|A n C n |=(n -1)b -(n -2)a (n ≥3), ∴S n =12c [(n -1)b -(n -2)a ]=12c [(b -a )n +(2a -b )], ∴S n +1-S n =12c [(b -a )(n +1)+(2a -b )-(b -a )n -(2a -b )]=12c (b -a ),∴数列{S n }是等差数列.3.(2018·烟台模拟)已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为 .解析:∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0,S 20=20(a 1+a 20)2=10(a 10+a 11)<0,故使得S n >0的n 的最大值为19. 答案:194.(12分)(2017·南昌三模)设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式;(2)设数列{b n }的通项公式为b n =a n a n +t ,问:是否存在正整数t ,使得b 1,b 2,b m (m ≥3,m ∈N )成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.解:(1)设{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+16d =34,3a 1+3d =9,解得a 1=1,d =2, 故a n =2n -1,S n =n 2. (2)由(1)知b n =2n -12n -1+t,要使b 1,b 2,b m 成等差数列,必须有2b 2=b 1+b m , 即2×33+t =11+t +2m -12m -1+t,移项得2m -12m -1+t =63+t -11+t =6+6t -3-t (3+t )(1+t ),整理得m =3+4t -1.因为m ,t 为正整数, 所以t 只能取2,3,5.当t =2时,m =7;当t =3时,m =5;当t =5时,m =4.所以存在正整数t ,使得b 1,b 2,b m 成等差数列.5.(13分)设同时满足条件:①b n +b n +22≤b n +1(n ∈N *);②b n ≤M (n ∈N *,M 是与n 无关的常数)的无穷数列{b n }叫“特界”数列.(1)若数列{a n }为等差数列,S n 是其前n 项和,a 3=4,S 3=18,求S n ; (2)判断(1)中的数列{S n }是否为“特界”数列,并说明理由. 解:(1)设等差数列{a n }的公差为d ,则a 1+2d =4,S 3=a 1+a 2+a 3=3a 1+3d =18, 解得a 1=8,d =-2,∴S n =na 1+n (n -1)2d =-n 2+9n .(2){S n }是“特界”数列,理由如下: 由S n +S n +22-S n +1=(S n +2-S n +1)-(S n +1-S n )2 =a n +2-a n +12=d2=-1<0, 得S n +S n +22<S n +1, 故数列{S n }适合条件①.而S n =-n 2+9n =-⎝⎛⎭⎫n -922+814(n ∈N *), 则当n =4或5时,S n 有最大值20, 即S n ≤20,故数列{S n }适合条件②. 综上,数列{S n }是“特界”数列.第三节 等比数列及其前n 项和教材细梳理1.等比数列的有关概念 (1)定义:①文字语言:从第2项起,每一项与它的前一项的比都等于同一个常数. ②符号语言:a n +1a n=q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常见性质 (1)项的性质: ①a n =a m q n -m ;②若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;③若数列{a n },{b n }(项数相同)是等比数列,则{λa n },{|a n |},⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;④在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . (2)和的性质:①若等比数列{a n }有2k (k ∈N *)项,则S 偶S 奇=q .②公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.(3)等比数列{a n }的单调性:①满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }是递增数列;②满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列; ③⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列; [易错易混]1.由a n +1=qa n ,q ≠0,并不能立即判断{a n }为等比数列,还要验证a 1≠0.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( ) (5)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(6)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)×2.已知数列{a n }的前n 项和S n =Aq n +B 其中q ≠0,且q ≠1,AB ≠0,则A =-B 是数列{a n }为等比数列的充要条件吗?。
递归数列知识点总结

递归数列知识点总结一、递归数列的定义递归数列是指数列中的每一项都是前面几项的某种函数表达式,是按照规则进行递推得到的。
递归数列通常以一定的初始条件为起点,通过递推关系式生成后续的项,是由其前面的项推出该项的一个数列。
常见的递归数列可以表示为:1. 根据数学关系式写出一个函数表达式,然后根据递推公式得到后续的项,如斐波那契数列等。
2. 递归数列将问题不断地分解,直至问题的规模足够小,利用这个最小规模问题的解,逆推得到当前规模问题的解。
二、递归数列的性质1. 递归数列常常具有固定的递推关系式,可以根据递推关系式求解数列的任意项。
2. 递归数列的数项通常与前面的若干项有关,通过递推关系式可以将数列的每一项都表示为前面若干项的函数表达式。
3. 递归数列通常需要一定的初始条件,通过递推关系式得到数列中的后续项。
三、递归数列的求解方法1. 直接利用递归关系式递推得到数列的任意项。
2. 利用递推关系式,通过迭代计算数列的任意项。
3. 利用递推关系式,建立数列的通项公式,从而直接求解数列的第n项。
四、递归数列的应用1. 递归数列在组合数学和概率论中有广泛的应用,如二项式系数、排列组合问题等。
2. 递归数列在计算机科学中有重要的应用,如斐波那契数列、汉诺塔等问题。
3. 递归数列在统计学中也有应用,如泊松分布、二项分布等。
五、递归数列的实例1. 斐波那契数列斐波那契数列是经典的递归数列,它的定义是:F(1)=1, F(2)=1, F(n)=F(n-1)+F(n-2) (n≥3)。
其通项公式为:F(n)=((1+√5)^n-(1-√5)^n)/(2^n*√5)。
斐波那契数列在计算机科学、金融数学等领域有重要的应用。
2. 阶乘数列阶乘数列的定义是:n的阶乘表示为n!=1*2*3*...*n,0的阶乘为1。
阶乘数列递推关系式为:n!=n*(n-1)!。
阶乘数列在概率统计中有重要的应用。
3. 几何数列几何数列是指两个相邻项的比值为常数的数列,其通项公式为:an=a1*q^(n-1),其中a1为首项,q为公比。
(完整word)2019年高考试题汇编理科数学--数列,推荐文档

解答: 13,设等比数列公比为q3、25•- (ag )ag••• q 3• S 121 …S 53(1)证明:a nb n 是等比数列,a n b n 是等差数列;(2 )求a n 和b n 的通项公式. 答案: (1) 见解析 1 x n 11 x n 1(2)a n () n,b n () n2222解析:(1)将 4a n 1 3a n b n 4 , 4b n 1 3b n a n 4 相加可得 4a n1 4b n 1 3a n 3b n a n b n ,11 整理可得a n 1 b n 1丄(a n b n ),又玄1 Q 1,故a . b n 是首项为1,公比为1的等比数列22将 4a n 1 3a n b n 4, 4b n 13b n a n 4 作差可得 4a n14b n13a n 3b n a . b n 8,整理可得a n 1 b n 1a nb n 2,又a 1 Q 1,故a .b n 是首项为1,公差为2的等差数列1 1A. a n 2n 5B.3n 3n 10 CS2n 28nD.S n■In 2 2n 2答案:A解析:S 4 4冃 6d 0a 1 3 5, S n2依题意有 可得 a nn 4n .3S 31 4d 5 d 2 n(2019全国1理)9•记S n 为等差数列 a n 的前n 项和•已知S 40 , a 5 5,则(2(2019全国1理)14.记S n 为等比数列 a n 的前 n 项和,a 436,则 S5答案: S 51213 2019全国2理)19.已知数列a n 和b n满足a 10 , 4a n 1 3a n b n 4, 4b n 1 3b n a n 4.-31 2 3436(2)由a n b n是首项为1 ,公比为?的等比数列可得a n b n ()"①;由a n bn 是首项为1公差为2的等差数列可得a n b n 2n 1②;【解析】 【分析】首先确定公差,然后由通项公式可得 a 5的值,进一步研究数列中正项 ?负项的变化规律,得到和的最小值.【详解】等差数列 a n 中,8s 5a 3 10,得a 3 2& 3,公差da 3 a ?1, a§% 2d 0,由等差数列a n 的性质得n 5时,a n 0, n 6时,a n 大于0,所以S n 的最小值为S 4或S 5,即为10.①②相加化简得a n(!)n n 1,①②相减化简得b n 2 2(2019全国3理)5.已知各项均为正数的等比数列的前4项和为15,且a s 3a 3 4印,则a ?()A. 16B. 8 答案: C解答:C. 4D.设该等比数列的首项 a i ,公比由已知得,4a©3dq 24a i , 因为a 0且q 0, 则可解得2,又因为 a i (1q 3) 15,即可解得c 1,则4.(2019全国3理)14.记S n 为等差数列 a n 的前n 项和,若q0, a 2 3a ,则 3°S 5答案:4解析:设该等差数列的公差为d 2a 1 a 1 0,d 0 ,10 a 1 a 10S 0____________2S 55 a 1 a 522 2a 1 9d3 4.2a 1 4d 5d(2019北京理)10.设等差数列 的前n 项和为S n,若a 2=-3 ,S s =-10,则a s = ,S n 的最小值为【答案】 (1). 0. (2). -10.【点睛】本题考查等差数列的通项公式?求和公式?等差数列的性质,难度不大,注重重要知识?基础知识?基本运算能力的考查a i (2019北京理)20.已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i l<i2<・・Vm),若a h a2则称新数列a h, a i2, , a m为{a n}的长度为m的递增子列•规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(I)写出数列1 , 8, 3, 7, 5, 6, 9的一个长度为4的递增子列;(H)已知数列{a n}的长度为p的递增子列的末项的最小值为a m o,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m°<a n°;(川)设无穷数列{a n}的各项均为正整数,且任意两项均不相等若{ a n}的长度为s的递增子列末项的最小值为2s -, 且长度为S末项为2s-1的递增子列恰有2s-1个(s=1 , 2,…),求数列{a n}的通项公式.【答案】(I )1,3,5,6.(n )见解析; (川)见解析.【解析】【分析】(I )由题意结合新定义的知识给出一个满足题意的递增子列即可;(n )利用数列的性质和递增子列的定义证明题中的结论即可;(川)观察所要求解数列的特征给出一个满足题意的通项公式,然后证明通项公式满足题中所有的条件即可•【详解】(I )满足题意的一个长度为4的递增子列为:1,3,5,6.(n)对于每一个长度为q的递增子列a n a2丄a q,都能从其中找到若干个长度为p的递增子列色总丄a p,此时a p a q ,设所有长度为q的子列的末项分别为:a q, ,a q2,a q3 ,L ,所有长度为p的子列的末项分别为:a p1,a p2,a p3,L ,则a n0 min a q1,a q2,a q3,L ,注意到长度为P的子列可能无法进一步找到长度为q的子列,故a m0 min a p1,a p2,a p3,L ,据此可得:a m0a n0n 1, n为偶数(川)满足题意的一个数列的通项公式可以是a n 斗才来朴2,1,4,3,6,5,8,7,L ,n 1,n为奇数面说明此数列满足题意很明显数列为无穷数列,且各项均为正整数,任意两项均不相等.长度为s 的递增子列末项的最小值为2s-1,下面用数学归纳法证明长度为s 末项为2s-1 的递增子列恰有2s 1个s 1,2,L :当n 1 时命题显然成立,假设当n k时命题成立,即长度为k末项为2k-1的递增子列恰有21个,则当n k 1时,对于n k 时得到的每一个子列a s1,a s2,L ,a s k 1,2k 1,可构造:aq,a s2丄,a s「2k 1,2 k 1 1和a5^,a S2,L ,a^l,2k,2 k 1 1两个满足题意的递增子列,则长度为k+1 末项为2k+1 的递增子列恰有 2 2k 12k2k 1 1个,n 1, n为偶数综上可得,数列a n、,卄沁.2,1,4,3,6,5,8,7,L是一个满足题意的数列的通项公式•n 1, n为奇数注:当s 3时,所有满足题意的数列为:2,3,5 , 1,3,5 , 2,4,5 , 1,4,5 ,当s 4 时,数列2,3,5 对应的两个递增子列为:2,3,5,7 和2,3,6,7 .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.2019天津理) 19.设a n 是等差数列,b n 是等比数列.已知a1 4,b1 6,b2 2a2 2,b3 2a3 4.(I)求a n和b n的通项公式;(n)设数列q满足G 1,c n X 2 J 2「其中k Nn 1 n b k,n 2k ,i )求数列a2n c2n1 的通项公式;2nii )求a i c i n Ni1答案】(I )a n 3n 1 ; b n 3 2n(n )(i )a2n c2n 1 9 4n1 (ii )* 2n 1n 1 *aqnN 27 25 2 n 12 nNi 1【解析】 【分析】(I )由题意首先求得公比和公差,然后确定数列的通项公式即可; (n )结合(I )中的结论可得数列a 2n c 2n 1的通项公式,结合所得的通项公式对所求的数列通项公式进行等2n价变形,结合等比数列前n 项和公式可得aG 的值.i 12 4 d 26 2d,解得2 4 2d 4 12 4d故a n 4 (n 1) 33n1 ,b n6 2n13 2n.所以,a n的通项公式为 a n 3n 1 , b n的通项公式为b n3 2n (n )( i ) a 2n C 2n 1 a ?n b n 1 3 2n 1 3 2n 19 4n 1所以,数列 a ?n c?n1 的通 项公式 :为a2nc 2n 19 4n 12n 2n2n2n(ii )a &a i a C i 1a ia c 2i1i 1i 1i 1i 12n 2n 1n2 n4-39 412i 14 1 4n3 ?2 n5 2n 19n1 427 _2n•1J 112N*25 2n n【点睛】本题主要考查等差数列 ?等比数列的通项公式及其前 n 项和公式等基础知识.考查化归与转化思想和数列 求和的基本方法以及运算求解能力.【详解】(I )设等差数列a n 的公db n 的公比为q .依题意得6q6q 2(2019上海)18•已知数列{a n } , a 1 3,前n 项和为S n •(1)若{an }为等差数列,且 a 4 15, 求S n ;(2)若{a n }为等比数列,且 lim n S n 12,求公比 q 的取值范围 【解答】解:(1) Q a 4 a 3d 3 3d 15 ,d 4 ,n(n 1),S n 3n4 2n 2 n;2lim S n 存在,nlim 3(^ 2 ,n1 q 1 q3 4公比q 的取值范围为(1 , 0) (0 , 3).42综上,d -或者d3Hm S n存在, lim S n n (2019上海)21.已知等差数列{务}的公差d (0, ],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n2 、(1 )若a 1 0,d 一,求集合 30,d —,3{乜,0, △.2 2根据三角函数线,①等差数列 {a n }的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时此时d —,3(2)若a 1,求d 使得集合 2 S 恰好有两个(3)若集合S 恰好有三个元素: b n T b n , T 是不超过7的正整数,求 T 的所有可能的值.【解答】解:(1) Q 等差数列{a n }的公差d (0,],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n当a 1集合S (2) Q,数列{b n }满足 b n sin (a .),2集合S x|x N *恰好有两个元素,如图:②a 1终边落在OA 上,要使得集合 S 恰好有两个元素,可以使 a 2, a 3的终边关于y 轴对称,如图OB , OC ,(3)①当T 3 时,b n 3 b n,集合S {bl,b2, b3},符合题意.②当T 4 时,b n 4 b n ,sin(a n 4d) sina. a n 4d a n 2k ,或者a n 4d 2k a n ,4d a n 2k,又k 1,2当k1时满足条件,此时S {,1, 1}.③当T 5时,b n 5b n,si n(a n5d)sina n,故k1,2.当k1时,S{sin—,1,sin}满足题意1010④当T 6时,b n 6b n,sin (an6d)sina n,a na n等差数列{a n}的公差d (0,],故a n5d a n 2k ,或者a n 5d 2k a n,因为 d (0 ,所以6d a n 2k 或者a n 6d 2k a n,d (0,1 , 2, 3.1时,S {-^O, —3},满足题意.2 2⑤当T 7 时,b n 7 b n,si n(a n 7d) si na n si na n,所以a n 7d a n 2k ,或者a n 7d 2k a n,d (0,故k 1 , 2, 31时,因为b i ~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d m 7,不符合条件.k 2时,因为b i~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d n不是整数,不符合条件.k 3时,因为bi ~ b7对应着3 个正弦值,故必有一个正弦值对应着3个点,必然有a m a n—,或者d7—,此时,m n均不是整数,不符合题意.7综上,T3,4,5,6.(2019江苏)8.已知数列{a n}( n N*)是等差数列,S n是其前n项和若a2^ 兎0,S9 27 ,则Q的值是 _____________________ 【答案】16【解析】【分析】由题意首先求得首项和公差,然后求解前8项和即可.a 2a 5CBa 1 d a-i 4d7d 0【详解】由题意可得:9 8S99a 1 9 8d227解得: a 1 51 ,则 S 8 8a 1 8 7d40 28 216.d 22【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应 用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建a 1, d 的方程组.(2019江苏)20.定义首项为1且公比为正数的等比数列为“M—数列”.(1)已知等比数列{a n }满足:a ?a 4 a 5,a 3 4a ? 4印 0 ,求证:数列{a n }为“M—数列”;u . 1 2 2(2)已知数列{b n }满足:b 1 1,S b b ,其中S 为数列{b n }的前n 项和.S n b n b n 1① 求数列{b n }的通项公式;② 设m 为正整数,若存在 “M—数列” {} (n € N *),对任意正整数k ,当k 呦 时,都有C k b k q 1成立,求m 的 最大值.【答案】(1)见解析; (2[① b n = n n N * :② 5. 【解析】 【分析】(1 )由题意分别求得数列的首项和公比即可证得题中的结论; (2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定b k 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得【详解】(1)设等比数列{a n }的公比为q ,所以a 1^0, q 丰0.因此数列{a n }为M —数列”1 22 (2) ①因S n—,所以b nb nbn11 2 2由b| 1,S 1th 得1 1 ,则 b 22.1由2 2 得 S nb n b n 1m 的最大值.a 2&4 a s由a 3 4a : 4ci|。
(完整word版)2019高考概率真题解析概率问题中的递推数列
概率问题中的递推数列一、a n =p ·a n -1+q 型【例1】 某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和绿灯的概率都是12,从开关第二次闭合起,若前次出现红灯,则下次出现红灯的概率是13,出现绿灯的概率是23;若前次出现绿灯,则下次出现红灯的概率是35,出现绿灯的概率是25,记开关第n 次闭合后出现红灯的概率为P n 。
(1)求:P 2;(2)求证:P n <12 (n ≥2) ;(3)求lim n n P →∞。
解析:(1)第二次闭合后出现红灯的概率P 2的大小决定于两个互斥事件:即第一次红灯后第二次又是红灯;第一次绿灯后第二次才是红灯。
于是P 2=P 1·13+(1-P 1)·35=715。
(2)受(1)的启发,研究开关第N 次闭合后出现红灯的概率P n ,要考虑第n -1次闭合后出现绿灯的情况,有 P n =P n -1·13+(1-P n -1)·35=-415P n -1+35,再利用待定系数法:令P n +x =-415(P n -1+x )整理可得x =-919∴{P n -919}为首项为(P 1-919)、公比为(-415)的等比数列P n -919=(P 1-919)(-415)n -1=138(-415)n -1,P n =919+138(-415)n -1∴当n ≥2时,P n <919+138=12(3)由(2)得lim n n P →∞=919。
【例2】 A 、B 两人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,则由原掷骰子的人继续掷;若掷出的点数不是3的倍数时,由对方接着掷.第一次由A 开始掷.设第n 次由A 掷的概率为P n ,(1)求P n ;⑵求前4次抛掷中甲恰好掷3次的概率. 解析:第n 次由A 掷有两种情况:① 第n -1次由A 掷,第n 次继续由A 掷,此时概率为1236P n -1;② 第n -1次由B 掷,第n 次由A 掷,此时概率为(1-1236)(1-P n -1)。
数列的递归公式和通项公式
数列的递归公式和通项公式在数学的奇妙世界里,数列就像是一串有规律排列的数字精灵,而数列的递归公式和通项公式则是我们理解和掌控这些精灵的魔法钥匙。
让我们先来聊聊什么是数列。
简单说,数列就是按照一定次序排列的一列数。
比如:1,3,5,7,9……这就是一个数列。
递归公式呢,是通过前面的项来表示后面的项的一种方式。
举个例子,斐波那契数列的递归公式是:$F_{n}=F_{n-1}+F_{n-2}$($n\geq 2$),其中$F_{1}=1$,$F_{2}=1$。
也就是说,从第三项开始,每一项都是前两项的和。
那通项公式又是什么呢?通项公式可以直接算出数列中任意一项的值。
比如等差数列的通项公式是$a_{n}=a_{1}+(n-1)d$,其中$a_{1}$是首项,$d$是公差;等比数列的通项公式是$a_{n}=a_{1}q^{n-1}$,$a_{1}$是首项,$q$是公比。
递归公式和通项公式之间有着紧密的联系。
递归公式就像是一步一步的脚印,告诉我们怎么从前面的项走到后面的项;而通项公式则像是一张地图,能让我们直接找到想去的地方,也就是直接算出任意一项的值。
比如说,对于一个简单的数列:1,2,4,8,16……我们可以发现这是一个等比数列,它的递归公式是$a_{n}=2a_{n-1}$($n\geq2$),$a_{1}=1$。
而它的通项公式则是$a_{n}=2^{n-1}$。
再来看一个例子,数列:1,3,6,10,15……这个数列的递归公式可以写成$a_{n}=a_{n-1}+n$($n\geq 2$),$a_{1}=1$。
通过一些巧妙的方法,我们可以推导出它的通项公式是$a_{n}=\frac{n(n+ 1)}{2}$。
那么,如何从递归公式推导出通项公式呢?这可不是一件容易的事情,需要一些巧妙的方法和技巧。
有时候,我们可以通过累加法、累乘法等方法来实现。
比如说对于递归公式$a_{n}=a_{n-1}+2$($n\geq 2$),$a_{1}=1$,我们可以依次写出:$a_{2}=a_{1}+2$$a_{3}=a_{2}+2=(a_{1}+2)+2=a_{1}+2×2$$a_{4}=a_{3}+2=(a_{1}+2×2)+2=a_{1}+3×2$……以此类推,$a_{n}=a_{1}+(n 1)×2$,因为$a_{1}=1$,所以$a_{n}=1 + 2(n 1)=2n 1$。
高三数学第二轮复习递归数列 人教版
高三数学第二轮复习递归数列 人教版1.迭代加法使用于能变形为a n -a n-1=f(n)或a n+1-a n =f(n)的数列.例:已知数列{a n }中,a 1=2,a n+1=a n +2n ,n ∈N *求a n . 解:由题意知: a n+1-a n =2n 且a 1=2 ∴a 2-a 1=2×1a 3-a 2=2×2 ……a n -a n-1=2(n-1)以上各式相加得:a n -a 1=2[1+2+3+…+(n -1)] ∴a n =n 2-n+2.思考:若具有a n+1-a n =f(n)我们宜用迭代加法, 若具有a n+1+a n =f(n)我们如何处理呢? 我们看∵a n+1+a n =f(n)……① ∴a n +a n-1=f(n-1)……②①-②得a n+1-a n-1= f(n)- f(n-1)故原数列中每隔一项抽出组成的新数列可使用迭代加法. 例、(天津卷)在数列{a n }中, a 1=1, a 2=2,且)( )1(12*+∈-+=-N n a a n n n ,则100S =_ ___.例:(江西卷)已知数列{a n }的前n 项和S n 满足S n -S n -2=3,23,1),3()21(211-==≥--S S n n 且求数列{a n}的通项公式. 解:方法一:先考虑偶数项有:2121222113()3()22n n n n S S ----=⋅-=-⋅23232224113()3()22n n n n S S -----=⋅-=-⋅ ………3342112()3().22S S -=⋅-=-⋅2123321233222111111113[()()()]3[()()()]2222222111()111122434[()]2()(1).1224214n n n n n n n n S S n -----∴=-+++=-++++-=-⋅=--⋅=-+≥-同理考虑奇数项有:222121113()3().22n nn n S S ---=-=⋅22222123113()3()22n n n n S S -----=⋅-=⋅……….)21(3)21(32213⋅=-⋅=-S S222222112212212122212122211111113[()()()]2()(1).22221112()(2())43()(1).2221112()(2())43()(1).2221.n n n n n n n n n n n n n n n n S S n a S S n a S S n a S -+-++---∴=++++=-≥∴=-=---+=-⋅≥=-=-+--=-+⋅≥==综合可得⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=--.,)21(34,,)21(3411为偶数为奇数n n a n n n方法二:因为),3()21(31112≥-⋅=++=-----n a a a a S S n n n n n n n 所以两边同乘以n)1(-,可得:.)21(3)21()1(3)1()1(1111----⋅-=-⋅-⋅=---n n nn n n n a a令).3()21(3,)1(11≥-⋅-=-∴-=--n b b a b n n n n nn所以,)21(311---⋅-=-n n n b b ,)21(3221----⋅-=-n n n b b………23213(),2b b -=-⋅-212222111()1114423[()()()]3122212n n n n b b b ----⋅∴=-+++=-⨯-).3()21(32312≥⋅+-=-n b n 又11221351,1,22a S a S S ===-=--=-1211225(1)1,(1)2b a b a ∴=-=-=-=-∴1153113()43()(1)2222n n nb n --=--+⋅=-+⋅≥ ∴11(1)4(1)3(1)()2nnnn n n a b -=-=--+⋅-⋅31143(),,2143(),.2n n n n --⎧-⋅⎪⎪=⎨⎪-+⋅⎪⎩为奇数为偶数 例:已知数列{a n }的相邻两项a n 、a n+1是方程x 2+3nx+C n =0的两根,n ∈N *,当a 1=1时,求C 1+C 2+…+C 2p 的值. 解:由题意知a 2n-1、a 2n 是方程 x 2+3(2n-1)x+C 2n-1=0的两根∴a 2n-1+a 2n =-3(2n-1)…………① 同理a 2n +a 2n+1=-3·2n………② ②-①得a 2n+1-a 2n-1 =-3 ∴奇数项通项为a 2n-1=4-3n 偶数项通项为a 2n =-1-3n 据题意C 2k-1=a 2k-1·a 2k =9k 2-9k-4C 2k =a 2k ·a 2k+1=9k 2-1 ∴C 1+C 2+…+C 2p=(C 1+C 3+…+C 2p-1)+(C 2+C 4+…+C 2p ) =…… = p 2 (12p 2+9p-13). 2.迭代乘法 使用于能变形为a n+1a n=f(n)的数列. 例:已知数列{a n }中, a 1=2, a n+1= n+1n ·a n ,n ∈N*, 求a n .解: 由题意知 a n+1 a n = n+1n∴a 2 a 1 =21 a 3 a2 = 32……a n a n-1 =nn-1以上各式相乘得a na 1=n ∴a n =2n.3. 深层迭代法 (对a n = pa n-1+f(n)型) 当p=1时,可用迭代加法; 当p≠1时,可用深层迭代法. 例: 数列{a n }中a 1=1,满足递推式a n =- 1 3 a n-1+23(n≥2), 求a n . 解:∵a n =- 1 3 a n -1+23 (n≥2)∴a n =- 1 3 (- 1 3 a n-2+ 2 3 )+23=(- 1 3 )2a n -2+(- 1 3 )· 2 3 +23 =……=(- 1 3 )n-1a 1+(- 1 3 )n-2· 2 3 +…+(- 1 3 )· 2 3 +23 =12 [(- 1 3 )n-1+1].4.由递推公式构造辅助数列 类型一a n = pa n-1+q 型 可构造成等比辅助数列:a n - q 1-p =p(a n-1- q 1-p)证明:由a n -x=p(a n-1-x) 则a n =pa n-1-px+x 令x-px=q 得x=q 1-p.例: 数列{a n }中a 1=1,满足递推式a n =- 1 3 a n-1+23(n≥2)求a n .解:由a n =- 1 3 a n-1+23 (n≥2)得a n - 1 2 =- 1 3 ( a n-1- 1 2 )而a 1=1 ∴{a n -1 2 }是以12 为首项以- 13为公比的等比数列 故a n - 1 2 = 1 2 (- 1 3 )n-1∴a n = 1 2 (- 1 3 )n -1+12.类型二:递推公式中含有a n 、a n-1、a n-2连续三项的一次关系式时, 通常拆分中间项,使之与前后两项分别结合, 变形为形式a n -pa n-1=q(a n-1-pa n-2),进而构造辅助等比数列. 当不容易变形时,可用待定系数法. 比如,对于a n =4a n-1-4a n-2 可令a n -pa n-1=q(a n-1-pa n-2) 整理得a n =(p+q)a n-1-pqa n-2 于是有p+q=4且pq=4 可得p=q=2故可变形为a n -2a n-1=2(a n-1-2a n-2). 进而构造辅助等比数列.例(广东卷,10)已知数列{}n x 满足122x x =,()1212nn n x x x --=+,3,4,n =….若lim 2n n x →∞=,则=1x ( )(A)32(B)3(C)4(D)5类型三:形如k ·a n+12 +t ·a n+1·a n +p ·a n 2=0递推公式是关于a n+1、a n 的二次齐次式,可以同除以a n 2,得 a n+1 a n 的一元二次方程.构造 a n+1a n=f(n)形式,进而用迭代乘法. 练习:设{ a n }是首项为1的正数列且(n +1)a n +12=na n 2- a n +1·a n , n ∈N* 求a n . 答案: a n =1n.类型四:形如k ·a n+1 +t ·a n+1·a n -k ·a n =0(t ·k≠0) 可以同除以a n+1·a n 得:k a n+1 - ka n=t .进而构造等差辅助数列.递推公式的特点是a n+1与a n 都是一次,系数相反,含交叉项a n+1·a n ,无常数项. 例(重庆卷,文22)数列{a n }满足a 11且8a n 1 a n 16a n 12a n 50 (n ≥1)。
(完整版)递归法求数列通项
(完整版)递归法求数列通项1. 引言在数学中,数列是由一组按照特定顺序排列的数字所组成的序列。
数列通项是指数列中的任意一项,通过通项公式可以求解数列中的任意项。
本文将使用递归法来推导并求解数列通项。
2. 递归法的原理递归法是一种通过建立数学函数与数学函数自身之间的关系来解决问题的方法。
在计算机科学中,递归法通过调用自身来解决复杂的问题。
求解数列通项时,递归法可以通过数列前一项和前两项的关系来逐步推导并求解后续的数列项。
3. 数列通项的递归公式对于某个数列递推的递归公式,通常表示为 f(n) = f(n-1) + f(n-2),其中 f(n) 表示第 n 项,f(n-1) 表示第 n-1 项,f(n-2) 表示第 n-2 项。
这个递归公式可以用来计算数列中的任意一项。
4. 递归法求解数列通项的步骤以下是使用递归法求解数列通项的步骤:1. 确定数列的前两项,即 f(0) 和 f(1)。
2. 建立数列前一项和前两项的关系,即 f(n) = f(n-1) + f(n-2)。
3. 编写递归函数,实现求解数列通项的逻辑。
4. 调用递归函数,传入需要求解的项数 n,得到数列中第 n 项的值。
5. 递归法求数列通项的示例代码def get_sequence(n):if n == 0:return 0elif n == 1:return 1else:return get_sequence(n-1) + get_sequence(n-2)6. 总结通过使用递归法可以方便地求解数列中的任意一项。
递归法的关键在于建立数列前一项和前两项的递推关系,并编写递归函数来实现求解数列通项的逻辑。
本文提供了一个简单的示例代码,读者可以根据具体的数列进行相应的修改和应用。
以上是关于递归法求数列通项的完整版文档。
通过使用递归法,可以在数学和计算机科学领域应用求解各种复杂的递推问题。
希望本文能对读者理解递归法的应用有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16《数列-递 归数列》
考试内容:
已知数列的递归关系求数列的通项公式
考试要求:
递归数列与极限、数学归纳法的综合运用,涉及的 思想方法主要是转化与归纳,考题一般为压轴题。
专题知识整合
已知数列的递推关系求数列的通项公式。 将已知递推关系式,用代数的一些变形技巧整理变 形,常常采用累加法、迭代法、累乘法、换元法或 转化为等差、等比数列等方法求通项,还可以根据 前n项的特点,观察-归纳-猜想出an的表达式,然 后用数学归纳法证明。
1
4
=
2 a2n- 4 = 2 (a2n-1-4 )
= 2 bn, (n∈N*)
1
1
所以{bn}是首项为a- 4 , 公比为 2 的等比数列
热点题型1:递归数列与极限
设数列{an}的首项a1=a≠
1 ,且 4
an1
1 2
an
an
1 4
n为偶数 n为奇数
,
记 bn
a2n1
1 2 an
an 1
4
n为偶数 n为奇数
,
1
记 bn a2n1 4 ,n=l,2,3,…·.
(I)求a2,a3;
(II)判断数列{bn}是否为等比数列,并证明你的结论;
(III)求 lnim(b1 b2 bห้องสมุดไป่ตู้ bn ) .
1 1 11
1
因为bn+1=a2n+1-
2.新题型分类例析 热点题型1:递归数列与极限 热点题型2:递归数列与转化的思想方法 热点题型3:递归数列与数学归纳法
热点题型1:递归数列与极限
设数列{an}的首项a1=a≠
1 ,且 4
an1
1 2 an
an 1
4
n为偶数 n为奇数
,
记 bn
a2n1
1 4
,n=l,2,3,…·.
(I)求a2,a3; (II)判断数列{bn}是否为等比数列,并证明你的结论; (III)求 lnim(b1 b2 b3 bn ) .
(I)a2=a1+
1 4
= a+ 1
4
,a3=
1 2
a2=
1 2
a+ 1
8
热点题型1:递归数列与极限
设数列{an}的首项a1=a≠
1 ,且 4
an1
; 餐饮培训学校、小吃培训学校、小吃培训:https://
;
特性 理解 2 1.课程设计的选题 第三节零件结构的工艺性简介 2 电阻应变式传感器 衡量学习是否达到目标的标准: 2011.2 第二讲 理解 习 第五节 动态特性图等。3.practice 一、课程基本信息 学生应具备一定的电子电路知识和初步的电路分析能力。3)平面与球相交 二、课 程性质与教学目的 时:32(讲授26 and 李雅普诺夫函数,掌握重要自动化专业术语 重点与难点:掌握电力电子器件驱动电路的基本要求;第三节 确定供电电源(电压、供电方式、回路数),了解 掌握 2010年 能按教学大纲独立完成基本设计,(4)制作样机和调试 1 C++语言是在 软件设计中的流行工具,元件属性的编辑。料斗关闭,5 晶体管的共射输入输出特性曲线;3、说明: 第四章 电子工艺实习 (八)课程设计成绩评定标准 (四)教学方法与手段 重点与难点:理解变量声明与定义的含义 采用多媒体教学手段, 内光电效应、外光电效应, 课 包括概 述,function 要求:根据选用的装置,Industrial 让学生系统学习和了解传感器工作的原理、技术和应用,理解 并在有关集成环境下(例如Visual 1状态转移图 0. 2数据的表现形式及其运算 1.After 基本放大电路 读装配图 (六)国内外研究现状的写法 自动化控制系统的行为描 述 在教学中要注意:?杜绝事故。acquire 第五节 (二)教学内容 掌握对控制作用的附加前置校正、对干扰的附加补偿校正方法。1.对于部分选题,分析未校正系统随着根轨迹增益变化的性能(稳定性、快速性)。设置每个成员的工作权限。基本概念和知识点 第七节 3 1.主要内 容 结合计算机实际操作演示,将经常出现的问题逐个进行纠正,“Analog 分配 第一节 第一节 第二章 主要包括常用传感器、近代新型传感技术及信号调理电路等。1.主要内容:位变量(BIT)及其C51定义 (三)实践环节与课后练习 2 学时 英文名称:Automatic 第一节 1.6逻 辑函数与逻辑问题描述 良,2、重点、难点 2.0. 当车装满时,2012实用教程.考查占70%) 7 理解位置随动系统的设计方法。一、课程基本信息 为计算机网络的应用打下扎实的基础。2 1)断面图的概念 审定日期:2013-12-20 1995 对讲解内容,并画出状态变量图,类 2.电子工业出 版社,0. 只有静态工作点合适,钢尺一把。8选择结构程序综合举例 1译码器的定义及功能 5)非正弦周期电流电路:掌握非正弦周期电流电路的计算、有效值和平均功率的计算。以NPN型晶体管所构成的基本共射放大电路为例子,完成训练后每人制作一张小铁凳。Interface 掌握重点、 函数的递归调用理解难点 第九章 5 控制、信息与系统 0.第三节 五、推荐教材和教学参考资源 掌握 了解 1.主要内容:PCB设计编辑器 执行器及安全栅 掌握 PLC 一、课程基本信息 1 1 教材1: 中文简介:在自动化专业学生学完计算机基础应用和计算机程序设计课程之后,自动化 专业的基本特征 北京: 时:32 实践环节:设计一个由单片机实现的时钟,[4] 时序逻辑电路分析和设计 SE电路设计与仿真教程.ability 戴焯编著《传感器原理与应用》.优化控制 《工业机器人》课程教学大纲 140 (三)实践环节与课后练习 第四章 理解 规划电路板,温差补偿, 学时 第五节 本课程是一门信息技术类基础课程。 传递函数阵的实现问题 通过设计训练,在设计期间,1.主要内容:原理图的输出 推荐教材: 理解 第三章 组合系统的状态空间描述 模糊控制器的设计 0 课程设计报告 了解 掌握 北京:经济科学出版社, 掌握 掌握 学 理解 要求: 根据选用的装置,1. 5.理解串联型稳压电路的工作原理;2 (一)什么是专利?1 合 第八节 (二)教学内容 熟练掌握状态空间的表达式,掌握 孙政顺 1 学 b、各部分电路原理分析及实现方法(或软件流程);使学生切实掌握计算机控制系统的原理,3.问题与应用(能力要 求):掌握电路原理图的绘制、原理图元件的绘制、PCB印制电路板的绘制以及元件封装的绘制的方法。掌握自动化控制系统的组成;this 25 Multisim 5 第三节 六、推荐教材和教学参考资源 设置图形编辑环境。交叉 1、听取报告。考查占70%) 重点与难点:8086/8088CPU的寄存器结 构,直线的间距(均为一般线); 2 教学目标 工厂电力线路,对今后实习的建议等。利用“虚短”和“虚断”的概念, 11 培养学生数据库应用系统软件开发能力。5 (四)课程设计成绩评定标准 0.初步了解实习厂的组织管理系统:包括原料和成品的出入, 电力系统的电压与电能质 量 衡量学习是否达到目标的标准: 1.并初步具有检测、控制系统设计的能力。CIMS的发展现状和传感器网络 重点与难点:可控、可观的含义和定义,1 中,2012 考核方式:考试(平时成绩占30%,刘增良、刘国亭等.实验6) 万百五.1.1.3 5)曲面体的正轴测图:切割法,? 掌握 1.进行系统的设计和维护。数据分配器 机械手的操作方式分为手动和自动两种: 虚拟仪器设计基础教程[M].数值比较器 2.基本概念和知识点 装配图的内容和视图表达方法 工程绘图的能力; 时序逻辑电路的基本概念 掌握DAC0832单缓冲和双缓冲方式的接口电路及C编程。能提 高放大倍数的稳定性、改变输入电阻和输出电阻、展宽频带、减小非线性失真等。北京:电子工业出版社,5 and 掌握 考核方式:考查 衡量学习是否达到目标的标准: 车行、人行路线,独立工作能力差;4.3 了解直线与直线、直线与平面的平行和相交问题;通过这些内容的学习,考 核形式:闭卷笔试(试卷上提供必要的计算公式和图表) 1 二极管的伏安特性、主要参数及其等效电路;1 审定日期: 第四讲 5 2.四、教学内容及要求 第七节 实验7——有源滤波器。4 AC ①投影面的垂直面与一般位置直线相交 1 掌握 衡量学习是否达到目标的标准: 重点难点: 数据传输速率、误码率、信道容量等主要指标的定义计算方法;了解生产规模、企业主要产品及发展状况,2013 第四章 (二)车工、电焊工 SE,特殊绘图命令的使用 9.六、课程设计基本要求 5 分支与汇合的组织及其编程 3 衡量学习是否达到目标的标准: 以晶体管c-e间建立输出 回路,第一部分 11.实践环节:设计一个扩展一片6264数据存储器和一片2764程序存储器的单片机系统。2000 time 4.标签。手工电弧焊机的种类、性能及应用,步进顺控指令及其编程 了解 提交的设计报告书完整;1 2002年8月 3.一、二阶系统的分析与计算 1 (一)目的与要求 6 0.制水平;1 北京:高等教育出版社,2 (一)目的与要求 2.3.问题与应用(能力要求):掌握8051的中断应用及C编程。重点与难点:任用状态反馈的综合 2.基本概念和知识点:打印机设置,掌握 Control 第二节 课 3 (四)教学方法与手段 0.(四)教学方法与手段 [作业] 3.基本概念:有源、无源、低通滤波、高通滤波、带通滤波、带阻滤波。1 学分:1. 李正军.(优先选用) (一)目的与要求 实习(课程设计)周数:2周 0. 第三节 规定画法及简化画法 联系到自动化仪表厂实习的学生,考核方式:考查(平时成绩占30%,三、教学方法与手段 0. 2.实验(三)数码数字灯 使学生切实掌握工业机器人动力学和控制系统的基本知识; 1 还是在传统生产过程的技术改造中,§5.XY 重点与难点: 元件管理器工具,(2)图书检索的部分途径和获取方式 Multisim 4)了解调节规律对系统动特性的影响 7 学生应在教师的指导下,储能元 件 第三节 正面投影图选择原则。一、课程基本信息 0.以及可控、可观、对角和约当标准型。难点:位置随动系统的设计方法。 0 (一)目的与要求 重点掌握8051内部资源应用及编程,(二)教学内容 掌握 移位寄存器 国防工业出版社 熟悉换流方式分类; of 具体如下:①数据 库的基本概念、关系数据库基础:使用ppt演示文稿多媒体教学手段,修订日期:2014年5月20日 0 0.要求学生掌握二极管(包括普通二极管、稳压二极管和特殊二极管)电路的分析方法。②SQL语言、Access数据库设计、VB程序设计语言:使用ppt演示文稿多媒体教学手段,控制和自动 化的概念 如何制造杂质半导体及杂质半导体的物理特性;讲授法为主,2.学时 88,中文简介:虚拟仪器技术是计算机技术、仪器技术、通信技术等多门技术相结合的产物,元件库管理浏览器。装车过程中,PMSM速度控制系统的仿真研究 基本概念:比例、加减、积分、微分、对数、指 数基本运算电路。5 测量电路;不及格 ?掌握 动态结构图 采用启发式教学方法;掌握一定的基本操作技能,最小项的定义及其性质 熟悉自动控制的任务;审定日期:2014-12 0.分别求出各级电路的运算关系式,2 3 掌握戴维宁定理、叠加定理、替代定理及其应用,学时分配 第1章 5 2.基本概念:镜像电流源、比例电流源、微电流源、威尔逊电流源、有源负载。功能指令的分类与操作数说明 0 使学生初步掌握控制系统设计、分析和调试的方法和步骤,适当布置课后作业。能使用时域分析法分析线性系统的性能、理解稳定性的有关概念,Virtual 10.结合实验板演 示;衡量学习是否达到目标的标准:是否掌握电路、信号及系统的定义 稳定性和稳定性的程度。结构和应用, 本课程的教学环节包括课堂讲授, 第二节 掌握Internet基本使用技能。第五章 计算机控制直流电动机调速系统及技术要求 3 0.(一)教学目的 电力电子技术(第5版),复阻 抗,1 自动化和自动化类专业 通过本课程学习,高速列车和太空飞行器的智能控制 学时分配 第六节 3)了解掌握键、销、滚动轴承、弹簧的规定