高考数学函数与导数试题汇编

高考数学函数与导数试题汇编
高考数学函数与导数试题汇编

高考数学函数与导数试题汇编

已知函数x

x f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=

?N M ( )

A.{}

1>x x

B.{}1

C.{}

11<<-x x

D.φ

C.

客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是( )

A. B. C. D.

B.

设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为1

2

,则a =( ) A 2 B .2 C .22 D .4

A

(07全国Ⅰ)

设()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )

A .充要条件

B .充分而不必要的条件

C .必要而不充分的条件

D .既不充分也不必要的条件

B

(07江西)

设函数f(x)是R 上以5为周期的可导偶函数,则曲线y =f(x)在x =5处的切线的斜率为 A .-

51 B .0 C .5

1

D .5 B.

(07浙江)

设()??

?<≥=1

,

1,

2x x x x x f ,()x g 是二次函数,若()[]x g f 的值域是[)+∞,0,则()x g 的值

域是( )

A.(][)+∞-∞-,11,Y

B.(][)+∞-∞-,01,Y

C.[)+∞,0

D. [)+∞,1

C.

(07天津)

在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( )

A.在区间[]1,2--上是增函数,区间[]4,3上是增函数

B.在区间[]1,2--上是增函数,区间[]4,3上是减函数

C.在区间[]1,2--上是减函数,区间[]4,3上是增函数

D.在区间[]1,2--上是减函数,区间[]4,3上是减函数

B.

设c b a ,,均为正数,且a a

2

1log 2=,b b 21log 21=??? ??,c c

2log 21=??? ??.则( )

A.c b a <<

B. a b c <<

C. b a c <<

D. c a b <<

A.

(07湖南) 函数()??

?>+-≤-=1

,341

,442

x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( ) A.4 B.3 C.2 D.1

设集合{

}6,5,4,3,2,1=M ,k S S S ,,,21Λ都是M 的含有两个元素的子集,且满足:对任意的

{}

i i i b a S ,=、

{}

j j j b a S ,=(

{}

k j i j i ,,3,2,1,,Λ∈≠)都有

??

?

???????≠??????j j j j i i i i a b b a a b b a ,min ,min , ({}y x ,m in 表示两个数y x ,中的较小者)

,则k 的最大值是( )

A.10

B.11

C.12

D.13

B.

(07福建)

已知函数()x f 为R 上的减函数,则满足()11

f x f

?

??的实数x 的取值范围是( ) A.()1,1- B.()1,0 C.()()1,00,1Y - D.()()+∞-∞-,11,Y

C.

(07重庆)

已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( )

A.()()76f f >

B. ()()96f f >

C. ()()97f f >

D. ()()107f f >

D

(07山东)

已知集合{}1,1-=M ,?

?????<<∈=+4221

1x Z

x N ,则=N M I ( ) A.{}1,1- B. {}1- C. {}0 D.{}0,1-

B.

(07山东) 设?

??

???

-∈3,21,

1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为( ) A.1,3 B.-1,1 C.-1,3 D.-1,1,3

(07江西)

四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是()

A .h 2>h 1>h 4

B .h 1>h 2>h 3

C .h 3>h 2>h 4

D .h 2>h 4>h 1

A.

(07安徽)

若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是

A. a <-1

B. a ≤1

C.a <1

D.a ≥1

B.

(07安徽)

定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程

0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为

A.0

B.1

C.3

D.5

D.

(07安徽)

图中的图象所表示的函数的解析式为

(A)|1|2

3

-=

x y (0≤x ≤2) (B) |1|23

23--=x y (0≤x ≤2)

(C) |1|2

3

--=x y (0≤x ≤2)

(D) |1|1--=x y (0≤x ≤2)

B.

设a >1,且)2(log ),1(log )1(log 2

a p a n a m a a a =-=+=,则p n m ,,的大小关系为

(A) n >m >p (B) m >p >n (C) m >n >p (D) p >m >n

B.

(07北京)

对于函数①()()

12lg +-=x x f ,②()()2

2-=x x f ,③()()2cos +=x x f .判断如下三个

命题的真假:命题甲:()2+x f 是偶函数;命题乙:()()2,∞-在区间x f 上是减函数,在区间()+∞,2上是增函数;命题丙:()()x f x f -+2在()+∞∞-,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是()

A.①③

B.①②

C. ③

D. ②

D

(07湖北)

为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知

药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小

时)成正比;药物释放完毕后,y 与t 的函数关系式为a

t y -?

?

?

??=161(a

为常数),如图所示,根据图中提供的信息,回答下列问题:

(Ⅰ)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .

(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.

??

???>??

?

??≤≤=-1.0,1611.00101

.0t t t y t ,

6.0 (07山东)

函数())1,0(13log ≠>-+=a a x y a 的图象恒过定点A,若点A 在直线01=++ny mx 上,其中0>mn ,则

n

m 2

1+的最小值为 . 8

(07重庆)

若函数()12

22-=

--a

ax x x f 的定义域为R ,则实数a 的取值范围 。 []0,1-(07宁夏)设函数()()()x

a x x x f ++=

1为奇函数,则实数=a 。

-1

(07全国Ⅰ)

函数()y f x =的图象与函数3log (0)y x x =>的图象关于直线y x =对称,则

()f x =__________。

)(3R x x ∈

(07北京)

已知函数()()x g x f ,分别由下表给出:

则()[]1g f 的值 ;满足()[]()[]x f g x g f >的x 的值 .

1,2

已知a 是实数,函数()a x ax x f --+=3222

,如果函数()x f y =在区间[]1,1-上有零点,

求a 的取值范围.

解:若0a = , ()23f x x =- ,显然在[]1,1-上没有零点, 所以 0a ≠. 令 ()2

48382440a a a a ?=++=++=, 解得

32

a -±=

①当

32

a -=

时, ()y f x =恰有一个零点在[]1,1-上; ②当()()()()05111<--=?-a a f f ,即15a <<时,()y f x =在

[]1,1-上也恰有一个零点.

③当()y f x =在[]1,1-上有两个零点时, 则

x

1

2 3 f(x) 1 3

1

x

1

2 3 g(x) 3

2

1

()()208244011121010a a a a f f >???=++>??-<-

21010a a a a f f

??=++>??-<-

?

-≤?

解得5a ≥

或a <

综上所求实数a 的取值范围是 1a > 或

32

a -≤

.

(07北京)

已知集合{})2(,,,,321≥=k a a a a A k Λ其中),,2,1(k i Z a i Λ=∈,由A 中的元素构成两个相应的集合(){}A b a A b A a b a S ∈+∈∈=,,,,(){}

A b a A b A a b a T ∈-∈∈=,,,,其中

()b a ,是有序实数对,集合T S 和的元素个数分别为n m ,.

若对于任意的A a A a ?-∈,总有,则称集合A 具有性质P .

(Ⅰ)检验集合{}3,2,1,0与{}3,2,1-是否具有性质P ,并对其中具有性质P 的集合写出相应的集合T S 和;

(Ⅱ)对任何具有性质P 的集合A ,证明:()2

1-≤

k k n ; (Ⅲ)判断n m 和的大小关系,并证明你的结论.

(Ⅰ)解:集合{}3,2,1,0不具有性质P ,{}3,2,1-具有性质P ,其相应的集合T S 和是

()(){}()(){}3,2,1,2,1.3,3,1-=--=T S ;

(Ⅱ)证明:首先由A 中的元素构成的有序实数对共有2

k 个,因为

()T a a A i i ∈∈,,0),,2,1(k i Λ=,

又因为当A a A a ?-∈时,

, 所以当()()

T a a T a a i j j i ?∈,,时,

),,2,1(k i Λ=,于是集合T 中的元素的个数最多为

()

()121212-=-=

k k k k n ,即()21-≤k k n . (Ⅲ)解:n m =,证明如下: ①对于()S b a ∈,,根据定义()T b b a A b a A b A a ∈+∈+∈∈,,,从而,则 如果()()d c b a ,,与是S 中的不同元素,那么d b c a ==与中至少有一个不成立,于是

d c b a +=+与d b =中至少有一个不成立,故()b b a ,+与()d d c ,+也是T 中的不同元素.

可见

S 中的元素个数不多于T 中的元素个数,即n m ≤;

②对于()T b a ∈,,根据定义()S b b a A b a A b A a ∈-∈-∈∈,,,从而,则 如果()()d c b a ,,与是T 中的不同元素,那么d b c a ==与中至少有一个不成立,于是

d c b a -=-与d b =中至少有一个不成立,故()b b a ,-与()d d c ,-也是S 中的不同元素.

可见

T 中的元素个数不多于S 中的元素个数,即m n ≤.

由①②可知n m =.

(07上海)

已知函数()),0(2

R a x x

a

x x f ∈≠+

= (1)判断函数()x f 的奇偶性;

(2)若()x f 在区间[)+∞,2是增函数,求实数a 的取值范围。

解:(1)当0=a 时,()2

x x f =为偶函数;当0≠a 时,()x f 既不是奇函数也不是偶函数.

(2)设212≥>x x ,()()2

2

212

121x a x x a x x f x f --+

=- ()[]a x x x x x x x x -+-=

21212

12

1, 由212≥>x x 得()162121>+x x x x ,0,02121><-x x x x 要使()x f 在区间[)+∞,2是增函数只需()()021<-x f x f ,

即()02121>-+a x x x x 恒成立,则16≤a 。 另解(导数法):()22'x

a

x x f -

=,要使()x f 在区间[)+∞,2是增函数,只需当2≥x 时,()0'≥x f 恒成立,即022

≥-

x

a x ,则[)+∞∈≤,1623

x a 恒成立, 故当16≤a 时,()x f 在区间[)+∞,2是增函数。

(重庆理)

已知函数c bx x ax x f -+=4

4

ln )((x>0)在x = 1处取得极值c --3,其中a,b,c 为常数。 (1)试确定a,b 的值;

(2)讨论函数f(x)的单调区间;

(3)若对任意x>0,不等式2

2)(c x f -≥恒成立,求c 的取值范围。 解:(I )由题意知(1)3f c =--,因此3b c c -=--,从而3b =-. 又对()f x 求导得()343

41

ln 4'bx x

ax x ax x f +?

+=3(4ln 4)x a x a b =++. 由题意(1)0f '=,因此40a b +=,解得12a =.

(II )由(I )知3

()48ln f x x x '=(0x >),令()0f x '=,解得1x =. 当01x <<时,()0f x '<,此时()f x 为减函数; 当1x >时,()0f x '>,此时()f x 为增函数.

因此()f x 的单调递减区间为(01),,而()f x 的单调递增区间为(1)+,∞

. (III )由(II )知,()f x 在1x =处取得极小值(1)3f c =--,此极小值也是最小值,要使

2()2f x c -≥(0x >)恒成立,只需232c c ---≥.

即2

230c c --≥,从而(23)(1)0c c -+≥, 解得3

2

c ≥

或1c -≤. 所以c 的取值范围为3(1]2

??-∞-+∞????

U ,

,.

设3()3x f x =,对任意实数t ,记2

32

()3

t g x t x t =-.

(I )求函数()()t y f x g x =-的单调区间;

(II )求证:(ⅰ)当0x >时,()f x g ()()t f x g x ≥对任意正实数t 成立; (ⅱ)有且仅有一个正实数0x ,使得00()()x t g x g x ≥对任意正实数t 成立.

本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15分.

(I )解:316

433

x y x =-+.由240y x '=-=,得2x =±. 因为当(2)x ∈-∞-,时,y '>0,当(22)x ∈-,时,0y '<,当(2)x ∈+∞,时,0y '>, 故所求函数的单调递增区间是(2)-∞-,,(2)+∞,;单调递减区间是(22)-,.

(II )证明:(i )方法一:令2332

()()()(0)33

t x h x f x g x t x t x =-=-+>, 则22

3()h x x t '=-,当0t >时,由()0h x '=,得13x t =,当13

()x x ∈+∞,

时,()0h x '>, 所以()h x 在(0)+∞,内的最小值是13

()0h t =. 故当0x >时,()()t f x g x ≥对任意正实数t 成立. 方法二:

对任意固定的0x >,令2

32()()(0)3t h t g x t x t t ==->,则1

1

332()()3

h t t x t -'=-,

由()0h t '=,得3t x =.当30t x <<时,()0h t '>.当3

t x >时,()0h t '<, 所以当3

t x =时,()h t 取得最大值3

3

1()3

h x x =

. 因此当0x >时,()()f x g x ≥对任意正实数t 成立. (ii )方法一:8

(2)(2)3

t f g =

=.由(i )得,(2)(2)t t g g ≥对任意正实数t 成立. 即存在正实数02x =,使得(2)(2)x t g g ≥对任意正实数t 成立.

下面证明0x 的唯一性:当02x ≠,00x >,8t =时,

300()3x f x =,0016

()43x g x x =-,由(i )得,

30016433x x >-, 再取3

0t x =,得30300()3x x g x =,所以30

3

000016()4()33

x x x g x x g x =-

<=, 即02x ≠时,不满足00()()x t g x g x ≥对任意0t >都成立.

故有且仅有一个正实数02x =,使得00()0()x t g x g x ≥对任意正实数t 成立.

方法二:对任意00x >,0016()43x g x x =-

,因为0()t g x 关于t 的最大值是3

013

x ,所以要使00()()x t g x g x ≥对任意正实数成立的充分必要条件是:3

00161433

x x -≥,

即2

00(2)(4)0x x -+≤, ①又因为00x >,不等式①成立的充分必要条件是02x =,

所以有且仅有一个正实数02x =,使得00()()x t g x g x ≥对任意正实数t 成立.

(天津理)

已知函数2221

()()1

ax a f x x x -+=

∈+R ,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.

本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法.满分12分. (Ⅰ)解:当1a =时,22()1x f x x =

+,4

(2)5

f =, 又222222

2(1)2222()(1)(1)x x x x f x x x +--'==++·,6

(2)25

f '=-. 所以,曲线()y f x =在点(2(2))f ,处的切线方程为46

(2)525

y x -=--, 即62320x y +-=.

(Ⅱ)解:222222

2(1)2(21)2()(1)()(1)(1)

a x x ax a x a ax f x x x +--+--+'==++.

由于0a ≠,以下分两种情况讨论. (1)当0a >时,令()0f x '=,得到11

x a

=-,2x a =.当x 变化时,()()f x f x ',的变化情况如下表:

所以()f x 在区间1a ?

?-- ??

?,

∞,()a +,∞内为减函数,在区间1a a ??

- ???

,内为增函数.

函数()f x 在11x a =-处取得极小值1f a ??- ???

,且21f a a ??

-=- ???

, 函数()f x 在21

x a

=

处取得极大值()f a ,且()1f a =. (2)当0a <时,令()0f x '=,得到121

x a x a

==-,,当x 变化时,()()f x f x ',的变化

情况如下表:

所以()f x 在区间()a -,∞,1

a ??- ???,+∞内为增函数,在区间1a a ??

- ???

内为减函数. 函数()f x 在1x a =处取得极大值()f a ,且()1f a =. 函数()f x 在21

x a

=-处取得极小值1f a ??- ???,且21f a a ??

-=- ???

. (四川理)

设函数1()1(,1,)n

f x n N n x N n ??

=+∈>∈ ???

且.

(Ⅰ)当x =6时,求n

n ??

?

??+11的展开式中二项式系数最大的项;

(Ⅱ)对任意的实数x ,证明

2

)

2()2(f x f +>);)()()((的导函数是x f x f x f ''

(Ⅲ)是否存在N a ∈,使得an <

∑-???

?

?+n

k k 111<n a )1(+恒成立?若存在,试证明你的结论并求出a 的值;若不存在,请说明理由.

本题考察函数、不等式、导数、二项式定理、组合数计算公式等内容和数学思想方法。考查综合推理论证与分析解决问题的能力及创新意识。

(Ⅰ)解:展开式中二项式系数最大的项是第4项,这项是3

35

6

3120

1C n n ??= ???

(Ⅱ)证法一:因()()22

112211n f x f n n ????

+=+++ ? ?????

≥11211n

n n ??

??=+?+ ?

???

??121n

n ??

>+ ???

1121ln 12n

n ????>++ ? ?????()'1121ln 12n

f x n n ????

≥++= ? ?????

证法二:

因()()22112211n f x f n n ????+=+++ ? ????

?≥11211n

n n ????

=+?+ ?

???

??

而()'11221ln 1n

f x n n ????

=++ ? ?????

故只需对11n ??+

???和1ln 1n ??

+ ???

进行比较。 令()()ln 1g x x x x =-≥,有()'

11

1x g x x x

-=-= 由

1

0x x

-=,得1x = 因为当01x <<时,()'

0g x <,()g x 单调递减;当1x <<+∞时,()'

0g x >,()g x 单调递增,所以在1x =处()g x 有极小值1 故当1x >时,()()11g x g >=,

从而有ln 1x x ->,亦即ln 1ln x x x >+> 故有111ln 1n n ????+

>+ ? ?????

恒成立。 所以()()()'222f x f f x +≥,原不等式成立。 (Ⅲ)对m N ∈,且1m >

有2012111111m k m

k m m m m m m C C C C C m m m m m ??????????+=+++++++ ? ? ? ? ???????????

L L ()()()()2

111121111112!!!k

m

m m m m m k m m m k m m m ---+-???????=+++++++ ? ? ?

??????

L L L L

11112111121111112!!!k m m k m m m m m m --????????

????

=+

-++---++-- ? ??? ? ? ????????????

?L L L L

1111

22!3!!!

k m <+

+++++

L L ()()

1111

2213211k k m m <+

+++++??--L L 11111112122311k k m m ????????=+-+-++-++- ? ? ? ?--????????

L L

1

33m

=-

< 又因()102,3,4,,k

k m C k m m ??>= ???L ,故1213m

m ??<+< ???

∵1213m

m ??<+< ???,从而有11213k

n k n n k =??

<+< ??

?∑成立,

即存在2a =,使得11213k

n

k n n k =??

<+< ???∑恒成立。

(陕西理)

设函数f (x )=,2

2

a

ax x c ++其中a 为实数. (Ⅰ)若f (x )的定义域为R ,求a 的取值范围; (Ⅱ)当f (x )的定义域为R 时,求f (x )的单减区间.

解:(Ⅰ)()f x 的定义域为R ,20x ax a ∴++≠恒成立,2

40a a ∴?=-<,

04a ∴<<,即当04a <<时()f x 的定义域为R .

(Ⅱ)22

(2)e ()()x x x a f x x ax a +-'=++,令()0f x '≤,得(2)0x x a +-≤.

由()0f x '=,得0x =或2x a =-,又04a <

02a ∴<<时,由()0f x '<得02x a <<-;

当2a =时,()0f x '≥;当24a <<时,由()0f x '<得20a x -<<, 即当02a <<时,()f x 的单调减区间为(02)a -,; 当24a <<时,()f x 的单调减区间为(20)a -,.

(山东理)

设函数2

()ln(1)f x x b x =++,其中0b ≠. (Ⅰ)当1

2

b >

时,判断函数()f x 在定义域上的单调性; (Ⅱ)求函数()f x 的极值点;

(Ⅲ)证明对任意的正整数n ,不等式23111

ln 1n n n

??+>-

???都成立. 解(I) 函数2

()ln(1)f x x b x =++的定义域为()1,-+∞.

222'()211

b x x b

f x x x x ++=+=++,

令2

()22g x x x b =++,则()g x 在1,2??-

+∞ ???上递增,在11,2?

?-- ??

?上递减,

min 11()()22g x g b =-=-+.当12b >时,min 1

()02

g x b =-+>,

2()220g x x x b =++>在()1,-+∞上恒成立.'()0,f x ∴>

即当1

2

b >

时,函数()f x 在定义域()1,-+∞上单调递增。 (II )分以下几种情形讨论:(1)由(I )知当1

2

b >时函数()f x 无极值点.

(2)当12b =时,2

12()2'()1x f x x +=+,11,2x ??∴∈-- ?

?

?时,'()0,f x > 1,2x ??

∈-+∞ ???

时,'()0,f x >12b ∴=时,函数()f x 在()1,-+∞上无极值点。

(3)当12

b <

时,解'

()0f x =

得两个不同解1x =

2x =.

当0b <

时,1112x -=

<-

,2112

x -+=>-,

()()121,,1,,x x ∴?-+∞∈-+∞

此时()f x 在()1,-+∞

上有唯一的极小值点212

x -+=.

当1

02

b <<

时,()12,1,,x x ∈-+∞ '()f x 在()()121,,,x x -+∞都大于0 ,'()f x 在12(,)x x 上小于0 ,

此时()f x

有一个极大值点1x =

2x =.

综上可知,0b <时,()f x 在()1,-+∞

上有唯一的极小值点212

x -+=

1

02

b <<

时,()f x

有一个极大值点112x -=

和一个极小值点212x -+=;

1

2

b ≥

时,函数()f x 在()1,-+∞上无极值点。 (III ) 当1b =-时,2

()ln(1).f x x x =-+

令3

3

2

()()ln(1),h x x f x x x x =-=-++则32

'

3(1)()1

x x h x x +-=+在[)0,+∞上恒正,

()h x ∴在[)0,+∞上单调递增,当()0,x ∈+∞时,恒有()(0)0h x h >=.

即当()0,x ∈+∞时,有3

2

ln(1)0,x x x -++>2

3

ln(1)x x x +>-,

对任意正整数n ,取1x n =

得23111ln(1)n n n

+>-

【试题分析】函数的单调性、导数的应用、不等式的证明方法。(I)通过判断导函数的正负来

确定函数的单调性是'

()0f x >是1

2b >

和定义域()1,-+∞共同作用的结果;(II )需要分类讨论,由(I )可知分类的标准为11

,0,0.22

b b b ≥<<<(III )构造新函数为证明不等式“服

务”,构造函数的依据是不等式关系中隐含的易于判断的函数关系。用导数解决函数的单调性问题一直是各省市高考及各地市高考模拟试题的重点,究其原因,应该有三条:这里是知识的交汇处,这里是导数的主阵地,这里是思维的制高点.此类问题的一般步骤都能掌握,但重要的是求导后的细节问题------参数的取值范围是否影响了函数的单调性?因而需要进行分类讨论判断:当参数给出了明确的取值范围后,应根据()f x 导函数的特点迅速判断

'()0f x >或'()0f x <。参数取某些特定值时,可直观作出判断,单列为一类;不能作出直

观判断的,再分为一类,用通法解决.另外要注意由'

()0f x =求得的根不一定就是极值点,需要判断在该点两侧的异号性后才能称为 “极值点”. (全国卷二理)

已知函数3

()f x x x =-.

(1)求曲线()y f x =在点(())M t f t ,处的切线方程;

(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<< 解:(1)()f x 的导数2

()31x x f '=-.曲线()y f x =在点(())M t f t ,处的切线方程为:

()()()y f t f t x t '-=-,即23(31)2y t x t =--.

(2)如果有一条切线过点()a b ,,则存在t ,使2

3

(31)2b t a t =--.

若过点()a b ,可作曲线()y f x =的三条切线,则方程32

230t at a b -++=有三个相异的实数根.记3

2

()23g t t at a b =-++,则2

()66g t t at '=-6()t t a =-. 当t 变化时,()()g t g t ',变化情况如下表:

由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根;

当0a b +=时,解方程()0g t =得302a

t t ==,,即方程()0g t =只有两个相异的实数根; 当()0b f a -=时,解方程()0g t =得2

a

t t a =-=,,即方程()0g t =只有两个相异的实

数根.

综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,

则0()0.a b b f a +>??

-

()a b f a -<<.

(全国卷一理) 设函数()e e x

x

f x -=-.

(Ⅰ)证明:()f x 的导数()2f x '≥;

(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.

解:(Ⅰ)()f x 的导数()e e x

x

f x -'=+

.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立).

(Ⅱ)令()()g x f x ax =-,则()()e e x

x

g x f x a a -''=-=+-,

(ⅰ)若2a ≤,当0x >时,()e e 20x

x

g x a a -'=+->-≥,

故()g x 在(0)+,∞上为增函数,

所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.

(ⅱ)若2a >,方程()0g x '=

的正根为1ln x =,

此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.

所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. 设函数2

()ln()f x x a x =++

(I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e

ln 2

. (江西理)

如图,函数π2cos()(0)2

y x x ωθθ=+∈R ,≤≤的图象与y

轴交于点(0,且在该点处切线的斜率为2-. (1)求θ和ω的值;

(2)已知点π

02

A ?? ???

,,点P 是该函数图象上一点,点00()

Q x y ,是PA

的中点,当02y =

,0ππ2x ??

∈????,时,求0x 的值. 解:(1)将0x =

,y =2cos()y x ωθ=+

得cos θ=

,因为02

θπ

≤≤,所以6

θπ

=

. 又因为2sin()y x ωωθ'=-+,0

2x y ='=-,

6θπ=,所以2ω=,因此2cos 26y x π?

?=+ ??

?.

(2)因为点02A π?? ???

,00()Q x y ,是PA

的中点,02y =,点P

的坐标为022x π?- ?. 又因为点P 在2cos 26y x π?

?=+ ??

?

的图象上,所以05cos 462x π??-= ???

. 因为

02x ππ≤≤,所以075194666

x πππ

-≤≤

, 从而得0511466x ππ-=或0513466x ππ-=

.即023x π=或034

x π

=. (湖南理)

如图4,某地为了开发旅游资源,欲修建一条连接风景点P 和居民区O 的公路,点P 所在的山坡面与山脚所在水平面α所成的二面角为θ(090θ<

o

),且2

sin 5

θ=

,点P 到平面α的距离0.4PH =(km ).沿山脚原有一段笔直的公路AB 可供利用.从点O 到山脚修路的造价为a 万元/km ,原有公路改建费用为

2

a

万元/km .当山坡上公路长度为l km

(12l ≤≤)时,其造价为2

(1)l a +万元.已知OA AB ⊥,PB AB ⊥, 1.5(km)AB =,

3(km)OA =.

(I )在AB 上求一点D ,使沿折线PDAO 修建公路的总造价最小;

(II ) 对于(I )中得到的点D ,在DA 上求一点E ,使沿折线PDEO 修建公路的总造价最小.

(III )在AB 上是否存在两个不同的点D ',E ',使沿折线PD E O ''修建公路的总造价小于(II )中得到的最小总造价,证明你的结论.

解:(I )如图,PH α⊥,HB α?,PB AB ⊥, 由三垂线定理逆定理知,AB HB ⊥,所以PBH ∠是 山坡与α所成二面角的平面角,则PBH θ∠=,

1sin PH PB θ

==.设(km)BD x =,0 1.5x ≤≤.

则222

1PD x PB x =

+=+[12]∈,

. 记总造价为1()f x 万元, 据题设有2

211111

()(1)(3)224

f x PD AD AO a x x a =++

+=-++ 2

1433416x a a ????

=-++ ? ?????

当14x =

,即1

(km)4

BD =时,总造价1()f x 最小. (II )设(km)AE y =,5

04

y ≤≤,总造价为2()f y 万元,根据题设有

222131()13224f y PD y y a ??

??=++++-- ??????

?2433216y y a a ??=+-+ ???.

A

E

D

B

H

P

α

A

O E D

B

H

P

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

最新-2017新课标高考数学导数分类汇编(文)

2011-2017新课标(文科)导数压轴题分类汇编 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )> ln x x -1 【解析】 (1)22 1 ( ln ) '()(1)x x b x f x x x α+-= -+ 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 1 1ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h -- =---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(l n ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

高考数学函数与导数相结合压轴题精选(含具体解答)

函数与导数相结合压轴题精选(二) 11、已知)0()(2 3 >+++=a d cx bx ax x f 为连续、可导函数,如果)(x f 既有极大值M ,又有极小值N ,求证:.N M > 证明:由题设有),)((323)(212 x x x x a c bx ax x f --=++='不仿设21x x <, 则由时当时当时当知),(,0)(),(,0)(),(:02211+∞∈<'∈>'-∞∈>x x x f x x x x f x x a 1)(,0)(x x f x f 在故>'处取极大值,在x 2处取极小值, )()()()()(212 221323121x x c x x b x x a x f x f -+-+-=- ])()()[(212122121c x x b x ax x x a x x +++-+-= )] 3(92 )[(]3232)32()[(22121ac b a x x c a b b a c a a b a x x ---=+-?+?-- ?-= 由方程0232 =++c bx ax 有两个相异根,有,0)3(412)2(2 2>-=-=?ac b ac b 又)()(,0)()(,0,0212121x f x f x f x f a x x >>-∴><-即,得证. 12、已知函数ax x x f +-=3 )(在(0,1)上是增函数. (1)求实数a 的取值集合A ; (2)当a 取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+,且b b a )(1,0(1=为常 数),试比较n n a a 与1+的大小; (3)在(2)的条件下,问是否存在正实数C ,使20<-+< c a c a n n 对一切N n ∈恒成立? (1)设))(()()(,102 2212 1122121a x x x x x x x f x f x x -++-=-<<<则 由题意知:0)()(21<-x f x f ,且012>-x x )3,0(,2 22121222121∈++<++∴x x x x a x x x x 则 }3|{,3≥=≥∴a a A a 即 (4分) (注:法2:)1,0(,03)(2 ∈>+-='x a x x f 对恒成立,求出3≥a ). (2)当3时,由题意:)1,0(,2 3 21131∈=+- =+b a a a a n n n 且

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

高考数学函数与导数复习指导

2019高考数学函数与导数复习指导 函数的观点和思想方法贯穿整个高中数学的全过程,在近几年的高考中,函数类试题在试题中所占分值一般为22---35分。一般为2个选择题或2个填空题,1个解答题,而且常考常新。 在选择题和填空题中通常考查反函数、函数的定义域、值域、函数的单调性、奇偶性、周期性、函数的图象、导数的概念、导数的应用以及从函数的性质研究抽象函数。 在解答题中通常考查函数与导数、不等式的综合运用。其主要表现在: 1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。 2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。 3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。 4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。 5.涌现了一些函数新题型。 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素 养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练

工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 8.求极值,函数单调性,应用题,与三角函数或向量结合。

高考数学函数与导数

回扣2 函数与导数 1.函数的定义域和值域 (1)求函数定义域的类型和相应方法 ①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围; ②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域 ①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为????4ac -b 2 4a ,+∞,当a <0时,值域为? ???-∞,4ac -b 2 4a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R |y ≠0}. 2.函数的奇偶性、周期性 (1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性 ①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ), 则f (x )的图象关于直线x =a 对称.

高三数学-理科函数与导数-专题练习(含答案与解析)

(Ⅰ)当(0,1)x ∈时,求()f x 的单调性; (Ⅱ)若2()()()h x x x f x =-?,且方程()h x m =有两个不相等的实数根1x ,2x .求证:121x x +>.

联立212y x y x ax =-??'=-+-? 消去y 得:2(1)10x a x +-+=, 由题意得:2(1)40a -=-=△, 解得:3a =或1-; (Ⅱ)由(1)得:l 1(n )x f x =+', 1(0,)e x ∈时,)0(f x '<,()f x 递减, 1(,)e x ∈+∞时,)0(f x '>,()f x 递增, ①1104e t t <<+≤,即110e 4 t <≤-时, min 111)ln )444 ()()((f x f t t t ==+++, ②110e 4t t <<<+,即111e 4e t -<<时, min e ()1e )(1f x f -==; ③11e 4t t ≤<+,即1e t ≥时,()f x 在[1,4]t t +递增, min ())ln (f x f t t t ==; 综上,min 1111)ln ),044e 41111,e e 4e 1l (e (,()n f x t t t t t t t ++<≤--???-<<≥?=?????; 因此(0,)x ∈+∞时,min max 1()()e f x m x ≥-≥恒成立, 又两次最值不能同时取到, 故对任意(0,)x ∈+∞,都有2ln e e x x x x >-成立.

∴()0g x '>, ∴函数()g x 在定义域内为增函数, ∴(1)(0)g g >,即12 e (1)(0) f f >,亦即(1) f > 故选:A . 2.解析:∵()1cos 0f x x '=+≥, ∴()sin f x x x =+在实数R 上为增函数, 又∵()sin ()f x x x f x -=--=-, ∴()sin f x x x =+为奇函数, ∴2222222222(23)(41)0(23)(41) (23)(41)2341(2)(1)1f y y f x x f y y f x x f y y f x x y y x x x y -++-+≤?-+≤--+?-+≤-+-?-+≤-+-?-+-≤, 由22(2)(1)11x y y ?-+-≤?≥? 可知,该不等式组所表示的区域为以点(2,1)C 为圆心,1为半径的上半个圆,1 y x +表示的几何意义为点(,)P x y 与点(1,0)M -连接的斜率,作出半圆与点P 连线,数形结合可得1 y x +的取值范围为13,44?????? . 3.解析:依题意,可得右图:()2f x =

2019年高考数学理科数学 导数及其应用分类汇编

2019年高考数学理科数学 导数及其应用 1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.【2019年高考天津理数】已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0 f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[] 0,2 C .[]0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 11122(1)2011x x x x ???? =--+-≤--?= ? ? ?--???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=, 综上可知,a 的取值范围是[0,e]. 故选C. 3.(2019浙江)已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b , 2(1)y x a x =+-', 当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

高考文科数学导数真题汇编(带答案)

高考数学文科导数真题汇编答案 一、客观题组 4 5. 7.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是

8设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9、函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 11(2018年高考1卷) 12(2019年高考1卷) 一、 客观题答案1B ; 2.D; 3.y=x+1; 4.A . 5.y=2x-2 6D ,7C; 8D; 9B; 10.C 11.D; 12.y=3x 二、大题组 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )>ln x x -1 【解析】

(1)22 1 ( ln ) '()(1)x x b x f x x x α+-= - + 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1 x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈. 当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>. 所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2 【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

高考题汇编2010-2017年全国高考数学真题--第21题导数

2010-2017年全国高考数学真题--第21题导数 2010年:设函数2 ()1x f x e x ax =---。 (1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围 2011年:已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. 2012年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值.

2013: 一卷:已知函数()f x =2 x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲 线()y g x =都过点P (0,2),且在点P 处有相同的切线42y x =+ (Ⅰ)求a ,b ,c ,d 的值; (Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围. 2014一卷:设函数1 ()ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ ,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{}()min (),()(0)=>h x f x g x x ,讨论()h x 零点的个数.

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

高考文科数学试题分类汇编导数

2012高考文科试题解析分类汇编:导数 1.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是 【答案】C 【解析】:由函数()f x 在2x =-处取得极小值可知2x <-,()0f x '<,则 ()0xf x '>;2x >-,()0f x '>则20x -<<时()0xf x '<,0x >时()0xf x '> 【考点定位】本题考查函数的图象,函数单调性及导数的关系,属于基础题. 2.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数 A. 若e a +2a=e b +3b ,则a >b B. 若e a +2a=e b +3b ,则a <b C. 若e a -2a=e b -3b ,则a >b D. 若e a -2a=e b -3b ,则a <b 【答案】A 【命题意图】本题主要考查了函数复合单调性的综合应用,通过构造法技巧性方法确定函数的单调性. 【解析】若23a b e a e b +=+,必有22a b e a e b +>+.构造函数:()2x f x e x =+,

则()20x f x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即 a > b 成立.其余选项用同样方法排除. 3.【2012高考陕西文9】设函数f (x )=2x +lnx 则 ( ) A .x=1 2 为f(x)的极大值点 B .x=12 为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 【答案】D. 【解析】()22212 'x f x x x x -=- +=,令()'0f x =,则2x =. 当2x <时,()22212 '0x f x x x x -=-+=<; 当2x >时,()22212 '0x f x x x x -=-+=>. 即当2x <时,()f x 是单调递减的;当2x >时,()f x 是单调递增的. 所以2x =是()f x 的极小值点.故选D . 4.【2012高考辽宁文8】函数y=12 x 2-㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 【答案】B 【命题意图】本题主要考查利导数公式以及用导数求函数的单调区间,属于中档题。 【解析】21 1ln ,,00,02 y x x y x y x x x x ''=-∴=->∴<由≤,解得-1≤≤1,又≤1,

2021届全国新高考数学备考复习---函数与导数核心考点

2021届全国新高考数学备考复习 导数与函数核心考点 目录 题型一切线型 1.求在某处的切线方程 2.求过某点的切线方程 3.已知切线方程求参数 题型二单调型 1.主导函数需“二次求导”型 2.主导函数为“一次函数”型 3.主导函数为“二次函数”型 4.已知函数单调性,求参数范围 题型三极值最值型 1.求函数的极值 2.求函数的最值 3.已知极值求参数 4.已知最值求参数 题型四零点型 1.零点(交点,根)的个数问题 2.零点存在性定理的应用 3.极值点偏移问题 题型五恒成立与存在性问题 1.单变量型恒成立问题 2.单变量型存在性问题 3.双变量型的恒成立与存在性问题 4.等式型恒成立与存在性问题 题型六与不等式有关的证明问题 1.单变量型不等式证明 2.含有e x与lnx的不等式证明技巧 3.多元函数不等式的证明 4.数列型不等式证明的构造方法

题型一 切线型 1.求在某处的切线方程 例1.【2015重庆理20】求函数f (x )=3x 2 e x 在点(1, f (1))处的切线方程. 解:由f (x )=3x 2e x ,得f ′(x )=6x -3x 2e x ,切点为(1,3e ) ,斜率为f ′(1)=3 e 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=3e ,得切线斜率为3 e ; ∴切线方程为y -3e =3 e (x -1),即3x -ey =0. 例2.求f (x )=e x (1 x +2)在点(1,f (1))处的切线方程. 解:由f (x )=e x (1x +2),得f ′(x )=e x (-1x 2+1 x +2) 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=2e ,得切线斜率为2e ; ∴切线方程为y -3e =2e (x -1),即2ex -y +e =0. 例3.求f (x )=ln 1-x 1+x 在点(0,f (0))处的切线方程. 解:由f (x )=ln 1-x 1+x =ln (1-x )-ln (1+x ),得f ′(x )=-11-x -1 1+x 由f (0)=0,得切点坐标为(0,0),由f ′(0)=-2,得切线斜率为-2; ∴切线方程为y =-2x ,即2x +y =0. 例4.【2015全国新课标理20⑴】在直角坐标系xoy 中,曲线C :y =x 2 4 与 直线l :y =kx +a (a >0)交于M ,N 两点,当k =0时,分别求C 在点M 与N 处的切线方程. 解:由题意得:a =x 2 4,则x =±2a ,即M (-2a ,a ),N (2a ,a ), 由f (x )=x 24,得f ′(x )=x 2, 当切点为M (-2a ,a )时,切线斜率为f ′(-2a )=-a , 此时切线方程为:ax +y +a =0; 当切点为N (2a ,a )时,切线斜率为f ′(2a )=a , 此时切线方程为:ax -y -a =0;

相关文档
最新文档