【甘肃兰州、张掖一诊】甘肃省兰州市、张掖市2014届高三第一次诊断考试数学(文)试题Word版含解析

合集下载

2014年甘肃省兰州市、张掖市高考数学一模试卷(理科)

2014年甘肃省兰州市、张掖市高考数学一模试卷(理科)

2014年甘肃省兰州市、张掖市高考数学一模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.已知集合P={x|x(x-3)<0},Q={x||x|<2},则P∩Q=()A.(-2,0)B.(0,2)C.(2,3)D.(-2,3)【答案】B【解析】解:由集合P中的不等式解得:0<x<3,即P=(0,3);由Q中的不等式解得:-2<x<2,即Q=(-2,2),则P∩Q=(0,2).故选B求出P与Q中不等式的解集,找出两解集的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.i是虚数单位,复数=()A.2+iB.1-2iC.1+2iD.2-i【答案】A【解析】解:复数===2+i.故选:A.利用复数的运算法则即可得出.本题考查了复数的运算法则,属于基础题.3.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为()A. B. C.D.【答案】B【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数,再把图象上各点的横坐标扩大到原来的2倍,得到函数.故选B.利用函数左加右减的原则,求出平移后的函数解析式,然后通过伸缩变换求出函数的解析式即可.本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力.4.图为一个几何体的三视图,尺寸如图所示,则该几何体的体积为()A. B. C. D.【答案】C【解析】解:由图中数据,下部的正三棱柱的高是3,底面是一个正三角形,其边长为2,高为,故其体积为上部的球体直径为1,故其半径为,其体积为故组合体的体积是故选C由三视图可以看出,此几何体是一个三棱柱与一个球体组成,由图形中的数据求组合体的体积即可.本题考查由三视图还原实物图的能力,正确运用由体积公式求体积的能力,属于立体几何中的基本题型.5.设a=log32,b=log23,c=log5,则()A.c<b<aB.a<c<bC.c<a<bD.b<c<a【答案】C【解析】解:log32∈(0,1),log23>1,<,∴0<a<1,b>1,c<0,即c<a<b,故选:C.根据对数函数的图象和性质,分别计算a,b,c的取值范围,然后进行判断.本题主要考查函数值的大小比较,利用对数函数的图象和性质是解决本题的关键.6.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂α,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中正确的命题是()A.①②B.②③C.③④D.①④【答案】D【解析】解:①若m⊥α,m⊂β,则α⊥β;这符合平面垂直平面的判定定理,正确的命题.②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;可能n∥m,α∩β=l.错误的命题.③m⊂α,n⊂α,m、n是异面直线,那么n与α相交;题目本身错误,是错误命题.④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题.故选D.利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可.本题考查平面与平面的平行和垂直的判定,考查逻辑思维能力,是基础题.7.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有()种.A.150B.300C.600D.900【答案】C【解析】解:分两步,第一步,先选四名老师,又分两类第一类,甲去,则丙一定去,乙一定不去,有C52=10种不同选法第二类,甲不去,则丙一定不去,乙可能去也可能不去,有C64=15种不同选法∴不同的选法有10+15=25种第二步,四名老师去4个边远地区支教,有A44=24最后,两步方法数相乘,得,25×24=600故选C.先从8名教师中选出4名,因为甲和乙不同去,甲和丙只能同去或同不去,所以可按选甲和不选甲分成两类,两类方法数相加,再把四名老师分配去4个边远地区支教,四名教师进行全排列即可,最后,两步方法数相乘.本题考查了排列组合的综合应用,做题时候要分清用排列还是用组合去做.8.已知双曲线=1(a>0,b>0)的左、右焦点分别为F l,F2,以|F1F2|为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为()A. B. C. D.【答案】C【解析】解:∵点(3,4)在以|F1F2|为直径的圆上,∴c==5,可得a2+b2=25…①又∵点(3,4)在双曲线的渐近线y=上,∴=…②,①②联解,得a=3且b=4,可得双曲线的方程故选:C根据题意,点(3,4)到原点的距离等于半焦距,可得a2+b2=25.由点(3,4)在双曲线的渐近线上,得到=,两式联解得出a=3且b=4,即可得到所求双曲线的方程.本题给出双曲线满足的条件,求双曲线的方程,考查了双曲线的标准方程与简单几何性质等知识,属于中档题.9.下列五个命题中正确命题的个数是()(1)对于命题P:∃x∈R,使得x2+x+1<0,则¬P:∀x∈R,均有x2+x+1>0;(2)m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;(3)已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为=1.23x+0.08;(4)若实数x,y∈[-1,1],则满足x2+y2≥1的概率为;(5)曲线y=x2与y=x所围成图形的面积是S=∫(x-x2)dx.A.2B.3C.4D.5【答案】A【解析】解:命题P:∃x∈R,使得x2+x+1<0,的否定为¬P:∀x∈R,均有x2+x+1≥0;故(1)错误;直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件为m(m+3)-6m=m (m-3)=0,即m=0或m=3,故(2)错误;若回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为=1.23x+0.08,故(3)正确;若实数x,y∈[-1,1],则满足x2+y2≥1的概率等于单位圆外的面积与边长为2的正方形面积之比,即1-,故(4)错误;曲线y=x2与y=x所围成图形的面积是S=∫(x-x2)dx,故(5)正确;故正确的命题个数为2个.故选A写出原命题的否定命题,可以判断(1);求出与两直线互相垂直等价的m值,可以判断(2);根据回归直线必要样本中心点,可以求出a的估计值,进而判断(3);根据几何概型计算公式,求出概率,可判断(4);根据积分法求面积的方法,求出两条曲线围成的图形面积,可判断(5),进而得到答案.本题以命题的真假判断为载体,考查了全(特)称命题的判断,充要条件,几何概型,积分法求面积,回归直线求法等知识点,难度不大,属于基础题.10.执行如图所示的程序框图,那么输出的S为()A.3B.C.D.-2【答案】C【解析】解:如图所示的程序框图是当型循环结构,进行循环体之前S=3,k=1第一次循环后:S=,k=2第二次循环后:S=,k=3第三次循环后:S=-2,k=4第四次循环后:S=3,k=5…则S的值以4为周期,呈周期性变化当k=2010时,S=,满足进行循环的条件第2010次循环后,S=,k=2011,不满足进行循环的条件故输出的S值为故选:C根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,从而到结论.本题主要考查了循环结构,是当型循环,当满足条件,执行循环,其中分析出S值变化的周期性是解答的关键.11.如图,矩形A n B n C n D n的一边A n B n在x轴上,另外两个顶点C n,D n在函数f(x)=x+(x>0)的图象上.若点B n的坐标(n,0)(n≥2,n∈N+),记矩形A n B n C n D n的周长为a n,则a2+a3+…+a10=()A.208B.216C.212D.220【答案】B【解析】解:∵点B n的坐标(n,0)(n≥2,n∈N+),顶点C n,D n在函数f(x)=x+(x>0)的图象上,∴C n(n,n+);依题意知,D n(,n+);∴|A n B n|=n-(n≥2,n∈N+),∴a n=2(n-)+2(n+)=4n.∴a n+1-a n=4,又a1=4,∴数列{a n}是首项为4,公差为4的等差数列,∴a2+a3+…+a10===216.故选:B.依题意,可求得C n(n,n+),D n(,n+)从而可求得a n=4n;继而可求得a2+a3+…+a10的值.本题考查数列的求和,求得a n=4n是关键,考查分析推理与运算能力,属于中档题.12.设f(x)的定义域为D,若f(x)满足下面两个条件,则称f(x)为闭函数.①f(x)在D内是单调函数;②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].如果为闭函数,那么k的取值范围是()A.-1<k≤B.≤k<1C.k>-1D.k<1【答案】A【解析】解:方法一:因为:为,上的增函数,又f(x)在[a,b]上的值域为[a,b],∴,即f(x)=x在,上有两个不等实根,即在,上有两个不等实根.∴问题可化为和y=x-k在,上有两个不同交点.对于临界直线m,应有-k≥,即k≤.对于临界直线n,,令=1,得切点P横坐标为0,∴P(0,-k),∴n:y=x+1,令x=0,得y=1,∴-k<1,即k>-1.综上,-1<k≤.方法二:因为:为,上的增函数,又f(x)在[a,b]上的值域为[a,b],∴,即f(x)=x在,上有两个不等实根,即在,上有两个不等实根.化简方程,得x2-(2k+2)x+k2-1=0.令g(x)=x2-(2k+2)x+k2-1,则由根的分布可得>>,即>>,解得k>-1.又,∴x≥k,∴k≤.综上,-1<k≤,故选A.首先应根据条件将问题转化成:在,上有两个不等实根.然后,一方面:可以从数形结合的角度研究两函数和y=x-k在,上的交点个数问题,进而获得问题的解答;另一方面:可以化简方程,得关于x的一元二次方程,从二次方程根的分布情况分析亦可获得问题的解答.本题考查的是函数的最值及其几何意义.在解答的过程当中充分体现了问题转化的思想、数形结合的思想以及函数与方程的思想.同时二次函数根的分布情况对本体的解答也有相当大的作用.值得同学们体会和反思.二、填空题(本大题共4小题,共20.0分)13.在(+)5的展开式中的常数项为______ .【答案】10【解析】解:(+)5的展开式的通项公式为T r+1=××令-=0,解得r=3,故展开式中的常数项为=10,故答案为10.在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数.14.已知x,y满足约束条件则的最小值是______ .【答案】【解析】解:根据约束条件画出可行域,如图:z=x2+y2+表示(0,0)到可行域的距离的平方,由图形可知,点O到直线3x+4y=4的距离最小,求出距离的平方就是所求最小值,d==.∴x2+y2的最小值为:.故答案为:.先根据约束条件画出可行域,再利用几何意义求最值,z=x2+y2表示点(0,0)到可行域的点的距离的平方,故只需求出点(0,0)到直线3x+4y=4的距离即可.本题主要考查了简单的线性规划的应用,以及利用几何意义求最值,属于中档题.15.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为______ .【答案】y2=3x.【解析】解:设A(x1,y1),B(x2,y2),作AM、BN垂直准线于点M、N,则|BN|=|BF|,又|BC|=2|BF|,得|BC|=2|BN|,∴∠NCB=30°,有|AC|=2|AM|=6,设|BF|=x,则2x+x+3=6⇒x=1,而,,由直线AB:y=k(x-),代入抛物线的方程可得,k2x2-(pk2+2p)x+k2p2=0,即有,∴⇒,得y2=3x.故答案为:y2=3x.根据过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,作AM、BN垂直准线于点M、N,根据|BC|=2|BF|,且|AF|=3,和抛物线的定义,可得∠NCB=30°,设A(x1,y1),B(x2,y2),|BF|=x,而,,且,⇒,可求得p的值,即求得抛物线的方程.此题是个中档题.考查抛物线的定义以及待定系数法求抛物线的标准方程.体现了数形结合的思想,特别是解析几何,一定注意对几何图形的研究,以便简化计算.16.数列{a n}的首项为1,数列{b n}为等比数列且b n=,若b10b11=2,则a21= ______ .【答案】1024【解析】解:由b n=,且a1=1,得.,a3=a2b2=b1b2.,a4=a3b3=b1b2b3.…a n=b1b2…b n-1.∴a21=b1b2 (20)∵数列{b n}为等比数列,∴a21=(b1b20)(b2b19)…(b10b11)=.故答案为:1024.由b n=,且a1=1,通过变形转化,把数列{a n}的项用数列{b n}中的项表示,然后利用等比数列的性质求解.本题考查了等比数列的性质,考查了数学转化思想方法,解答的关键是把数列{a n}的项用数列{b n}中的项表示,是中档题.三、解答题(本大题共8小题,共94.0分)17.已知△ABC的三内角A、B、C所对的边分别是a,b,c,向量=(cos B,cos C),=(2a+c,b),且⊥.(1)求角B的大小;(2)若b=,求a+c的范围.【答案】解:(1)∵=(cos B,cos C),=(2a+c,b),且⊥,∴cos B(2a+c)+bcos C=0,利用正弦定理化简得:cos B(2sin A+sin C)+sin B cos C=0,整理得:2cos B sin A+cos B sin C+sin B cos C=0,即2cos B sin A=-sin(B+C)=-sin A,∴cos B=-,∵0<B<180°,∴B=120;(2)∵b=,cos B=-,∴由余弦定理得b2=a2+c2-2accos B,即3=a2+c2+ac=(a+c)2-ac≥(a+c)2-()2=(a+c)2,当且仅当a=c时取等号,∴(a+c)2≤4,即a+c≤2,又a+c>b=,∴a+c∈(,2].【解析】(1)由两向量的坐标,及两向量垂直,利用平面向量的数量积运算法则列出关系式,利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出cos B 的值,即可确定出B的度数;(2)由b及cos B的值,利用余弦定理列出关系式,再利用基本不等式求出a+c的最大值,最后利用三角形两边之和大于第三边求出a+c的范围即可.此题考查了正弦、余弦定理,基本不等式的运用,熟练掌握定理是解本题的关键.18.某学校实施“十二五高中课程改革”计划,高三理科班学生的化学与物理水平测试的成绩抽样统计如下表.成绩分A(优秀)、B(良好)、C(及格)三种等级,设x、y 分别表示化学、物理成绩.例如:表中化学成绩为B等级的共有20+18+4=42人.已知x与y均为B等级的概率为0.18.(Ⅰ)求抽取的学生人数;(Ⅱ)若在该样本中,化学成绩的优秀率是0.3,求a,b的值;(Ⅲ)物理成绩为C等级的学生中,已知a≥10,12≤b≤17,随机变量ξ=|a-b|,求ξ的分布列和数学期望.【答案】解:(Ⅰ)依题意,,得n=100;(Ⅱ)由,得a=14.∵7+9+a+20+18+4+5+6+b=100,∴b=17;(Ⅲ)由题意,知a+b=31,且a≥10,12≤b≤17,∴满足条件的(a,b)有:(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),共6组.∵ξ=|a-b|,∴ξ的取值为1,3,5,7.,,,.故ξ的分布列为∴.【解析】(I)由题意x与y由所给的表格可以知道化学与物理成绩均为B等级的总人数为18,设该样本总人数为n,利用古典概型随机事件的概率公式,即可求出;(II)由表格及第一问可以知道样本人数为100,而在该样本中,化学成绩的优秀得人数为7+9+a,利用古典概型随机事件的概率公式可以知道a的值;(III)由题意知a+b=31,且a≥10,12≤b≤17,所以满足条件的(a,b)有(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),共6组,利用随机变量的定义及其分布列可以求出随机变量的分布列,再由期望定义即可求解.此题重点考查了学生准确的理解题意的能力,还考查了古典概型随机事件的概率公式及离散型随机变量的定义及其分布列与期望的定义.19.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.【答案】(Ⅰ)证明:∵PC⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PC,∵AB=2,AD=CD=1,∴AC=BC=,∴AC2+BC2=AB2,∴AC⊥BC,又BC∩PC=C,∴AC⊥平面PBC,∵AC⊂平面EAC,∴平面EAC⊥平面PBC.…(4分)(Ⅱ)如图,以C为原点,取AB中点F,、、分别为x轴、y轴、z轴正向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,-1,0).设P(0,0,a)(a>0),则E(,-,),…(6分)=(1,1,0),=(0,0,a),=(,-,),取=(1,-1,0),则•=•=0,为面PAC的法向量.设=(x,y,z)为面EAC的法向量,则•=•=0,即取x=a,y=-a,z=-2,则=(a,-a,-2),依题意,|cos<,>|===,则a=2.…(10分)于是=(2,-2,-2),=(1,1,-2).设直线PA与平面EAC所成角为θ,则sinθ=|cos<,>|==,即直线PA与平面EAC所成角的正弦值为.…(12分)【解析】(Ⅰ)证明平面EAC⊥平面PBC,只需证明AC⊥平面PBC,即证AC⊥PC,AC⊥BC;(Ⅱ)根据题意,建立空间直角坐标系,用坐标表示点与向量,求出面PAC的法向量=(1,-1,0),面EAC的法向量=(a,-a,-2),利用二面角P-A C-E的余弦值为,可求a的值,从而可求=(2,-2,-2),=(1,1,-2),即可求得直线PA与平面EAC所成角的正弦值.本题考查面面垂直,考查线面角,解题的关键是掌握面面垂直的判定,利用向量的方法研究线面角,属于中档题.20.设椭圆(a>b>0)的焦点分别为F1(-1,0)、F2(1,0),直线l:x=a2交x轴于点A,且.(1)试求椭圆的方程;(2)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值和最小值.【答案】解:(1)由题意,|F1F2|=2c=2,A(a2,0)∵∴F2为AF1的中点∴a2=3,b2=2∴椭圆方程为…(5分)(2)当直线DE与x轴垂直时,|DE|==,此时|MN|=2a=2,四边形DMEN的面积.同理当MN与x轴垂直时,四边形DMEN的面积.当直线DE,MN均与x轴不垂直时,设DE:y=k(x+1),代入椭圆方程,消去y得:(2+3k2)x2+6k2x+(3k2-6)=0设D(x1,y1),E(x2,y2),则x1+x2=,x1x2=所以,|x1-x2|=,所以|DE|=|x1-x2|=,同理|MN|=…(9分)所以四边形的面积=××=令u=,则S=4-因为u=≥2,当k=±1时,u=2,S=,且S是以u为自变量的增函数,所以<.综上可知,.故四边形DMEN面积的最大值为4,最小值为.…(13分)【解析】(1)由题意,|F1F2|=2c=2,A(a2,0),利用,可得F2为AF1的中点,从而可得椭圆方程;(2)分类讨论:当直线DE(或MN)与x轴垂直时,四边形DMEN的面积;当直线DE,MN均与x轴不垂直时,设DE:y=k(x+1),代入消去y,求出|DE|,|MN|,从而可得四边形的面积的表达式,利用换元法,即可求得结论.本题考查椭圆的标准方程,考查四边形面积的计算,考查分类讨论的数学思想,考查韦达定理的运用,正确求弦长是关键.21.已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性;(3)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2),(x1<x2),证明:<<.【答案】解:(1)依题意得g(x)=lnx+ax2+bx,则,由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g'(1)=1+2a+b=0,∴b=-2a-1.(2)由(1)得=.∵函数g(x)的定义域为(0,+ ),∴当a=0时,,由g'(x)>0得0<x<1,由g'(x)<0得x>1,即函数g(x)在(0,1)上单调递增,在(1,+ )单调递减;当a>0时,令g'(x)=0得x=1或,若<,即>时,由g'(x)>0得x>1或<<,由g'(x)<0得<<,即函数g(x)在,,(1,+ )上单调递增,在,单调递减;若>,即<<时,由g'(x)>0得>或0<x<1,由g'(x)<0得<<,即函数g(x)在(0,1),,上单调递增,在,单调递减;若,即时,在(0,+ )上恒有g'(x)≥0,即函数g(x)在(0,+ )上单调递增,综上得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+ )单调递减;当<<时,函数g(x)在(0,1)单调递增,在,单调递减;在,上单调递增;当时,函数g(x)在(0,+ )上单调递增,当>时,函数g(x)在,上单调递增,在,单调递减;在(1,+ )上单调递增.(3)证法一:依题意得,证<<,即证<<,因x2-x1>0,即证<<,令(t>1),即证<<(t>1)①,令(t>1),则>0,∴h(t)在(1,+ )上单调递增,∴h(t)>h(1)=0,即>(t>1)②综合①②得<<(t>1),即<<.证法二:依题意得⇒,令h(x)=lnx-kx,则,由h'(x)=0得,当>时,h'(x)<0,当<<时,h'(x)>0,∴h(x)在,单调递增,在,单调递减,又h(x1)=h(x2),∴<<,即<<.证法三:令,则,当x>x1时,h'(x)<0,∴函数h(x)在(x1,+ )单调递减,∴当x2>x1时,< ⇒<,即<;同理,令,可证得<.证法四:依题意得,<<<<<<令h(x)=x-x1lnx+x1lnx1-x1,则,当x>x1时,h'(x)>0,∴函数h(x)在(x1,+ )单调递增,∴当x2>x1时,h(x2)>h(x1)=0,即x1lnx2-x1lnx1<x2-x1令m(x)=x-x2lnx+x2lnx2-x2,则,当x<x2时,m'(x)<0,∴函数m(x)在(0,x2)单调递减,∴当x1<x2时,m(x1)>h(x2)=0,即x2-x1<x2lnx2-x2lnx1;所以命题得证.【解析】(1)利用导数的几何意义即可得出;(2)通过求导得到g (x),通过对a分类讨论即可得出其单调性;(3)证法一:利用斜率计算公式,令(t>1),即证<<(t>1),令(t>1),通过求导利用函数的单调性即可得出;证法二:利用斜率计算公式,令h(x)=lnx-kx,通过求导,利用导数研究其单调性即可得出;证法三::令,同理,令,通过求导即可证明;证法四:利用斜率计算公式,令h(x)=x-x1lnx+x1lnx1-x1,及令m(x)=x-x2lnx+x2lnx2-x2,通过求导得到其单调性即可证明.熟练掌握利用导数研究函数的单调性、导数的几何意义、分类讨论思想方法、根据所证明的结论恰当的构造函数、一题多解等是解题的关键.22.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.(1)求证:O、B、D、E四点共圆;(2)求证:2DE2=DM•AC+DM•AB.【答案】解:(1)连接BE、OE,则∵AB为圆0的直径,∴∠AEB=90°,得BE⊥EC,又∵D是BC的中点,∴ED是R t△BEC的中线,可得DE=BD.又∵OE=OB,OD=OD,∴△ODE≌△ODB.可得∠OED=∠OBD=90°,因此,O、B、D、E四点共圆;(2)延长DO交圆O于点H,∵DE⊥OE,OE是半径,∴DE为圆O的切线.可得DE2=DM•DH=DM•(DO+OH)=DM•DO+DM•OH.∵OH=,OD为△ABC的中位线,得DO=,∴,化简得2DE2=DM•AC+DM•AB.【解析】(1)连接BE、OE,由直径所对的圆周角为直角,得到BE⊥EC,从而得出DE=BD=,由此证出△ODE≌△ODB,得∠OED=∠OBD=90°,利用圆内接四边形形的判定定理得到O、B、D、E四点共圆;(2)延长DO交圆O于点H,由(1)的结论证出DE为圆O的切线,从而得出DE2=DM•DH,再将DH分解为DO+OH,并利用OH=和DO=,化简即可得到等式2DE2=DM•AC+DM•AB成立.本题着重考查了圆的切线的性质定理与判定、直径所对的圆周角、全等三角形的判定与性质等知识,属于中档题.23.在直角坐标系xoy中,以原点O为极点,以x轴正半轴为极轴,与直角坐标系xoy取相同的长度单位,建立极坐标系,设曲线C参数方程为(θ为参数),直线l的极坐标方程为ρcos(θ-)=2.(1)写出曲线C的普通方程和直线l的直角坐标方程;(2)求曲线C上的点到直线l的最大距离,并求出这个点的坐标.【答案】解:(1)由,得ρ(cosθ+sinθ)=4,∴l:x+y-4=0,∵,(θ为参数),∴消去参数得,∴曲线C的普通方程为和直线l的直角坐标方程为x+y-4=0;(2)在C:上任取一点(cosθ,sinθ),则点P到直线l的距离为d==≤3,∴当sin(θ+)=-1时,d max=3,此时这个点的坐标为(,).【解析】(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l的普通方程;利用同角三角函数的基本关系,消去θ可得曲线C的普通方程;(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线l的距离的最大值.本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.属于中档题.24.(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2;(2)若不等式|a-1|≥++对满足x+y+z=1的一切正实数x,y,z恒成立,求实数a的取值范围.【答案】(1)证明:由x3+y3-x2y-xy2=x2(x-y)+y2(y-x)=(x-y)(x2-y2)=(x-y)2(x+y)…(3分)又x、y都是正实数,∴(x-y)2≥0,x+y>0,∴x3+y3-x2y-xy2>0,∴x3+y3≥x2y+xy2;…(5分)(2)解:由题意,根据柯西不等式有(++)2≤(12+12+12)[()2+()2+()2]=3[3(x+y+z)+3]=3×6=18,∴++≤3…(3分)又|a-1|≥++对满足x+y+z=1的一切正实数x,y,z恒成立,∴|a-1|,∴a+1或a,∴a的取值范围是(- ,]∪[1+3,+ ).…(5分)【解析】(1)利用作差法,因式分解,即可得到结论;(2)根据柯西不等式证明++≤3,利用|a-1|≥++对满足x+y+z=1的一切正实数x,y,z恒成立,可得|a-1|,从而可求实数a的取值范围.本题考查不等式的证明,考查柯西不等式的运用,考查恒成立问题,考查学生分析解决问题的能力,正确运用柯西不等式是关键.。

甘肃兰州张掖一诊甘肃省兰州市张掖市高三第一次诊断考试数学理试题含答案

甘肃兰州张掖一诊甘肃省兰州市张掖市高三第一次诊断考试数学理试题含答案

甘肃兰州市第十二中学介绍:兰州市第十二中学是一所市属普通完全中学。

始建于1956年,其前身是“兰州市第六初学,1958年更名为“兰州市第十二中学〞。

学校地处交通便捷,商贸兴旺的七里河小西湖地区。

占地面积28.2亩,总建筑面积1.3万平方米,有教学楼、综合楼、电教实验楼各一幢。

修葺一新的教学楼宽阔亮堂整洁,同时可包容1500余名学生〔30多个教学班〕上课,有供美术、音乐教学用的专门教室:综合楼装备有理化生实验室和实验准备室各一个。

学校还斥巨资设置了生物标本室、微机教室。

装备了140台奔III型品牌机。

综合大楼配有面积达400平方米350个座位的阶梯教室。

即将落成的电教实验楼建有语音、多媒体教室、音乐、美术、形体训练等专用教室;学校有可供120人使用的学生阅览室和藏书2万余册的图书馆。

校园建有田径场地,混凝土篮球场以及各种体操设施。

这些建筑和设施根本满足了学校教育教学活动的需要,为学校施行素质教育提供了良好的硬件环境。

学校现有教职工124人。

其中专任老师107人,具有中级以上职称的老师59人。

学校重视学科带头人和骨干老师的培训工作。

鼓励支持中青年老师的在职进修。

学校每学年坚持进展教学新秀评选、教学根本功竞赛。

进展观摩课、公开课教学活动,评教评学。

各教研组坚持以老带新制度、全校共结老带新对子16对。

并签订了帮带目的责任书。

多年来,这支老师队伍忠诚党和人民的教育事业,在较艰辛的环境中勤奋耕耘,获得了显著成绩,先后有3人被授予省“园丁奖〞,7人被授予市“优秀老师〞称号,1人被授予省级“骨干老师〞称号,3人被授予市级“骨干老师称号,多人屡次被市教委党组授予“优秀共产党员〞称号。

近年来,我校老师共发表学术论文140余篇,出版专著三本。

一支师德良好,业务过硬的老师队伍,为学校全面贯彻党的教育方针,培养“四有〞新人,造就素质型人才,提供了可靠保证。

学校现有在校学生1300余人,建校以来,学校已为社会培养输送了一万余名高初中毕业生,他们思想素质良好,根底知识扎实、动手才能和适应性强,有的成为高校的学科带头人,有的在国外继续求学深造,有的成为民营企业家,他们普遍受到用人单位和社会的好评。

甘肃省张掖市高三数学第一次(12月)诊断联考试题 文(含解析)

甘肃省张掖市高三数学第一次(12月)诊断联考试题 文(含解析)

数学(文科)第I 卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|20A x x =+=,集合{}2|40B x x =-=,则AB =( )A .{}2-B .{}2C .{}2,2-D .∅2.i 是虚数单位,=( )A.1+2iB.﹣1﹣2iC.1﹣2iD.﹣1+2i 3.等差数列}{n a 中,23a =,349a a +=,则61a a 的值为( )A .14B .18C . 21D .274.为了得到函数)12cos(+=x y 的图象,只需将函数x y 2cos =的图象上所有的点( )A. 向左平移21个单位长度B. 向右平移21个单位长度C. 向左平移1个单位长度D. 向右平移1个单位长度5.一个几何体的三视图是一个正方形,一个矩形,一个半圆,尺寸大小如图所示,则该几何体的表面积是( )A.πB.34π+C.4π+D.24π+6.设m 、n 是两条不同的直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β,m ⊥n .则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β 7.已知M 是ABC ∆内的一点,且AB AC 23⋅=BAC 30∠=,若M BC ∆,MCA ∆,MAB ∆的面积分别为x y 1,,2,则x y14+的最小值为( ) A.20 B.18 C.16 D .9 8.函数cos y x x =+的大致图像是( )9.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( ) A. 0.42 B. 0.28 C. 0.3 D. 0.7 10.某程序框图如图所示,则输出的n 值是( )A .21B .22C .23D .2411.已知二次曲线224x y m+=1,则当[]1,2--∈m 时,该曲线的离心率e 的取值范围是 ( )A .[2B .[2C .D .12.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x},即{}.x m = 在此基础上给出下列关于函数(){}f x x x =-的四个命题:①11()22f -=;②(3.4)0.4f =-;③11()()44f f -<;④()y f x =的定义域是R ,值域是11[,]22-. 则其中真命题的序号是 ( )A .①②B .①③C .②④D .③④第II 卷(非选择题共90分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 13.已知函数212log ()y x ax a =-+在区间()2,+∞上是减函数,则实数a 的取值范围是_______ _____.14.过抛物线x y 42=的焦点作一条直线交抛物线于B A ,两点,若线段AB 的中点M 的横坐标为2,则||AB 等于 . 15.设0a 为单位向量,①若a 为平面内的某个向量,则a =|a |·0a ;②若0a 与a平行,则a =|a |·0a ;③若0a与a 平行且|a |=1,则a =0a .上述命题中,假命题个数是________. 16.已知函数()()244,1,ln 43,1,x x f x g x x x x x ⎧-≤⎪==⎨-+>⎪⎩,则函数()()y f x g x =-的零点个数为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本大题12分)已知数列{}n a 与{}n b ,若13a =且对任意正整数n 满足12,n n a a +-= 数列{}n b 的前n 项和2n nS n a =+.(I )求数列{}{}n n a b ,的通项公式; (II )求数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和.n T 18.(本大题12分)在长方体1111ABCD A B C D -中,2AB BC ==,过1A、1C 、B 三点的平面截去长方体的一个角后,得到如图所示的几何体111ABCD AC D -,且这个几何体的体积为10. (I )求棱1A A 的长;(II )若11AC 的中点为1O ,求异面直线1BO 与11A D 所成角的余弦值.19.(本大题12分)某小组共有A 、B 、C 、D 、E 五位同学,他们的身高(单位:米)以及体重指2(II )从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[)18.5,23.9中的概率.20.(本大题12分)已知椭圆:()222210y x a b a b +=>>,离心率为2,焦点()()120,,0,F c F c -过1F 的直线交椭圆于,M N 两点,且△MN F 2的周长为4.(I) 求椭圆方程;(II) 与y 轴不重合的直线l 与y 轴交于点P(0,m)(m ≠0),与椭圆C 交于相异两点A,B 且AP PB λ=.若4OA OB OP λ+=,求m 的取值范围。

2014年甘肃省高考一模数学试卷(理科)【解析版】

2014年甘肃省高考一模数学试卷(理科)【解析版】

2014年甘肃省高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)已知集合A={x∈Z||x|<5},B={x|x﹣2≥0},则A∩B等于()A.(2,5)B.[2,5)C.{2,3,4}D.{3,4,5} 2.(5分)复数(i是虚数单位)化简的结果是()A.1B.﹣1C.i D.﹣i3.(5分)某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是()A.2B.C.D.34.(5分)从如图所示的正方形OABC区域内任取一个点M(x,y),则点M取自阴影部分的概率为()A.B.C.D.5.(5分)已知等差数列{a n}的前n项和为S n,若a4=18﹣a5,则S8=()A.72B.68C.54D.906.(5分)阅读如图程序框图,输出的结果i的值为()A.5B.6C.7D.97.(5分)设a=lge,b=(lge)2,c=lg,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a 8.(5分)已知点P(x,y)满足线性约束条件,点M(3,1),O为坐标原点,则•的最大值为()A.12B.11C.3D.﹣19.(5分)若(x2﹣)n展开式中的所有二项式系数和为512,则该展开式中的常数项为()A.﹣84B.84C.﹣36D.3610.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线均与圆C:x2+y2﹣6x+5=0相切,则该双曲线离心率等于()A.B.C.D.11.(5分)定义在R上的偶函数f(x)满足f(x+1)f(x)=﹣2(f(x)≠0),且在区间(2013,2014)上单调递增,已知α,β是锐角三角形的两个内角,则f(sinα)、f(cosβ)的大小关系是()A.f(sinα)<f(cosβ)B.f(sinα)>f(cosβ)C.f(sinα)=f(cosβ)D.以上情况均有可能12.(5分)设f(x)是定义在R上的函数,∀x∈R,都有f(2﹣x)=f(2+x),f(﹣x)=f(x),且当x∈[0,2]时,f(x)=2x﹣2,若函数g(x)=f(x)﹣log a(x+1)(a>0,a≠1)在区间(﹣1,2014]内恰有三个不同零点,则实数a的取值范围是()A.(,)∪(,)B.(0,)∪(,+∞)C.(,1)∪(1,)D.(,)∪(,)二、填空題:本大题共4小题,每小题5分.13.(5分)已知函数,则=.14.(5分)设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c ﹣1),则c=.15.(5分)已知数列{a n}满足a1=100,a n+1﹣a n=2n,则的最小值.16.(5分)若三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为.三、解答题:本大题共5小题,共70分.解答应写出说明文字,证明过程或演算步骤.17.(12分)在△ABC中,三个内角A、B、C的对边分别为a,b,c,若a(1+cos C)+c(1+cos A)=3b,(1)求证:a,b,c成等差数列;(2)若∠B=60°,b=4,求△ABC的面积.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠P AD=90°,侧面P AD⊥底面ABCD.若P A=AB=BC=AD.(Ⅰ)求证:CD⊥PC;(Ⅱ)求二面角A﹣PD﹣C的余弦值.19.(12分)某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如下统计表和如图所示各年龄段人数频率分布直方图请完成以下问题:(1)补全频率直方图,并求n,a,p的值(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为X,求X的分布列和数学期望E(X)20.(12分)如图,焦距为2的椭圆E的两个顶点分别为A和B,且与=(,﹣1)共线.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线y=kx+m与椭圆E有两个不同的交点P和Q,O为坐标原点,总使•<0,求实数m的取值范围.21.(12分)已知函数f(x)=ln(x+a)﹣x2﹣x在x=0处取得极值.(Ⅰ)求实数a的值;(Ⅱ)若关于x的方程f(x)=﹣x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(Ⅲ)证明:对任意的正整数n,不等式2+++…+>ln(n+1)都成立.四、请从22、23、24三个小题中任选一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.(选修4-1:几何证明选讲)22.(10分)如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=P A•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.选修4-4:坐标系与参数方程23.已知直线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极值为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:,(t是参数).(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,直线l的参数方程化为普通方程;(Ⅱ)若直线l与曲线C相交于A,B两点,且|AB|=,试求实数m的值.选修4-5:不等式选讲24.已知函数f(x)=lg(|x+1|+|x﹣2|+a).(Ⅰ)当a=﹣5时,求函数f(x)的定义域;(Ⅱ)若函数f(x)的定义域为R,求实数a的取值范围.2014年甘肃省高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)已知集合A={x∈Z||x|<5},B={x|x﹣2≥0},则A∩B等于()A.(2,5)B.[2,5)C.{2,3,4}D.{3,4,5}【解答】解:A={x∈Z||x|<5}={x∈Z|﹣5<x<5}={﹣4,﹣3,﹣2,﹣1,0,1,2,3,4},B={x|x﹣2≥0},∴A∩B={2,3,4},故选:C.2.(5分)复数(i是虚数单位)化简的结果是()A.1B.﹣1C.i D.﹣i【解答】解:==()2=(﹣i)2=﹣1.故选:B.3.(5分)某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是()A.2B.C.D.3【解答】解:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.4.(5分)从如图所示的正方形OABC区域内任取一个点M(x,y),则点M取自阴影部分的概率为()A.B.C.D.【解答】解:可知此题求解的概率类型为关于面积的几何概型,由图可知基本事件空间所对应的几何度量S(Ω)=1,满足所投的点落在叶形图内部所对应的几何度量:S(A)==.所以P(A)=.故选:B.5.(5分)已知等差数列{a n}的前n项和为S n,若a4=18﹣a5,则S8=()A.72B.68C.54D.90【解答】解:在等差数列{a n}中,∵a4=18﹣a5,∴a4+a5=18,则S8=4(a1+a8)=4(a4+a5)=72故选:A.6.(5分)阅读如图程序框图,输出的结果i的值为()A.5B.6C.7D.9【解答】解:由程序框图可看出:S=1×23×25×…×22n+1=23+5+…+(2n+1)==,由判断框的条件可知:当满足≥100时,应跳出循环结构,此时n2+2n>6,解得n=3,∴i=2n+1=7.故应输出i的值是7.故选:C.7.(5分)设a=lge,b=(lge)2,c=lg,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【解答】解:∵1<e<3<,∴0<lge<1,∴lge>lge>(lge)2.∴a>c>b.故选:C.8.(5分)已知点P(x,y)满足线性约束条件,点M(3,1),O为坐标原点,则•的最大值为()A.12B.11C.3D.﹣1【解答】解:设z=•,则z=3x+y,即y=﹣3x+z,作出不等式组对应的平面区域如图:平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z经过点A时,直线y=﹣3x+z的截距最大,此时z最大,由,解得,即A(3,2),此时z=3x+y=3×3+2=11,故•的最大值为11,故选:B.9.(5分)若(x2﹣)n展开式中的所有二项式系数和为512,则该展开式中的常数项为()A.﹣84B.84C.﹣36D.36【解答】解:展开式中所有二项式系数和为512,即2n=512,则n=9,T r+1=(﹣1)r C9r x18﹣3r令18﹣3r=0,则r=6,所以该展开式中的常数项为84.故选:B.10.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线均与圆C:x2+y2﹣6x+5=0相切,则该双曲线离心率等于()A.B.C.D.【解答】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±,即bx±ay=0圆C:x2+y2﹣6x+5=0化为标准方程(x﹣3)2+y2=4∴C(3,0),半径为2∵双曲线﹣=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切∴∴9b2=4b2+4a2∴5b2=4a2∵b2=c2﹣a2∴5(c2﹣a2)=4a2∴9a2=5c2∴=∴双曲线离心率等于故选:D.11.(5分)定义在R上的偶函数f(x)满足f(x+1)f(x)=﹣2(f(x)≠0),且在区间(2013,2014)上单调递增,已知α,β是锐角三角形的两个内角,则f(sinα)、f(cosβ)的大小关系是()A.f(sinα)<f(cosβ)B.f(sinα)>f(cosβ)C.f(sinα)=f(cosβ)D.以上情况均有可能【解答】解:∵定义在R上的偶函数f(x)满足f(x+1)f(x)=﹣2,∴f(x)===f(x+2),∴f(x)是周期为2的偶函数.∵函数f(x)在区间(2013,2014)上单调递增,故函数在(﹣1,0)上单调递增,在(0,1)上单调递减.∵α,β是锐角三角形的两个内角,∴α+β>,∴>α>﹣β>0,∴1>sinα>sin(﹣β)=cosβ>0.则f(sinα)<f(cosβ),故选:A.12.(5分)设f(x)是定义在R上的函数,∀x∈R,都有f(2﹣x)=f(2+x),f(﹣x)=f(x),且当x∈[0,2]时,f(x)=2x﹣2,若函数g(x)=f(x)﹣log a(x+1)(a>0,a≠1)在区间(﹣1,2014]内恰有三个不同零点,则实数a的取值范围是()A.(,)∪(,)B.(0,)∪(,+∞)C.(,1)∪(1,)D.(,)∪(,)【解答】解:由f(2﹣x)=f(2+x),得到函数f(x)关于x=2对称,由f(﹣x)=f(x)得函数f(x)是偶函数,且f(2﹣x)=f(2+x)=f(x﹣2),即f(x+4)=f(x),即函数的周期是4.当x∈[﹣2,0]时,﹣x∈[0,2],此时f(x)=f(﹣x)=2﹣x﹣2,由g(x)=f(x)﹣log a(x+1)=0得f(x)=log a(x+1),(a>0,a≠1)作出函数f(x)的图象如图:①若a>1,当函数g(x)=log a(x+1),经过点A(2,2)时,两个图象有两个交点,此时g(2)=log a3=2,解得a=,当函数g(x)=log a(x+1),经过点B(6,2)时,两个图象有四个交点,此时g(6)=log a7=2,解得a=,此时要使两个函数有3个不同的零点,则,②若0<a<1,当函数g(x)=log a(x+1),经过点C(4,﹣1)时,两个图象有两个交点,此时g(4)=log a5=﹣1,解得a=,当函数g(x)=log a(x+1),经过点D(8,﹣1)时,两个图象有四个交点,此时g(6)=log a9=﹣1解得a=,此时要使两个函数有3个不同的零点,则,综上:实数a的取值范围是(,)∪(,),故选:A.二、填空題:本大题共4小题,每小题5分.13.(5分)已知函数,则=0.【解答】解:∵函数,∴>0且x≠0,解得:﹣1<x<0 或0<x<1.∴定义域为{x|﹣1<x<0 或0<x<1},∴==﹣f(x),∴函数是奇函数,∴==0.故答案为:014.(5分)设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c ﹣1),则c=2.【解答】解:∵N(2,32)⇒,,∴,解得c=2,故答案为:2.15.(5分)已知数列{a n}满足a1=100,a n+1﹣a n=2n,则的最小值19.【解答】解:a2﹣a1=2,a3﹣a2=4,…a n+1﹣a n=2n,这n个式子相加,就有a n+1=100+n(n+1),即a n=n(n﹣1)+100=n2﹣n+100,∴=n+﹣1≥2﹣1=19,当且仅当n=,即n=10时,取最小值19.故答案为:19.16.(5分)若三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为16π.【解答】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,∴BC==,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r=AC=1,∴球O的半径R==2,∴球O的表面积S=4πR2=16π.故答案为:16π.三、解答题:本大题共5小题,共70分.解答应写出说明文字,证明过程或演算步骤.17.(12分)在△ABC中,三个内角A、B、C的对边分别为a,b,c,若a(1+cos C)+c(1+cos A)=3b,(1)求证:a,b,c成等差数列;(2)若∠B=60°,b=4,求△ABC的面积.【解答】解:(1)∵a(1+cos C)+c(1+cos A)=3b,由正弦定理得,sin A(1+cos C)+sin C(1+cos A)=3sin B,即sin A+sin C+sin(A+C)=3sin B,∴sin A+sin C=2sin B,由正弦定理得,a+c=2b,则a,b,c成等差数列;(2)∵∠B=60°,b=4,∴由余弦定理b2=a2+c2﹣2ac cos B得4=a2+c2﹣2ac cos60°,即(a+c)2﹣3ac =16,又a+c=2b=8,解得,ac=16(或者解得a=c=4),=ac sin B=4.则S△ABC18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠P AD=90°,侧面P AD⊥底面ABCD.若P A=AB=BC=AD.(Ⅰ)求证:CD⊥PC;(Ⅱ)求二面角A﹣PD﹣C的余弦值.【解答】(Ⅰ)证明:∵∠P AD=90°,∴P A⊥AD,又∵侧面P AD⊥底面ABCD,且侧面P AD∩底面ABCD=AD,∴P A⊥底面ABCD,又∵∠BAD=90°,∴AB、AD、AP两两垂直,分别以AB、AD、AP为x轴,y轴,z轴,建立如图所示的空间直角坐标系,设AD=2,则由题意得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∴,,∴=0,∴CD⊥PC.(Ⅱ)解:∵AB、AD、AP两两垂直,∴AB⊥平面P AD,∴是平面P AD的一个法向量,设平面PCD的法向量,∵,∴,取x=1,得到=(1,1,2),设二面角A﹣PD﹣C的大小为θ,由图形知θ为锐角,∴cosθ=|cos<>|=||=,∴二面角A﹣PD﹣C的余弦值为.19.(12分)某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如下统计表和如图所示各年龄段人数频率分布直方图请完成以下问题:(1)补全频率直方图,并求n,a,p的值(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为X,求X的分布列和数学期望E(X)【解答】解:(1)第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为=0.06.频率直方图如下:第一组的人数为=200,频率为0.04×5=0.2,所以n==1000,所以第二组的人数为1000×0.3=300,p==0.65,第四组的频率为0.03×5=0.15,第四组的人数为1000×0.15=150,所以a=150×0.4=60.(2)因为[40,45)岁与[45,50)岁年龄段的“时尚族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.随机变量X服从超几何分布.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==所以随机变量X的分布列为∴数学期望E(X)=0×+1×+2×+3×=220.(12分)如图,焦距为2的椭圆E的两个顶点分别为A和B,且与=(,﹣1)共线.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线y=kx+m与椭圆E有两个不同的交点P和Q,O为坐标原点,总使•<0,求实数m的取值范围.【解答】(Ⅰ)解:设椭圆C:=1(a>b>0),则∵A(a,0)、B(0,b),∴=(﹣a,b),∵与=(,﹣1)共线,∴a=b,∵焦距为2,∴c=1,∴a2﹣b2=1,∴a2=2,b2=1,∴椭圆E的标准方程;(Ⅱ)设P(x1,y1),Q(x2,y2),把直线方程y=kx+m代入椭圆方程,消去y可得(2k2+1)x2+4kmx+2m2﹣2=0,∴x1+x2=﹣,x1x2=,△=16k2m2﹣4×(2k2+1)(2m2﹣2)=16k2﹣8m2+8>0(*)∵•<0,∴x1x2+y1y2<0,∵y1y2=(kx1+m)(kx2+m)=,∴+<0,∴m2<,∴m2<且满足(*)故实数m的取值范围是(﹣,).21.(12分)已知函数f(x)=ln(x+a)﹣x2﹣x在x=0处取得极值.(Ⅰ)求实数a的值;(Ⅱ)若关于x的方程f(x)=﹣x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(Ⅲ)证明:对任意的正整数n,不等式2+++…+>ln(n+1)都成立.【解答】解:(Ⅰ)函数f(x)=ln(x+a)﹣x2﹣xf′(x)=﹣2x﹣1当x=0时,f(x)取得极值,∴f′(0)=0故,解得a=1,经检验a=1符合题意,则实数a的值为1;(Ⅱ)由a=1知f(x)=ln(x+1)﹣x2﹣x由f(x)=﹣x+b,得ln(x+1)﹣x2+x﹣b=0令φ(x)=ln(x+1)﹣x2+x﹣b,则f(x)=﹣x+b在区间[0,2]上恰有两个不同的实数根等价于φ(x)=0在区间[0,2]上恰有两个不同的实数根.φ′(x)=﹣2x+=,当x∈[0,1]时,φ′(x)>0,于是φ(x)在[0,1)上单调递增;当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减,依题意有φ(0)=﹣b≤0,φ(1)=ln(1+1)﹣1+﹣b>0,φ(2)=ln(1+2)﹣4+3﹣b≤0解得,ln3﹣1≤b<ln2+,故实数b的取值范围为:[ln3﹣1,ln2+);(Ⅲ)f(x)=ln(x+1)﹣x2﹣x的定义域为{x|x>﹣1},由(1)知f(x)=,令f′(x)=0得,x=0或x=﹣(舍去),∴当﹣1<x<0时,f′(x)>0,f(x)单调递增;当x>0时,f′(x)<0,f(x)单调递减.∴f(0)为f(x)在(﹣1,+∞)上的最大值.∴f(x)≤f(0),故ln(x+1)﹣x2﹣x≤0(当且仅当x=0时,等号成立)对任意正整数n,取x=>0得,ln(+1)<+∴ln()<,故2+++…+>ln2+ln+ln+…+ln=ln(n+1).四、请从22、23、24三个小题中任选一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.(选修4-1:几何证明选讲)22.(10分)如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=P A•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.【解答】(Ⅰ)证明:连接ON,因为PN切⊙O于N,∴∠ONP=90°,∴∠ONB+∠BNP=90°∵OB=ON,∴∠OBN=∠ONB因为OB⊥AC于O,∴∠OBN+∠BMO=90°,故∠BNP=∠BMO=∠PMN,PM=PN∴PM2=PN2=P A•PC(Ⅱ)∵OM=2,BO=2,BM=4∵BM•MN=CM•MA=(2+2)(2﹣2)(2﹣2)=8,∴MN=2选修4-4:坐标系与参数方程23.已知直线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极值为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:,(t是参数).(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,直线l的参数方程化为普通方程;(Ⅱ)若直线l与曲线C相交于A,B两点,且|AB|=,试求实数m的值.【解答】解:(Ⅰ)∵ρ=4cosθ,∴ρ2=4ρcosθ,化为直角坐标方程x2+y2=4x.由直线l的参数方程:,(t是参数),消去t可得x﹣y﹣m=0.(Ⅱ)由圆C的方程(x﹣2)2+y2=4可得圆心C(2,0),半径r=2.∴圆心C到直线l的距离d==.∵,|AB|=∴,化为|m﹣2|=1,解得m=1或3.选修4-5:不等式选讲24.已知函数f(x)=lg(|x+1|+|x﹣2|+a).(Ⅰ)当a=﹣5时,求函数f(x)的定义域;(Ⅱ)若函数f(x)的定义域为R,求实数a的取值范围.【解答】解:(Ⅰ)当a=﹣5时,要使函数有意义,则|x+1|+|x﹣2|﹣5>0,即|x+1|+|x ﹣2|>5,在同一坐标系中作出函数y=|x+1|+|x﹣2|与y=5的图象如图:则由图象可知不等式的解为x<﹣2或x>3,即函数f(x)的定义域为{x|x<﹣2或x>3}.(Ⅱ)∵函数f(x)的定义域为R,|x+1|+|x﹣2|+a>0恒成立,即|x+1|+|x﹣2|>﹣a恒成立,由图象可知|x+1|+|x﹣2|≥3,即﹣a<3,解得a>﹣3.。

甘肃省张掖市高三第一次联考——数学(文)(1)数学(文)

甘肃省张掖市高三第一次联考——数学(文)(1)数学(文)

参考答案1. 【解析】试题分析:方程解得,则2{40}{2,2}B x x =-==-,{}{}|202A x x =+==-,{}2{2,2}{2}A B =--=-.考点:集合的运算. 2.D 【解析】试题分析:复数的分子、分母同乘分母的共轭复数,化简即可. 解:,故选D . 3.A . 【解析】试题分析:∵等差数列,,,∴22291a d a d d +++=⇒=,∴, ,∴.考点:等差数列的通项公式. 4.A 【解析】试题分析:1cos(21)cos 2()2y x x =+=+,所以应该向左平移个单位长度,选A.考点:函数图象的变换. 5.B 【解析】试题分析:由三视图可知:原几何体为圆柱的一半,(沿中轴线切开)由题意可知,圆柱的高为2,底面圆的半径为1,故其表面积为21121222123422S πππ=⨯⨯+⨯+⨯⨯⨯=+故选:B. 考点:由三视图求面积、体积. 6.B 【解析】试题分析:对于,直线可能平行、相交、异面,不对;对于,由面面垂直性质得正确;对于没有内,不对;对于,没有说明是两条相交直线,不对,故答案为B. 考点:空间中直线与直线、平面与平面的位置关系. 7.B解:cos AB AC AB AC A ⋅==1sin 12ABC S AB AC A ∆∴==, =()(1442252518y x x y x y x y ⎛⎫⎛⎫++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当时等号成立取最值 考点:向量数量积及均值不等式 8.B解析:因为,所以函数在上单调递增,故可排除C 选项;又因为时,,故可排除A 选项;当时,,故此时函数的图像在直线的上方,故D 错误,B 正确. 考点:函数的图像. 9. C 解析: 10. C 【解析】试题分析:程序在执行过程中的值依次为:;;;,程序结束,输出.考点:程序框图. 11.C 【解析】试题分析:由题意可知:二次曲线为双曲线,且,所以,因为,所以⎥⎦⎤⎢⎣⎡∈-==26,2524m a c e ,所以选C .考点:双曲线性质的应用. 12.B解析:因为111111111(){}2222222--<≤-+∴-=--=f 故命题1正确 111111111(){}2222222113 3.43{3.4} 3.430.4222111111110-0{}0(),()24244444311,(,]2211(){}(,],422--<≤-+∴-=--=-<≤+∴=-=∴<≤+∴-=∴-=-==+∈-∴=-=∈-命题错误同理可得命题正确令命题错误f f f x m a a f x x x a 二、填空题 13. 14.解析:设,又抛物线的准线方程为,焦点,则根据抛物线的定义可知12||1,||1AF x BF x =+=+,所以12||11222226m AB x x x =+++=+=⨯+=.考点:1.抛物线的定义;2.直线与抛物线的位置关系. 15.3解析:向量是既有大小又有方向的量,a 与|a |a 0模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②、③也是假命题,填3 16..解析:函数与的图象,如图:由图可以看出,函数的零点有个.考点:分段函数,函数的零点,函数的图象. 三、解答题 17.1.(1),;(2) 【解析】 试题分析:(1)给出与的关系,求,常用思路:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与的关系,再求;(2)观测数列的特点形式,看使用什么方法求和.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源和目的.(3)在做题时注意观察式子特点选择有关公式和性质进行化简,这样给做题带来方便,掌握常见求和方法,如分组转化求和,裂项法,错位相减. 试题解析:解:(1)由题意知数列是公差为2的等差数列 又因为所以 当时,; 当时,()()()22121121121n n n b S S n n n n n -⎡⎤=-=++--+-+=+⎣⎦对不成立所以,数列的通项公式: (2)时, 时,111111()(21)(23)22123n n b b n n n n +==-++++ 所以1111111111612025779212320101520(23)n n n T n n n n --⎛⎫=+-+-++-=+= ⎪++++⎝⎭ 仍然适合上式 综上,116120101520(23)n n n T n n --=+=++ 考点:1、求数列的通项公式;2、裂项法求数列的和. 18.(1)3(2)【解析】本题主要考查了点,线和面间的距离计算.解题的关键是利用了法向量的方法求点到面的距离。

数学_2014年甘肃省高考数学一模试卷(文科)(含答案)

数学_2014年甘肃省高考数学一模试卷(文科)(含答案)

2014年甘肃省高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项符合题目要求的.1. 已知集合A ={x ∈Z||x|<5},B ={x|x −2≥0},则A ∩B 等于( )A (2, 5)B [2, 5)C {2, 3, 4}D {3, 4, 5}2. 复数1−i 1+i (i 是虚数单位)化简的结果是( )A 1B −1C iD −i3. 如图是一个几何体的三视图,则该几何体的体积为( )A 3πB 203πC 73πD π 4. 设a =30.5,b =log 53,c =cos3,则( )A c <b <aB c <a <bC a <b <cD b <c <a5. 阅读如图程序框图,输出的结果i 的值为( )A 5B 6C 7D 96. 已知数列{a n }为等差数列,且a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( )A 40B 42C 43D 457. 已知两条直线m ,n 和平面α,且m 在α内,n 在α外,则“n // α”是“m // n”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件8. 已知α是第二象限角,且sin(π+α)=−35,则tan2α的值为( ) A 45 B −237 C −247 D −839. 已知点P(x, y)满足线性约束条件{y ≤2x +y ≥1x −y ≤1,点M(3, 1),O 为坐标原点,则OM →⋅OP →的最大值为( )A 12B 11C 3D −110. 已知抛物线方程为y 2=4x ,直线l 的方程为x −y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为( )A 5√22+2B 5√22+1C 5√22−2D 5√22−111. 四棱锥P −ABCD 的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,PA ⊥ABCD ,PA =√2,则该球的表面积为( )A πB 2πC 3πD 4π12. 定义在R 上的函数f(x)满足f(−x)=f(x),f(x +1)=2f(x)(f(x)≠0),且在区间(2013, 2014)上单调递增,已知α,β是锐角三角形的两个内角,则f(sinα)、f(cosβ)的大小关系是( )A f(sinα)<f(cosβ)B f(sinα)>f(cosβ)C f(sinα)=f(cosβ)D 以上情况均有可能二、填空題:本大题共4小题,每小题5分.13. 在边长为3的正方形ABCD 内任取一点P ,则P 到正方形四边的距离均不小于l 的概率为________.14. 已知函数f(x)={x +1,x <0e x ,x ≥0,则f(f(0)−3)=________. 15. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线经过点(1, 2),则该双曲线的离心率的值为________.16. 已知数列{a n }满足a 1=100,a n+1−a n =2n ,则an n 的最小值________.三、解答题:本大题共5小题,共70分.解答应写出说明文字,证明过程或演算步骤.17. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .cosC =45,c =2bcosA . (1)求证:A =B ;(2)若△ABC 的面积S =152,求c 的值.18. 如图,在四棱锥P −ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC =2,E 是PC 的中点.(1)证明:PA // 平面EDB ;(2)求三梭锥A 一BDP 的体积.19. 2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.20. 已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,其中左焦点F(−2, 0).(1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于两个不同的两点A ,B ,且线段的中点M 总在圆x 2+y 2=1的内部,求实数m 的取值范围.21. 已知函数f(x)=1x +alnx(a ≠0, a ∈R). (I )若a =1,求函数f(x)在x =1处的切线方程;(II )若在区间(0, e]上至少存在一点x 0,使得f(x 0)<0成立,求实数a 的取值范围.请从22、23、24三个小题中任选一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.(本小题满分10分)选修4-1:几何证明选讲22. 如图,⊙O 的半径OB 垂直于直径AC ,M 为AO 上一点,BM 的延长线交⊙O 于N ,过N 点的切线交CA 的延长线于P .(Ⅰ)求证:PM 2=PA ⋅PC ;(Ⅱ)若⊙O 的半径为2√3,OA =√3OM ,求MN 的长.选修4-4:坐标系与参数方程23. 已知直线C 的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极值为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是:{x =m +t y =t ,(t 是参数).(1)将曲线C 的极坐标方程化为直角坐标方程,直线l 的参数方程化为普通方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB|=√14,试求实数m 的值.选修4-5:不等式选讲24. 已知函数f(x)=lg(|x+1|+|x−2|+a).(1)当a=−5时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,求实数a的取值范围.2014年甘肃省高考数学一模试卷(文科)答案1. C2. D3. C4. A5. C6. B7. B8. C9. B10. D11. D12. A13. 1914. −115. √516. 1917. 解:(1)∵ c=2bcosA,∴ 根据正弦定理得:sinC=2sinB⋅cosA,又sinC=sin[π−(A+B)]=sin(A+B),∴ sinC=sin(A+B)=sinAcosB+cosAsinB=2sinB⋅cosA,整理得:sinAcosB−cosAsinB=sin(A−B)=0,在△ABC中,∵ 0<A<π,0<B<π,∴ −π<A−B<π,则A=B;(2)由(1)A=B,可得a=b,∵ cosC=45,且C为三角形的内角,∴ sinC=√1−cos2C=35,又△ABC的面积S=152,∴ S=12absinC=310ab=152,即ab=a2=25,∴ a=b=5,又cosC=45,由余弦定理得:c2=a2+b2−2abcosC=10,则c=√10.18. 解:(1)证明:连接AC交BD于O,连接OE,∵ ABCD是正方形,∴ O为AC的中点,又E是PC的中点,∴ OE // PA,PA⊄平面BDE,OE⊂平面BDE,∴ PA // 平面BDE;(2)∵ 侧棱PD⊥底面ABCD,∴ PD为三棱锥P−ABD的高,PD=DC=2,∴ V A−BDP=V P−ABD=13×S△ABD×PD=13×12×2×2×2=43.19. 解:(1)设PM2.5的24小时平均浓度在(50, 75]内的三天记为A1,A2,A3,PM2.5的24小时平均浓度在(75, 100)内的两天记为B1,B2.所以5天任取2天的情况有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10种.…其中符合条件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种.…所以所求的概率P=610=35.…(2)去年该居民区PM2.5年平均浓度为:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…因为40>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.…20. 解:(1)∵ 椭圆的离心率为√22,其中左焦点F(−2, 0).∴ {ca=√22 c=2a2=b2+c2,∴ a=2√2,b=2,∴ 椭圆C的方程为x28+y24=1;(2)设点A、B的坐标分别为(x1, y1),(x2, y2),线段AB的中点为M(x0, y0),由直线代入椭圆方程消y得,3x2+4mx+2m2−8=0,△=96−8m2>0,∴ −2√3<m<2√3.∴ x0=x1+x22=−2m3,y0=x0+m=m3.∵ 点M(x0, y0)在圆x2+y2=1上的内部,∴ (−2m3)2+(m3)2<1,∴ −3√55<m<3√55.21. 解:(I)∵ f(x)=1x+alnx(a≠0, a∈R).∴ x>0,且f′(x)=−1x2+ax=ax−1x2若a=1,则f′(x)=−1x2+ax=ax−1x2=x−1x2,f′(1)=0,f(1)=1+ln1=1,故函数f(x)在x=1处的切线方程是y=1;(II)∵ f(x)=−1x2+ax=ax−1x2,(a≠0, a∈R).令f′(x)=0,得到x=1a,若在区间[0, e]上存在一点x0,使得f(x0)<0成立,其充要条件是f(x)在区间(0, e]上的最小值小于0即可.(1)当x=1a<0,即a<0时,f′(x)<0对x∈(0, +∞)成立,∴ f(x)在区间[1, e]上单调递减,故f(x)在区间(0, e]上的最小值为f(e)=1e +alne=1e+a,由1e +a<0,得a<−1e.(2)当x=1a>0,即a>0时,①若e≤1a,则f′(x)≤0对x∈(0, e]成立,∴ f(x)在区间(0, e]上单调递减,∴ f(x)在区间(0, e]上的最小值为f(e)=1e +alne=1e+a>0,显然,f(x)在区间(0, e]上的最小值小于0不成立.②若1<1a <e,即a>1e时,则有∴ f(x)在区间[0, e]上的最小值为f(1a )=a+aln1a,由f(1a )=a+aln1a=a(1−lna)<0,得1−lna<0,解得a>e,即a∈(e, +∞).综上,由(1)(2)可知:a∈(−∞, −1e)∪(e, +∞).22. (1)证明:连接ON ,因为PN 切⊙O 于N ,∴ ∠ONP =90∘,∴ ∠ONB +∠BNP =90∘∵ OB =ON ,∴ ∠OBN =∠ONB因为OB ⊥AC 于O ,∴ ∠OBN +∠BMO =90∘,故∠BNP =∠BMO =∠PMN ,PM =PN∴ PM 2=PN 2=PA ⋅PC(2)∵ OM =2,BO =2√3,BM =4∵ BM ⋅MN =CM ⋅MA =(2√3+2)(2√3−2)(2√3−2)=8,∴ MN =223. 解:(1)∵ ρ=4cosθ,∴ ρ2=4ρcosθ,化为直角坐标方程x 2+y 2=4x .由直线l 的参数方程:{x =m +t y =t ,(t 是参数),消去t 可得x −y −m =0.(2)由圆C 的方程(x −2)2+y 2=4可得圆心C(2, 0),半径r =2.∴ 圆心C 到直线l 的距离d =√2=√2. ∵ (|AB|2)2+d 2=r 2,|AB|=√14 ∴ (√142)2+(√2)2=22,化为|m −2|=1,解得m =1或3.24. 解:(1)当a =−5时,要使函数有意义,则|x +1|+|x −2|−5>0,即|x +1|+|x −2|>5,在同一坐标系中作出函数y =|x +1|+|x −2|与y =5的图象如图:则由图象可知不等式的解为x <−2或x >3,即函数f(x)的定义域为{x|x <−2或x >3}.(2)∵ 函数f(x)的定义域为R ,|x +1|+|x −2|+a >0恒成立,即|x +1|+|x −2|>−a 恒成立,由图象可知|x +1|+|x −2|≥3,即−a<3,解得a>−3.。

2014年甘肃省高三第一次诊断考试理科数学(解析版)

甘肃省2014年高考数学一模试卷(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)已知集合{5}{20}A x Z x B x xA B =∈=≥⋂<,﹣,则等于( ) A .25(,) B .[25,) C .{}234,, D .{}345,,解析 A={x ∈Z||x|<5}={x ∈Z|﹣5<x <5}={﹣4,﹣3,﹣2,﹣1,0,1,2,3,4},B={x|x ﹣2≥0},∴A ∩B={2,3,4},故选:C .2.(5分)(2014•甘肃一模)复数21()1i i -+(i 是虚数单位)化简的结果是( ) A .1B .1-C .iD .i - 解析==()2=(﹣i )2=﹣1. 故选:B .3.(5分)某几何体的三视图如图所示,且该几何体的体积是32,则正视图中的x 的值是( )A .2B .92C .32D .3 解析 由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x 的侧棱垂直于底面.则体积为=,解得x=.故选:C .4.(5分)从如图所示的正方形OABC 区域内任取一个点M x y (,),则点M 取自阴影部分的概率为( )A .12 B .13 C .14 D .16解析 可知此题求解的概率类型为关于面积的几何概型,由图可知基本事件空间所对应的几何度量S (Ω)=1,满足所投的点落在叶形图内部所对应的几何度量:S (A )==.所以P (A )=.故选:B .5.(5分)已知等差数列{}n a 的前n 项和为n S ,若4518a a ﹣,则8S =()A .72B .68C .54D .90解析 在等差数列{a n }中,∵a 4=18﹣a 5,∴a 4+a 5=18,则S 8=4(a 1+a 8)=4(a 4+a 5)=72故选:A6.(5分)阅读如图程序框图,输出的结果i 的值为( )A .5B .6C .7D .9解析 由程序框图可看出:S=1×23×25×…×22n+1=23+5+…+(2n+1)==, 由判断框的条件可知:当满足≥100时,应跳出循环结构,此时n 2+2n >6,解得n=3,∴i=2n+1=7.故应输出i 的值是7.故选:C .7.(5分)设lg lg 2a e b e c ===,(), )A .a b c >>B .c a b >>C .a c b >>D .c b a >>解析 ∵1<e <3<, ∴0<lge <1,∴lge >lge >(lge )2.∴a >c >b .故选:C .8.(5分)(2014•甘肃一模)已知点P x y (,)满足线性约束条件21x x y ≤⎧⎪⎨⎪-⎩y +x ≥≤1,点31M O (,),为坐标原点,则OM OP ∙的最大值为( )A .12B .11C .3D .1- 解析 设z=•,则z=3x+y ,即y=﹣3x+z ,作出不等式组对应的平面区域如图:平移直线y=﹣3x+z ,由图象可知当直线y=﹣3x+z 经过点A 时,直线y=﹣3x+z 的截距最大,此时z 最大,由,解得,即A (3,2),此时z=3x+y=3×3+2=11,故•的最大值为11,故选:B .9.(5分)若21()nx x -展开式中的所有二项式系数和为512,则该展开式中的常数项为( )A .84-B .84C .36-D .36 解析 展开式中所有二项式系数和为512,即2n =512,则n=9,T r+1=(﹣1)r C 9r x 18﹣3r 令18﹣3r=0,则r=6,所以该展开式中的常数项为84.故选:B .10.(5分)(2014•西藏一模)已知双曲线22221x y a b-= (0,0)a b >>的两条渐近线均和圆C :22650x y x ++=﹣相切,则该双曲线离心率等于( )A BC .32D 解析 双曲线﹣=1(a >0,b >0)的渐近线方程为y=±,即bx ±ay=0 圆C :x 2+y 2﹣6x+5=0化为标准方程(x ﹣3)2+y 2=4∴C (3,0),半径为2∵双曲线﹣=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2﹣6x+5=0相切∴∴9b 2=4b 2+4a 2∴5b 2=4a 2∵b 2=c 2﹣a 2∴5(c 2﹣a 2)=4a 2∴9a 2=5c 2∴=∴双曲线离心率等于故选:A .11.(5分)定义在R 上的偶函数f x ()满足120f x f x f x +=≠()()﹣((),且在区间20132014(,)上单调递增,已知αβ,是锐角三角形的两个内角,则sin cos f f αβ()、()的大小关系是( ) A .sin cos f f αβ()<() B .sin cos f f αβ()>()C .sin cos f f αβ=()()D .以上情况均有可能 解析 ∵定义在R 上的偶函数f (x )满足f (x+1)f (x )=﹣2,∴f (x )===f (x+2),∴f (x )是周期为2的偶函数.∵函数f (x )在区间(2013,2014)上单调递增,故函数在(﹣1,0)上单调递增,在(0,1)上单调递减.∵α,β是锐角三角形的两个内角,∴α+β>,∴>α>﹣β>0,∴1>sin α>sin (﹣β)=cos β>0. 则f (sin α)<f (cos β),故选:A .12.(5分)(2014•甘肃一模)设f x ()是定义在R 上的函数,x R ∀∈,都有22f x f x =+(﹣)(),f x f x =(﹣)(),且当[02]x ∈,时,22x f x =()﹣,若函数log 10,1)g x f x a x a a =+≠()()﹣()(>在区间12014](﹣,内恰有三个不同零点,则实数a 的取值范围是( )A .11(,)(3,7)95B .1(0,)(7,)9+∞C .1(,1)(1,3)9D .11(,)(3,7)73解析 由f (2﹣x )=f (2+x ),得到函数f (x )关于x=2对称,由f (﹣x )=f (x )得函数f (x )是偶函数,且f (2﹣x )=f (2+x )=f (x ﹣2),即f (x+4)=f (x ),即函数的周期是4.当x ∈[﹣2,0]时,﹣x ∈[0,2],此时f (x )=f (﹣x )=2﹣x ﹣2,由g (x )=f (x )﹣log a (x+1)=0得f (x )=log a (x+1),(a >0,a ≠1)作出函数f (x )的图象如图:①若a >1,当函数g (x )=log a (x+1),经过点A (2,2)时,两个图象有两个交点,此时g (2)=log a 3=2,解得a=,当函数g (x )=log a (x+1),经过点B (6,2)时,两个图象有四个交点, 此时g (6)=log a 7=2,解得a=,此时要使两个函数有3个不同的零点,则, ②若0<a <1,当函数g (x )=log a (x+1),经过点C (4,﹣1)时,两个图象有两个交点, 此时g (4)=log a 5=﹣1,解得a=,当函数g (x )=log a (x+1),经过点D (8,﹣1)时,两个图象有四个交点, 此时g (6)=log a 9=﹣1解得a=,此时要使两个函数有3个不同的零点,则, 综上:实数a 的取值范围是(,)∪(,), 故选:A .二、填空題:本大题共4小题,每小题5分.13.(5分)已知函数211()log ()1x f x x x -=++,则11()()20142014f f +-= .解析 ∵函数, ∴>0且x ≠0,解得:﹣1<x <0 或 0<x <1.∴定义域为{x|﹣1<x <0 或 0<x <1},∴==﹣f (x ),∴函数是奇函数,∴==0. 故答案为:0 14.(5分)设随机变量ξ服从正态分布29N (,),若(1)(1)P c P c ξξ+=><﹣,则c = . 解析 ∵N (2,32)⇒, ,∴,解得c=2,故答案为:2.15.(5分)已知数列{}n a 满足110012n n a a a n =+=,﹣,则n a n的最小值 . 解析 a 2﹣a 1=2,a 3﹣a 2=4,…a n+1﹣a n =2n ,这n 个式子相加,就有a n+1=100+n (n+1),即a n =n (n ﹣1)+100=n 2﹣n+100,∴=n+﹣1≥2﹣1=19, 当且仅当n=,即n=10时,取最小值19.故答案为:19.16.(5分)若三棱锥SABC ﹣的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =,12AB AC ==,,60BAC ︒∠=,则球O 的表面积为 .解析 如图,三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,∵SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°, ∴BC==,∴∠ABC=90°.∴△ABC 截球O 所得的圆O ′的半径r=AC=1, ∴球O 的半径R==2, ∴球O 的表面积S=4πR 2=16π.故答案为:16π.三、解答题:本大题共5小题,共70分.解答应写出说明文字,证明过程或演算步骤.17.(12分)在ABC 中,三个内角A B C 、、的对边分别为a b c ,,,若1cos 1cos 3a C c A b +++=()(), (1)求证:a b c ,,成等差数列;(2)若604B b ∠=︒=,,求ABC 的面积.解析 (1)∵a (1+cosC )+c (1+cosA )=3b ,由正弦定理得,sinA (1+cosC )+sinC (1+cosA )=3sinB ,即sinA+sinC+sin (A+C )=3sinB ,∴sinA+sinC=2sinB ,由正弦定理得,a+c=2b ,则a ,b ,c 成等差数列;(2)∵∠B=60°,b=4,∴由余弦定理b 2=a 2+c 2﹣2accosB 得4=a 2+c 2﹣2accos60°,即(a+c )2﹣3ac=16, 又a+c=2b=8,解得,ac=16(或者解得a=c=4),则S △ABC =acsinB=4.18.(12分)如图,在四棱锥PABCD ﹣中,底面ABCD 为直角梯形,且90AD BC ABC PAD ∠=∠=︒,,侧面PAD ABCD ⊥底面.若12PA AB BC AD ===. (Ⅰ)求证:CD PC ⊥; (Ⅱ)求二面角APD C ﹣﹣的余弦值.解析(Ⅰ)证明:∵∠PAD=90°,∴PA⊥AD,又∵侧面PAD⊥底面ABCD,且侧面PAD∩底面ABCD=AD,∴PA⊥底面ABCD,又∵∠BAD=90°,∴AB、AD、AP两两垂直,分别以AB、AD、AP为x轴,y轴,z轴,建立如图所示的空间直角坐标系,设AD=2,则由题意得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∴,,∴=0,∴CD⊥PC.(Ⅱ)解:∵AB、AD、AP两两垂直,∴AB⊥平面PAD,∴是平面PAD的一个法向量,设平面PCD的法向量,∵,∴,取x=1,得到=(1,1,2),设二面角A﹣PD﹣C的大小为θ,由图形知θ为锐角,∴cosθ=|cos<>|=||=,∴二面角A ﹣PD ﹣C 的余弦值为.19.(12分)某高中社团进行社会实践,对[2555],岁的人群随机抽取n 人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如下统计表和如图所示各年龄段人数频率分布直方图请完成以下问题:(1)补全频率直方图,并求n a p ,,的值(2)从[4045,)岁和[4550,)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[4045,)岁得人数为X ,求X 的分布列和数学期望E X ()解析 (1)第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为=0.06.频率直方图如下:第一组的人数为=200,频率为0.04×5=0.2,所以n==1000,所以第二组的人数为1000×0.3=300,p==0.65,第四组的频率为0.03×5=0.15,第四组的人数为1000×0.15=150,所以a=150×0.4=60.(2)因为[40,45)岁与[45,50)岁年龄段的“时尚族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.随机变量X服从超几何分布.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==所以随机变量X的分布列为∴数学期望E(X)=0×+1×+2×+3×=2﹣共线.20.(12分)如图,焦距为2的椭圆E的两个顶点分别为A和B,且AB与n=1)(Ⅰ)求椭圆E 的标准方程;(Ⅱ)若直线y kx m =+与椭圆E 有两个不同的交点P 和Q ,O 为坐标原点,总使0OP OQ ∙<,求实数m 的取值范围.解析 (Ⅰ)解:设椭圆C :=1(a >b >0),则∵A (a ,0)、B (0,b ), ∴=(﹣a ,b ), ∵与=(,﹣1)共线,∴a=b ,∵焦距为2, ∴c=1, ∴a 2﹣b 2=1, ∴a 2=2,b 2=1, ∴椭圆E 的标准方程;(Ⅱ)设P (x 1,y 1),Q (x 2,y 2),把直线方程y=kx+m 代入椭圆方程,消去y 可得(2k 2+1)x 2+4kmx+2m 2﹣2=0, ∴x 1+x 2=﹣,x 1x 2=,△=16k 2m 2﹣4×(2k 2+1)(2m 2﹣2)=16k 2﹣8m 2+8>0(*) ∵•<0,∴x 1x 2+y 1y 2<0,∵y 1y 2=(kx 1+m )(kx 2+m )=,∴+<0,∴m 2<,∴m 2<且满足(*) 故实数m 的取值范围是(﹣,).21.(12分)已知函数2ln f x x a x x =+()()﹣﹣在0x =处取得极值. (Ⅰ)求实数a 的值;(Ⅱ)若关于x 的方程52f x x b =+()﹣在区间[]02,上恰有两个不同的实数根,求实数b 的取值范围;(Ⅲ)证明:对任意的正整数n ,不等式23412ln(1)49n n n++++⋯++>都成立. 解析 (Ⅰ)函数f (x )=ln (x+a )﹣x 2﹣x f ′(x )=﹣2x ﹣1当x=0时,f (x )取得极值,∴f ′(0)=0 故,解得a=1,经检验a=1符合题意, 则实数a 的值为1;(Ⅱ)由a=1知f (x )=ln (x+1)﹣x 2﹣x 由f (x )=﹣x+b ,得ln (x+1)﹣x 2+x ﹣b=0 令φ(x )=ln (x+1)﹣x 2+x ﹣b ,则f (x )=﹣x+b 在区间[0,2]上恰有两个不同的实数根等价于φ(x )=0在区间[0,2]上恰有两个不同的实数根. φ′(x )=﹣2x+=,当x ∈[0,1]时,φ′(x )>0,于是φ(x )在[0,1)上单调递增;当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减,依题意有φ(0)=﹣b≤0,φ(1)=ln(1+1)﹣1+﹣b>0,φ(2)=ln(1+2)﹣4+3﹣b≤0解得,ln3﹣1≤b<ln2+,故实数b的取值范围为:[ln3﹣1,ln2+);(Ⅲ)f(x)=ln(x+1)﹣x2﹣x的定义域为{x|x>﹣1},由(1)知f(x)=,令f′(x)=0得,x=0或x=﹣(舍去),∴当﹣1<x<0时,f′(x)>0,f(x)单调递增;当x>0时,f′(x)<0,f(x)单调递减.∴f(0)为f(x)在(﹣1,+∞)上的最大值.∴f(x)≤f(0),故ln(x+1)﹣x2﹣x≤0(当且仅当x=0时,等号成立)对任意正整数n,取x=>0得,ln(+1)<+∴ln()<,故2+++…+>ln2+ln+ln+…+ln=ln(n+1).四、请从22、23、24三个小题中任选一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.(选修4-1:几何证明选讲)22.(10分)如图,O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:2•=;PM PA PC(Ⅱ)若O的半径为OA=,求MN的长.解析 (Ⅰ)证明:连接ON ,因为PN 切⊙O 于N , ∴∠ONP=90°, ∴∠ONB+∠BNP=90° ∵OB=ON , ∴∠OBN=∠ONB 因为OB ⊥AC 于O , ∴∠OBN+∠BMO=90°,故∠BNP=∠BMO=∠PMN ,PM=PN ∴PM 2=PN 2=PA •PC (Ⅱ)∵OM=2,BO=2,BM=4 ∵BM •MN=CM •MA=(2+2)(2﹣2)(2﹣2)=8,∴MN=2选修4-4:坐标系与参数方程23.已知直线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极值为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是:x m ty t=+⎧⎨=⎩,(t 是参数).(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,直线l 的参数方程化为普通方程;(Ⅱ)若直线l 与曲线C 相交于,A B 两点,且|||AB ,试求实数m 的值. 解析 (Ⅰ)∵ρ=4cos θ,∴ρ2=4ρcos θ,化为直角坐标方程x 2+y 2=4x . 由直线l 的参数方程:,(t 是参数),消去t 可得x ﹣y ﹣m=0.(Ⅱ)由圆C 的方程(x ﹣2)2+y 2=4可得圆心C (2,0),半径r=2. ∴圆心C 到直线l 的距离d==.∵,|AB|=∴,化为|m ﹣2|=1,解得m=1或3.选修4-5:不等式选讲24.已知函数()lg(12)f x x x a =+++﹣.(Ⅰ)当5a =﹣时,求函数()f x 的定义域; (Ⅱ)若函数()f x 的定义域为R ,求实数a 的取值范围.解析 (Ⅰ)当a=﹣5时,要使函数有意义,则|x+1|+|x ﹣2|﹣5>0,即|x+1|+|x ﹣2|>5, 在同一坐标系中作出函数y=|x+1|+|x ﹣2|与y=5的图象如图:则由图象可知不等式的解为x <﹣2或x >3,即函数f(x)的定义域为{x|x<﹣2或x>3}.(Ⅱ)∵函数f(x)的定义域为R,|x+1|+|x﹣2|+a>0恒成立,即|x+1|+|x﹣2|>﹣a恒成立,由图象可知|x+1|+|x﹣2|≥3,即﹣a<3,解得a>﹣3.。

2014年甘肃省张掖市高台一中高考数学一模试卷(文科)

2014年甘肃省张掖市高台一中高考数学一模试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.已知集合A={x||2x+1|>3},集合,则A∩(∁R B)=()A.(1,2)B.(1,2]C.(1,+∞)D.[1,2]【答案】B【解析】解:由A中的不等式变形得:2x+1>3或2x+1<-3,解得:x>1或x<-2,∴A=(-∞,-2)∪(1,+∞),由B中y=,得到≥0,即>或<,解得:x>2或x≤-1,∴B=(-∞,-1]∪(2,+∞),∵全集为R,∴∁R B=(-1,2],则A∩(∁R B)=(1,2].故选:B.求出A中不等式的解集确定出A,求出B中函数的定义域确定出B,根据全集R求出B 的补集,找出A与B补集的交集即可.此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.若复数z满足(3-4i)z=|4+3i|,则z的虚部为()A.-4B.C.4D.【答案】D【解析】解:∵复数z满足(3-4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.若=2,=1,且与的夹角为60°,当取得最小值时,实数x的值为()A.2B.-2C.1D.-1【答案】C【解析】解:∵=2,=1,且与的夹角为60°,∴=2×1×cos60°=1.∵===,故当x=1时,取得最小值为,故选:C.由题意可得=1,再根据==,可得当取得最小值时,实数x的值.本题主要考查两个向量的数量积的定义,求向量的模的方法,属于中档题.4.直线xsinα+y+2=0的倾斜角的取值范围是()A.[0,π)B.[0,]∪[,π)C.[0,]D.[0,]∪(,π)【答案】B【解析】解:直线xsinα+y+2=0的斜率为k=-sinα,∵-1≤sinα≤1,∴-1≤k≤1∴倾斜角的取值范围是[0,]∪[π,π)故选B由直线的方程可确定直线的斜率,可得其范围,进而可求倾斜角的取值范围.本题考查直线的斜率与倾斜角的关系,属基础题.5.一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为()A. B. C. D.【答案】C【解析】解:三视图复原的几何体,下部是放倒的四棱柱,底面是直角梯形,边长分别为:3,2,1,;高为:1;上部是正方体,也可以看作是三个正方体和半个正方体的组合体,所以几何体的体积为:3×13+=,故选C.三视图复原的几何体,下部是放倒的四棱柱,上部是正方体,根据三视图的数据,求出几何体的表面积.本题是基础题,考查几何体的三视图的视图能力,计算能力,空间想象能力,转化思想的应用.6.已知△ABC的面积为2,在△ABC所在的平面内有两点P、Q,满足,=2,则△APQ的面积为()A. B. C.1 D.2【答案】B【解析】解:由题意可知,P为AC的中点,=2,可知Q为AB的一个三等分点,如图:因为S△ABC==2.所以S△APQ===.故选B.画出△ABC,通过足,=2,标出满足题意的P、Q位置,利用三角形的面积公式求解即可.本题考查向量在几何中的应用,三角形的面积的求法,考查转化思想与计算能力.7.执行如图所示的程序框图(其中[x]表示不超过x的最大整数),则输出的S值为()A.7B.6C.5D.4【答案】A【解析】解:由程序框图得:第一次运行n=0,S=0;第二次运行n=1,S=1;第三次运行n=2,S=1+1=2;第四次运行n=3,S=2+1=3;第五次运行n=4,S=3+2=5;第六次运行n=5,S=5+2=7;满足n>4结束运行,输出S=7.故选A.由程序框图依次计算第一、第二…的运行结果,直到满足条件n>4时,输出S,即为所求.本题考查了直到型循环结构的程序框图,解答的关键是读懂程序框图.8.函数 , , > ,若方程f (x )=x +a 恰有两个不等的实根,则a 的取值范围为( )A.(-∞,0)B.[0,1)C.(-∞,1)D.[0,+∞) 【答案】 C【解析】解:由函数, , >,可得f (x )的图象和函数y =x +a 有两个不同的交点, 如图所示:故有a <1, 故选C .由题意可得f (x )的图象和函数y =x +a 有两个不同的交点,结合图象,求出a 的取值范围.本题考查根的存在性及根的个数判断,以及函数与方程的思想、数形结合的数学思想,解答关键是运用数形结合的思想,属于中档题.9.过双曲线> , > 的左焦点F 作圆x 2+y 2=a 2的两条切线,切点分别为A 、B ,双曲线左顶点为M ,若∠AMB=120°,则该双曲线的离心率为( )A. B. C.3 D.2 【答案】 D【解析】解:依题意,作图如下:∵OA ⊥FA ,∠AMO=60°,OM=OA , ∴△AMO 为等边三角形, ∴OA=OM=a ,在直角三角形OAF 中,OF=c ,∴该双曲线的离心率e = = ==2, 故选:D .依题意,作出图形,易求该双曲线的离心率e = ==2,从而得到答案. 本题考查双曲线的简单性质,考查作图能力与解三角形的能力,属于中档题.10.设S n 是等差数列{a n }的前n 项和,若,则=( )A.1B.-1C.2D.【答案】 A【解析】解:由题意可得====1故选A由等差数列的求和公式和性质可得=,代入已知可得.本题考查等差数列的求和公式,涉及等差数列的性质,属基础题.11.在直角三角形ABC中,∠ACB=90°,AC=BC=2,点P是斜边AB上的一个三等分点,则•+•=()A. B.2 C. D.4【答案】D【解析】解:如图所示:==,∴•+•=()+()===4,故选D.不妨作出图象,由向量加法法则得=,代入式子利用数量积运算可求.本题考查平面向量数量积运算、向量加法的三角形法则,属基础题.12.设F为抛物线y2=16x的焦点,A,B,C为该抛物线上三点,若,则的值为()A.36B.24C.16D.12【答案】B【解析】解:由题意可得F(4,0),是抛物线的焦点,也是三角形ABC的重心,故故=4,∴x A+x B+x C=12.再由抛物线的定义可得:=x A+4+x B+4+x C+4=12+12=24,故选B.由题意可得F(4,0),是三角形ABC的重心,故=4,再由抛物线的定义可得=x A+4+x B+4+x C+4=24.本题考查三角形的重心坐标公式,抛物线的定义、标准方程,以及简单性质的应用,求得x A+x B+x C=12,是解题的关键.二、填空题(本大题共4小题,共20.0分)13.已知α∈(,π),且sinα=,则tanα的值为______ .【答案】-【解析】解:∵α∈(,π),且sinα=,∴cosα=-=-,则tanα==-.故答案为:-由α的范围以及sinα的值,利用同角三角函数间的基本关系求出cosα的值,即可确定出tanα的值.此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.14.已知a>b>0,ab=1,则的最小值为______ .【答案】【解析】解:∵a>b>0,ab=1∴a-b>0∴=当且仅当a-b=时取等号故答案为本题是基本不等式问题,可以利用a>b>0得到a-b>0(正数),再利用条件ab为定值将a2+b2转化为(a-b)2与ab,化简后,运用基本不等式解决问题.本题主要考查了基本不等式的应用和转化化归的数学思想,注意不等式成立的条件(一正二定三相等)15.已知等比数列{a n}的第5项是二项式展开式的常数项,则a3a7= ______ .【答案】【解析】解:二项式展开式的通项公式为T r+1=•••x-r=••.令6-3r=0,r=2,故展开式的常数项为T3=•=.由题意可得,等比数列{a n}的第5项为展开式的常数项,即a5=,∴a3a7==,故答案为.在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,即得a5的值.再根据等比数列的性质求得a3a7的值.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数.等比数列的性质应用,属于中档题16.已知函数f(x)=lnx+2x,若f(x2-4)<2,则实数x的取值范围______ .【答案】(-,-2)∪(2,)【解析】解:解法一:∵函数f(x)=lnx+2x,∴f(x2-4)=ln(x2-4)+,∴不等式即ln(x2-4)+<2.令t=x2-4>0,不等式即lnt+2t<2①.令h(t)=lnt+2t,显然函数h(t)在(0,+∞)上是增函数,且h(1)=2,∴由不等式①可得t<1,即x2-4<1,即x2<5.由><解得-<x<-2,或2<x<,故答案为:(-,-2)∪(2,).解法二:由于函数f(x)=lnx+2x,∴f(1)=2,再根据函数f(x)=lnx+2x在定义域(0,+∞)上式增函数,∴由f(x2-4)<2可得x2-4<1,求得-<x<-2,或2<x<,故答案为:(-,-2)∪(2,).解法一:不等式即ln(x2-4)+<2,令t=x2-4>0,不等式即lnt+2t<2①.令h (t)=lnt+2t,由函数h(t)的单调性可得x2-4<1,从而求得x的范围.解法二:根据函数f(x)=lnx+2x在定义域(0,+∞)上是增函数,f(1)=2,由不等式可得x2-4<1,从而求得x的范围.本题主要考查函数的单调性的应用,体现了转化的数学思想,属于基础题.三、解答题(本大题共8小题,共94.0分)17.设函数f(x)=2cos2x+2sinx•cosx+m(m,x∈R).(1)求f(x)的最小正周期;(2)当x∈[0,]时,求实数m的值,使函数f(x)的值域恰为,,并求此时f(x)在R上的对称中心.【答案】解:(1)∵f(x)=2cos2x+2sinxcosx+m=1+cos2x+sin2x+m=2sin(2x+)+m+1,∴函数f(x)的最小正周期T=π.(2)∵0≤x≤,∴≤2x+≤,∴-≤sin(2x+)≤1,∴m≤f(x)≤m+3,又≤f(x)≤,∴m=,令2x+=kπ(k∈Z),解得x=-(k∈Z),∴函数f(x)在R上的对称中心为(-,)(k∈Z).【解析】(1)利用二倍角的正弦与余弦及辅助角公式可求得f(x)=2sin(2x+)+m+1,从而可求其最小正周期;(2)利用正弦函数的单调性可求得0≤x≤时,m≤f(x)≤m+3,利用使函数f(x)的值域为[,]可求得m的值,从而可求f(x)在R上的对称中心.本题考查:两角和与差的正弦函数,着重考查二倍角的正弦与余弦及辅助角公式,考查正弦函数的单调性、周期性与对称性,属于中档题.18.如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A-PB-E的大小.【答案】解:(Ⅰ)∵D、E分别为AB、AC中点,∴DE∥BC.∵DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.…(4分)(Ⅱ)连接PD,∵PA=PB,D为AB中点,∴PD⊥AB.….(5分)∵DE∥BC,BC⊥AB,∴DE⊥AB…(6分)又∵PD∩DE=D,PD,DE⊂平面PDE∴AB⊥平面PDE…(8分)∵PE⊂平面PDE,∴AB⊥PE…(9分)(Ⅲ)∵AB⊥平面PDE,DE⊥AB…(10分)如图,以D为原点建立空间直角坐标系,由PA=PB=AB=2,BC=3,则B(1,0,0),P(0,0,),E(0,,0),∴=(1,0,),=(0,,).设平面PBE的法向量,,,∴令得,,…(11分)∵DE⊥平面PAB,∴平面PAB的法向量为,,.…(12分)设二面角的A-PB-E大小为θ,由图知,<,>,所以θ=60°,即二面角的A-PB-E大小为60°…(14分)【解析】(Ⅰ)由三角形中位线定理可得DE∥BC,进而由线面平行的判定定理得到DE∥平面PBC(II)连接PD,由等腰三角形三线合一,可得PD⊥AB,由DE∥BC,BC⊥AB可得DE⊥AB,进而由线面垂直的判定定理得到AB⊥平面PDE,再由线面垂直的性质得到AB⊥PE;(Ⅲ)以D为原点建立空间直角坐标系,分别求出平面PBE的法向量和平面PAB的法向量,代入向量夹角公式,可得二面角A-PB-E的大小.本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,直线与平面垂直的判定,熟练掌握空间直线与平面位置关系的判定,性质是解答(I)和(II)的关键,而(III)的关键是建立空间坐标系,将空间角问题转化为向量夹角问题.19.为了参加2013年市级高中篮球比赛,该市的某区决定从四所高中学校选出12人组成男子篮球队代表所在区参赛,队员来源人数如下表:(Ⅰ)求这两名队员来自同一学校的概率;(Ⅱ)设选出的两名队员中来自学校甲的人数为ξ,求随机变量ξ的分布列及数学期望Eξ.【答案】解:(I)“从这12名队员中随机选出两名,两人来自于同一学校”记作事件A,则.…(6分)(II)ξ的所有可能取值为0,1,2…(7分)则,,∴ξ的分布列为:…(10分)∴…(13分)【解析】(I)“从这12名队员中随机选出两名,两人来自于同一学校”记作事件A,根据题设条件,利用排列组合知识能求出这两名队员来自同一学校的概率.(II)ξ的所有可能取值为0,1,2,分别求出其相对应的概率,由此能求出随机变量ξ的分布列及数学期望Eξ.本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型.20.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1(-,0)、F2(,0),椭圆上的点P满足∠PF1F2=90°,且△PF1F2的面积为S=.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A、B,过点Q(1,0)的动直线l与椭圆C相交于M、N两点,直线AN与直线x=4的交点为R,证明:点R总在直线BM上.【答案】解:(Ⅰ)由题意知:,…(1分)∵椭圆上的点P满足∠PF1F2=90°,且,∴.∴,.∴2a=|PF1|+|PF2|=4,a=2…(2分)又∵,∴…(3分)∴椭圆C的方程为.…(4分)(Ⅱ)由题意知A(-2,0)、B(2,0),(1)当直线l与x轴垂直时,,、,,则AN的方程是:,BM的方程是:,直线AN与直线x=4的交点为,,∴点R在直线BM上.…(6分)(2)当直线l不与x轴垂直时,设直线l的方程为y=k(x-1),M(x1,y1)、N(x2,y2),R(4,y0)由得(1+4k2)x2-8k2x+4k2-4=0∴,…(7分),,,,A,N,R共线,∴…(8分)又,,,,需证明B,M,R共线,需证明2y1-y0(x1-2)=0,只需证明若k=0,显然成立,若k≠0,即证明(x1-1)(x2+2)-3(x2-1)(x1-2)=0∵(x1-1)(x2+2)-3(x2-1)(x1-2)=-2x1x2+5(x1+x2)-8=成立,…(11分)∴B,M,R共线,即点R总在直线BM上.…(12分)【解析】(Ⅰ)通过椭圆的截距以及三角形的面积求出a,b,即可得到椭圆C的方程;(Ⅱ)求出A、B坐标通过(1)当直线l与x轴垂直时,求出AN的方程,BM的方程,然后求出直线AN与直线x=4的交点,判断交点R在直线BM上;(2)当直线l不与x 轴垂直时,设直线l的方程为y=k(x-1),M(x1,y1)、N(x2,y2),R(4,y0)利用直线与椭圆方程联立结合韦达定理,利用分析法证明A,N,R共线,即点R总在直线BM上即可.本题考查椭圆的定义及其性质,椭圆方程的求法,直线与椭圆的位置关系,直线方程以及韦达定理的应用.难度比较大,解题需要一定的运算能力以及分析问题解决问题的能力.21.已知函数,<,>,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.【答案】解:(I)当x<0时,f(x)=(x+1)2+a,∴f(x)在(-∞,-1)上单调递减,在[-1,0)上单调递增;当x>0时,f(x)=lnx,在(0,+∞)单调递增.(II)∵x1<x2<0,∴f(x)=x2+2x+a,∴f′(x)=2x+2,∴函数f(x)在点A,B处的切线的斜率分别为f′(x1),f′(x2),∵函数f(x)的图象在点A,B处的切线互相垂直,∴′′,∴(2x1+2)(2x2+2)=-1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当-(2x1+2)=2x2+2=1,即,时等号成立.∴函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值为1.(III)当x1<x2<0或0<x1<x2时,∵′′,故不成立,∴x1<0<x2.当x1<0时,函数f(x)在点A(x1,f(x1)),处的切线方程为,即.当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为,即.函数f(x)的图象在点A,B处的切线重合的充要条件是①,由①及x1<0<x2可得-1<x1<0,由① 得=.∵函数,y=-ln(2x1+2)在区间(-1,0)上单调递减,∴a(x1)=在(-1,0)上单调递减,且x1→-1时,ln(2x1+2)→-∞,即-ln(2x1+2)→+∞,也即a(x1)→+∞.x1→0,a(x1)→-1-ln2.∴a的取值范围是(-1-ln2,+∞).【解析】(I)利用二次函数的单调性和对数函数的单调性即可得出;(II)利用导数的几何意义即可得到切线的斜率,因为切线互相垂直,可得′′,即(2x1+2)(2x2+2)=-1.可得,再利用基本不等式的性质即可得出;(III)当x1<x2<0或0<x1<x2时,∵′′,故不成立,∴x1<0<x2.分别写出切线的方程,根据两条直线重合的充要条件即可得出,再利用导数即可得出..本题主要考查了基本函数的性质、利用导数研究函数的单调性、导数的几何意义、基本不等式的性质、直线的位置关系等基础知识,考查了推理论证能力、运算能力、创新意识,考查了函数与方程、分类与整合、转化与化归等思想方法.22.如图,AB为⊙O的直径,BC切⊙O于点B,AC交⊙O于点P,CE=BE,点E在BC上.求证:PE是⊙O的切线.【答案】解:连接BP,OP,∵AB为⊙O的直径,BC切⊙O于点B,AC交⊙O于点P,CE=BE,点E在BC上,∴∠APB=90°,∠ABC=90°,∠BAC=∠PBC,∴∠BPC=180°-∠PBC-∠C=180°-∠BAC-∠C=∠ABC=90°,∴PE=BE=CE,∵OB=OP,∴∠OPE=90°,∴PE是⊙O的切线.【解析】连接BP,OP,由题设条件导出∠BPC=180°-∠PBC-∠C=180°-∠BAC-∠C=∠ABC=90°,故PE=BE=CE,再由OB=OP,能够证明PE是⊙O的切线.本题考查了平行线的性质、等腰三角形的性质、三角形的中位线定理、切线的判定、圆周角定理等知识点的运用,能综合运用这些性质进行推理是解此题的关键,注意证切线的方法:知道过圆上一点,连接圆心和该点证垂直.23.选修4--4;坐标系与参数方程已知动点P,Q都在曲线C:为参数上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【答案】解:(I)根据题意有:P(2cosα,2sinα),Q(2cos2α,2sin2α),∵M为PQ的中点,故M(cosα+cos2α,sin2α+sinα),∴求M的轨迹的参数方程为:(α为参数,0<α<2π).(II)M到坐标原点的距离d==(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【解析】(I)根据题意写出P,Q两点的坐标:P(2cosα,2sinα),Q(2cos2α,2sin2α),再利用中点坐标公式得PQ的中点M的坐标,从而得出M的轨迹的参数方程;(II)利用两点间的距离公式得到M到坐标原点的距离d==,再验证当α=π时,d=0,故M的轨迹过坐标原点.本题主要考查把参数方程化为普通方程的方法,两点间的距离公式的应用,轨迹方程,属于基础题.24.已知a∈R,设关于x的不等式|2x-a|+|x+3|≥2x+4的解集为A.(Ⅰ)若a=1,求A;(Ⅱ)若A=R,求a的取值范围.【答案】解:(I)若a=1,则|2x-1|+|x+3|≥2x+4当x≤-3时,原不等式可化为-3x-2≥2x+4,可得x≤-3当-3<x≤时,原不等式可化为4-x≥2x+4,可得3x≤0当x>时,原不等式可化为3x+2≥2x+4,可得x≥2综上,A={x|x≤0,或x≥2};(II)当x≤-2时,|2x-a|+|x+3|≥0≥2x+4成立当x>-2时,|2x-a|+|x+3|=|2x-a|+x+3≥2x+4∴x≥a+1或x≤∴a+1≤-2或a+1≤∴a≤-2综上,a的取值范围为a≤-2.【解析】(I)利用绝对值的几何意义,化去绝对值,解不等式,可得结论;(II)当x≤-2时,|2x-a|+|x+3|≥0≥2x+4成立,当x>-2时,|2x-a|+|x+3|=|2x-a|+x+3≥2x+4,从而可求a的取值范围.本题考查绝对值不等式,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.。

甘肃省张掖市高三数学上学期第一次诊断(期末)考试试题 理 新人教B版

1. 已知集合})3(|{<-=xxxP,}2|||{<=xxQ,则=QP ()A.)0,2(-B.)2,0(C.)3,2( D.)3,2(-2. i是虚数单位,复数31ii--= ()A.2i+B.12i-C.i21+D.2i-3.将函数sin()()6y x x Rπ=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为()A.5sin(2)()12y x x Rπ=+∈B.5sin()()212xy x Rπ=+∈C.sin()()212xy x Rπ=-∈D.5sin()()224xy x Rπ=+∈4.如图为一个几何体的三视图,尺寸如图所示,则该几何体的体积为( ) A.63π+B.π343+C.π3433+D.633π+5.设3212a=log2b=log3c=log5,,,则()A.c﹤b﹤a B.a﹤c﹤b C. c﹤a﹤b.D.b﹤c﹤a6. 已知βα,是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若βαβα⊥⊂⊥,则mm,;②若βαββαα//,////,,则,nmnm⊂⊂;③如果ααα与是异面直线,那么、nnmnm,,⊄⊂相交;④若.////,//,βαβαβαnnnnmnm且,则,且⊄⊄=⋂其中正确的命题是()A.①② B.②③ C.③④ D.①④7.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有( )种.A.150B.300C.600D.9008.已知双曲线22221 x ya b-=(0,0)a b>>的左、右焦点分别为12,F F,以12||F F为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为()A.221169x y-=B.22134x y-=C.221916x y-=D.22143x y-=9.下列五个命题中正确命题的个数是( )(1)对于命题2:,10p x R x x∃∈++<使得,则:p x R⌝∀∈,均有210x x++>;(2)3=m是直线02)3(=-++myxm与直线056=+-ymx互相垂直的充要条件;(3)已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),则回归直线方程为ˆy=1.23x+0.08(4).若实数[],1,1x y∈-,则满足221x y+≥的概率为4π.(5) 曲线2y x=与y x=所围成图形的面积是12()S x x dx=-⎰A.2B.3C.4D.510. 执行如图所示的程序框图,那么输出的S为( )(A)3 (B)43(C)12(D)-211.如图,矩形n n n n D C B A 的一边n n B A 在x 轴上,另外两个顶点n n D C ,在函数())0(1>+=x x x x f 的图象上.若点n B 的坐标()),2(0,+∈≥N n n n ,记矩形n n n n D C B A 的周长为n a ,则=+++1032a a a ( )A .208 B.216 C.212 D.22012. 设()f x 的定义域为D ,若()f x 满足下面两个条件则称()f x 为闭函数:①()f x 是D 上单调函数;②存在[,]a b D ⊆,使()f x 在[,]a b 上值域为[,]a b . 现已知()21f x x k =++为闭函数,则k 的取值范围是( )A .112k -<≤-B .1k <C .112k ≤< D .1k >-第Ⅱ卷 (90分)二、填空题: 本大题共4小题,每小题5分,共20分. 13.在531⎪⎪⎭⎫ ⎝⎛+x x 的展开式中的常数项为 . 14.已知x ,y 满足约束条件220344,0x x y x y y ≥⎧⎪+≥+⎨⎪≥⎩则的最小值是15.如图,过抛物线22(0)y px p =>的焦点F 的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC|=2|BF|,且|AF|=3,则抛物线的方程是 。

甘肃省张掖市高三数学第一次(12月)诊断联考试题 理(含解析)

张掖市2014-2015年度高三第一次诊断考试数学(理科)第I 卷 (选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁UM=( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}2.若复数i ia 213++(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为 ( )A. 6-B. 2-C. 4D. 63.等差数列{}1418161042,30,a a a a a a n -=++则中的值为( )A .20B .-20C .10D .-104.已知4(,0),cos ,tan 225x x x π∈-==则 ( )A .24-7B .7-24C .724D .2475.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D .16.若一条直线与一个平面成720角,则这条直线与这个平面内经过斜足的直线所成角中最大角等于 ( )A .720B .900C .1080D .18007.已知M 是ABC ∆内的一点,且AB AC 23⋅=u u u r u u u r,BAC 30∠=o,若MBC ∆,MCA ∆,MAB ∆的面积分别为x y1,,2,则x y 14+的最小值为()A.20B.18C.16D.98.函数cos y x x =+的大致图像是( )9.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( ) A. 0.42B. 0.28C. 0.3D. 0.710.如图所示的程序框图输出的结果是S =720,则判断框内应填的条件是( )A .i≤7B .i>7C .i≤9D .i>911.椭圆M: 22221(0)x y a b a b +=>>左右焦点分别为1F ,2F ,P 为椭圆M 上任一点且1PF 2PF 最大值取值范围是222,3c c ⎡⎤⎣⎦,其中22c a b =-,则椭圆离心率e 取值范围()A.2,12⎡⎫⎪⎢⎪⎣⎭ B.32,32⎡⎤⎢⎥⎣⎦ C.3,13⎡⎫⎪⎢⎪⎣⎭ D.11,32⎡⎫⎪⎢⎣⎭12.给出定义:若1122m x m-<≤+(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{}.x m=在此基础上给出下列关于函数(){}f x x x=-的四个命题:①11()22f-=;②(3.4)0.4f=-;③11()()44f f-<;④()y f x=的定义域是R,值域是11[,]22-. 则其中真命题的序号是()A.①②B.①③C.②④D.③④第II卷(非选择题共90分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年兰州市高三第一次诊断考试数学(文科)试卷本试卷满分150分,考试时间120分钟.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效。

第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1. 已知集合}0)3(|{<-=x x x P ,}2|||{<=x x Q ,则=Q P ( ) A .)0,2(- B .)2,0(C .)3,2(D .)3,2(-【答案】B【KS5U 解析】因为集合{|(3)0}{|03}P x x x x x =-<=<<,{|||2}{|22}Q x x x x =<=-<<,所以=Q P )2,0(。

2. i 是虚数单位,复数31ii--= ( )A . 2i +B .12i -C .i 21+D .2i -【答案】A【KS5U 解析】31i i --()()()()3132111i i i i i i i -+-===+--+,因此选A 。

3.已知等差数列{}n a 中,37101140,4a a a a a +-=-=,记12n n S a a a =+++,S 13=( ) A .78B .68C .56D .52【答案】D【KS5U 解析】因为37101140,4a a a a a +-=-=,所以147a d ==。

所以S 13=52. 4.如图为一个几何体的三视图,尺寸如图所示,则该几何体的体积为 ( )A .63π+B .π343+C .π3433+D .633π+【答案】D【KS5U 解析】由三视图知:原几何体是一个三棱锥和球的组合体。

其中三棱锥的侧棱长为3,底面边长为2。

球的直径为1,应该几何体的体积为324123432π⎛⎫⨯⨯+⨯= ⎪⎝⎭633π+。

5.设3212a=log 2b=log 3c=log 5,,,则( )A .c ﹤b ﹤aB .a ﹤c ﹤b C. c ﹤a ﹤b . D .b ﹤c ﹤a【答案】C【KS5U 解析】因为332211220<a=log 2log b=log 3log c=log 5log 10<><=3=1,2=1,,因此选C 。

6. 已知βα,是两个不同的平面,m ,n 是两条不同的直线,给出下列命题: ①若βαβα⊥⊂⊥,则m m ,; ②若βαββαα//,////,,则,n m n m ⊂⊂; ③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交; ④若.////,//,βαβαβαn n n n m n m 且,则,且⊄⊄=⋂ 其中正确的命题是 ( ) A .①② B .②③C .③④D .①④【答案】D【KS5U 解析】①若βαβα⊥⊂⊥,则m m ,,正确,此为面面垂直的判定定理; ②若βαββαα//,////,,则,n m n m ⊂⊂,错误,若m//n就得不出//αβ;③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交,错误,m与n 还可能相交;④若.////,//,βαβαβαn n n n m n m 且,则,且⊄⊄=⋂,正确。

7. 对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i=1,2,…,8),其回归直线方程是a x y +=31:,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a 的值是( ) A. 161B. 81C. 41D. 21【答案】B【KS5U 解析】由题意易知:33,48x y ==,代入回归直线方程得:a =81。

8.已知双曲线22221x y a b-= (0,0)a b >>的左、右焦点分别为12,F F ,以12||F F 为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A .221169x y -=B .22134x y -=C .221916x y -=D .22143x y -=【答案】C【KS5U 解析】因为以12||F F 为直径的圆与双曲线渐近线的一个交点为(3,4),所以c=5,43b a =,又222c a b =+,所以3,4a b ==,所以 此双曲线的方程为221916x y -=。

9. 执行如图所示的程序框图,那么输出的S 为( )(A)3 (B)43(C)12 (D)-2 【答案】C 【KS5U 解析】(第10题图)第一次循环:242,123S k k S =-==+=,此时满足条件,继续循环; 第二次循环:212,132S k k S =-==+=,此时满足条件,继续循环; 第三次循环:222,14S k k S =-=-=+=,此时满足条件,继续循环; 第四次循环:223,15S k k S =-==+=,此时满足条件,继续循环; 第五次循环:242,163S k k S=-==+=,此时满足条件,继续循环; ……A .1B .2C .3D .4【答案】B 【KS5U解析】因为2x ya b ==,所以l o g 2,l a bx y ==,所以()2222222212log log log log 22a b a b a b x y ⎛⎫++=+=≤= ⎪⎝⎭,当且仅当22a b ==时取等号。

11.如图,矩形n n n n D C B A 的一边n n B A 在x 轴上,另外 两个顶点n n D C ,在函数())0(1>+=x xx x f 的图象上.若点n B 的坐标()),2(0,+∈≥N n n n ,记矩形n n n n D C B A 的周长为n a ,则=+++1032a a a ( )A .208 B.216 C.212 D.220 (第11题图)【答案】B 【KS5U 解析】由点n B 的坐标()),2(0,+∈≥N n n n ,得1,n C n n n ⎛⎫+ ⎪⎝⎭,令21111,10,x n x n x x n x x n n n ⎛⎫+=+-++=== ⎪⎝⎭即解得或,所以11,n D n nn ⎛⎫+ ⎪⎝⎭,所以矩形n n n n D C B A 的周长11224n a n n n n n ⎛⎫⎛⎫=-++= ⎪ ⎪⎝⎭⎝⎭,所以=+++1032a a a 216.12. 设()f x 的定义域为D ,若()f x 满足下面两个条件则称()f x 为闭函数:①()f x 是D 上单调函数;②存在[,]a b D ⊆,使()f x 在[,]a b 上值域为[,]a b .现已知()f x k =+为闭函数,则k 的取值范围是( )ABC .1k >-D .1k <【答案】A【KS5U 解析】易知()f x k =+是1,2⎛⎫-+∞ ⎪⎝⎭上的增函数,符合条件①;设函数符合条件②的区间为,则k ak b==;故k x =的两个不等根,即方程组为:()22221012x k x k x x k ⎧-++-=⎪⎪≥⎨⎪≥⎪⎩有两个1,2⎛⎫-+∞ ⎪⎝⎭内的不等实根;设为方程()222210x k x k -++-=的二根,则()()2222224102212211(22)1022k k k k k ⎧⎪∆=+-->⎪⎪+>-⎨⎪⎪⎛⎫⎛⎫--+⨯-+-≥⎪ ⎪ ⎪⎝⎭⎝⎭,解得:二、 填空题: 本大题共4小题,每小题5分,共20分. 13.若等比数列{}n a 的首项是1a ,公比为q ,n S是其前n 项和,则nS =_____________.【答案】⎪⎩⎪⎨⎧≠-----=---11)1(111q q q a q na n 【KS5U 解析】有等比数列的前n 项和公式可得:111(1)11n n na q S a q q q ---=⎧⎪=-⎨---≠⎪-⎩。

14.如果实数x ,y 满足条件10010x y x y ⎧⎪⎨⎪⎩-+≥y +1≥++≤,那么目标函数z =2x -y 的最小值为____________. 【答案】—3,【KS5U 解析】画出约束条件10010x y x y ⎧⎪⎨⎪⎩-+≥y +1≥++≤的可行域,由可行域知:目标函数z =2x -y 过点(-2,-1)时取最小值,最小值为-3.15.如图,过抛物线22(0)y px p =>的焦点F 的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC|=2|BF|,且|AF|=3,则抛物线的方程是 。

【答案】xy 32=【KS5U 解析】设()11,A x y ,()22,B x y ,作AM 、BN 垂直准线于点M 、N ,则|BN|=|BF|,又|BC|=2|BF|,得|BC|=2|BN|,所以∠NCB=30°,有|AC|=2|AM|=6,设|BF|=x ,则2x+x+3=6⇒x=1,而212123,1,224p p p x x x x +=+==且,所以2331,2242p p p p ⎛⎫⎛⎫--== ⎪⎪⎝⎭⎝⎭解得,所以抛物线的方程为x y 32=。

16.函数))(2(log )(1*+∈+=N n n n f n ,定义使(1)(2)(3)()f f f f k ⋅⋅⋅为整数的数)(*∈N k k 叫做企盼数,则在区间[1,2013]内这样的企盼数共有 个 【答案】9【KS5U 解析】()()2341(1)(2)(3)k f f f fk +⋅⋅⋅=⋅⋅…,令()2log 2k m +=,则22,22mmk k =+=-即,所以在区间[1,2013]内这样的企盼数共有9个。

三、解答题:本大题共5小题,每小题12分,共60分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分)已知ABC ∆的三内角A 、B 、C 所对的边分别是a ,b ,c ,向量m =(cosB ,cosC),n =(2a+c ,b ),且m ⊥n . (1)求角B 的大小;(2)若3=b ,求c a +的范围18(本小题满分12分)公安部交管局修改后的酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其判断标准是驾驶人员每100毫升血液中的酒精含量X 毫克,当20≤X<80时,认定为酒后驾车;当X ≥80时,认定为醉酒驾车,张掖市公安局交通管理部门在对我市路段的一次随机拦查行动中,依法检测了200辆机动车驾驶员的每100毫升血液中的酒精含量,酒精含量X (单位:毫克)的统计结果如下表:.(1)求t 的值:(2)从酒后违法驾车的司机中随机抽取2人,求这219.(本题满分12分)如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,ABCD 是直角梯形,AB AD ⊥,//AB CD ,222,AB AD CD E ===是PB 的中点。

相关文档
最新文档