数学人教版八年级上册角平分线
人教版八年级数学上册 角平分线 讲义

角平分线思考:如图,AD是∠CAB的角平分线,∠ACD=∠ABD=90°,则DC与DB的有什么关系?为什么?1、角平分线定理:角平分线上的点到这个角两边的距离相等格式:∵AD是∠CAB的角平分线∴∠1=∠2又∵∠ACD=∠ABD=90°∴DC=DB思考:如果这次反过来,已知DC=DB,∠ACD=∠ABD=90°,能证明∠1=∠2吗?2、角平分线逆定理:角的内部到这个角两边的距离相等的点在这个角的角平分线上格式:∵DC=DB,∠ACD=∠ABD=90°∴∠1=∠2∴AD是∠CAB的角平分线1、如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A、PD=PEB、OD=OEC、∠DPO=∠EPOD、PD=OD21D APOEB2、如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤33、如图,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是()A. DC=DEB. ∠AED=90°C. ∠ADE=∠ADCD. DB=DC4、如图,MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,则下列结论中不正确的是()TQ=PQ B、∠MQT=∠MQPC、∠QTN=90°D、∠NQT=∠MQT5、在△ABC中,∠C=90°,E是AB边的中点,BD是角平分线,且DE⊥AB,则()A. BC>AEB. BC=AEC. BC<AED. 以上都有可能6、如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3 cm,那么AE+DE等于( )A .2 cmB .3 cmC .4 cmD .5 cm7、如图,OP 是∠AOB 的平分线,点C 、D 分别在角的两边OA 、OB 上,添加下列条件,不能判定△POC ≌△POD 的是( )A 、PC ⊥OA ,PD ⊥OB B 、OC=ODC 、∠OPC=∠OPD D 、PC=PD8、如图,△ABC 的面积为1cm2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( ) A.0.4cm2B.0.5cm2C.0.6cm2D.0.7cm29、如图所示,DB ⊥AB ,DC ⊥AC ,BD =DC ,∠BAC =80°,则∠BAD =_____, ∠CDA =_____EDCBA10、如图所示,P在∠AOB的平分线上,在利用角平分线性质推证PD=PE时,必须满足的条件是_____11、如图所示,在Rt△ACB中,∠C=90°,AD平分∠BAC交BC于点D.(1)若BC=8,BD=5,则点D到AB的距离是______(2)若BD∶DC=3∶2,点D到AB的距离为6,则BC的长为12、如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是_____cm.13、如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_________°14、如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数15、如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C。
数学人教版八年级上册角平分线的性质

角平分线的性质一、学情分析本节课选自新人教版教材《初中数学》八年级上册第十一章第三节,本节课的教学内容包括探索并证明角平分线性质定理的逆定理,会用角平分线性质定理的逆定理解决问题。
是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质和判定为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面的学习奠定基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.二、学习目标:1、能够利用三角形全等,证明角平分线的性质。
2、能对角平分线的性质进行简单推理,解决一些实际问题。
学习重点:探索并证明角平分线的性质。
学习难点:表达文字几何命题的证明过程。
三、教学目标:知识与技能目标:1、掌握作角的平分线和作直线垂线的方法2、学握角平分线的性质情感态度目标:1、在探讨作角平分线的方法及角平分线的性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,2、培养学生团结合作精神四、概念回顾1、角平分线:从一个角的顶点引出条射线,把这个角分成两个相等的角的射线有条,这条射线叫做这个角的线。
练一练:在空白处画一个△AOB,射线OC是∠AOB的平分线,则∠AOC==2、点到直线的距离:从直线外一点到这直线的_______的长度,叫做点到直线的距离。
(1)如图1,在Rt△ACB中,点A到CB的距离是线段______,点B到AC的距离是线段______(2)如图2,在△ACB中,画出点C到AB的距离CD四、研读课文P48--49页(一)、画出你认为重点的语句,并加以理解。
(二)、完成下面练习并体验知识点的形成过程。
CBAA BC图2图11、根据下面的操作步骤进行:(1)作任意一个角∠AOB,剪下来。
(2)将∠AOB对折.记折痕为OC,即OC是∠AOB 的线。
人教版八年级上册数学课件:角平分线的性质优秀课件

人 教人版教八版年八级年上级册上数册学数课学件课:件12:.3角角平平分分线线的的性性质质优(秀共pp1t6课张件PPT)
人 教人版教八版年八级年上级册上数册学数课学件课:件12:.3角角平平分分线线的的性性质质优(秀共pp1t6课张件PPT)
证明 (1)∵ 点E在∠BOA的平分线上, EC⊥AO,ED⊥OB ,
条互相交叉的公路, 现要建一个货物中 转站, 要求它到三条公路的距离相等, 可选择的地址有几处? 画出它的位置.
l1
l3
l2
人 教人版教八版年八级年上级册上数册学数课学件课:件12:.3角角平平分分线线的的性性质质优(秀共pp1t6课张件PPT)
人 教人版教八版年八级年上级册上数册学数课学件课:件12:.3角角平平分分线线的的性性质质优(秀共pp1t6课张件PPT)
角平分线的性质:
角的平分线上的点到角的两边的距离相等。
几何语言: ∵ OC平分∠AOB, 且PD⊥OA, PE⊥OB
∴ PD= PE
A D
P到OA的距离
C
角平分线上的点
P
P到OB的距离
O
E B 不必再证全等
反过来,到一个角的两边的距离相等 的点是否一定在这个角的平分线上呢?
已知:如图,PD⊥OA,PE⊥OB, 点D、E为垂足,PD=PE. 求证:点P在∠AOB的平分线上
如图,△ABC的角平分线
BM,CN相交于点P。求证:点P到三边
AB、BC、CA的距离相等
A
证明:过点P作PD⊥PE⊥论B:C于三E,角PF形⊥A的C于三F,条角平分线交于
一∵B点M是,△并ABC且的这角平点分到线,三B点边P在的BM距上,离E 相等C.
人教版八年级数学上册角平分线的性质(含答案)

角平分线的性质一、选择题1.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个2.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG ⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BG C.AE=CE D.AF=FD3.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定4.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25° B.30° C.35° D.40°5.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G.下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠CGE =2∠DFB.其中正确的结论是()A.只有①③B.只有①③④C.只有②④D.①②③④6.如图,BD为∠ABC的角平分线,且BD=BC,E为BD的延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①∠ABE=∠ACE;②∠BCE+∠BCD=180°;③AE=EC;④BE+BD=2BF,其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题7.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC的面积= .8.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S=7,DE=2,AB=4,则AC长是.△ABC9.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.10.如图,在△ACB中,∠C=90°,∠CAB与∠CBA的角平分线交于点D,AC=3,BC=4,则点D到AB的距离为.三、解答题11.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.12.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.参考答案1.答案为:A;2.B3.C4.C5.B6.答案为:D.7.答案为:50.8.答案为3.9.答案为:2.10.答案为:1.11.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B12.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.。
八年级数学人教版上册同步练习角的平分线的性质(原卷版)

12.3角的平分线的性质一、单选题1.如图①,已知ABC ∠,用尺规作它的角平分线.如图②,步骤如下:第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步;画射线BP ,射线BP 即为所求.下列叙述不正确的是( )A .0a >B .作图的原理是构造SSS 三角形全等C .由第二步可知,DP EP =D .12b DE <的长 2.如图,Rt ABC 中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于G .若2CG =.P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .1C .2D .43.如图,Rt △ABC 中,∠C =90°,用尺规分别截取BE ,BD ,使BE =BD ,分别以D 、E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .24.如图,//,AF CD CB 平分,ACD BD ∠平分EBF ∠,且BC BD ⊥,下列结论:①BC 平分ABE ∠,②//AC BE ;③90BCD D ∠+∠=︒;④2DBF ABC ∠=∠.其中正确的个数为( )A .4个B .3个C .2个D .1个5.如图,在Rt ABC 中,90C ∠=︒,AD 平分CAB ∠,DE AB ⊥于E ,则下列结论中,不正确的是( )A .DE 平分ADB ∠ B .BD ED BC += C .AD 平分EDC ∠ D .ED AC AD +>6.如图,在Rt ABC 中,90,B AD ∠=︒平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若1BD =,则DE 的长为( )A .12B .1C .2D .67.如图,//AB CD ,CE 平分ACD ∠交AB 于点E ,EG 平分BEF ∠交CD 于点G ,若90CEG ∠=︒,则下列结论:①EC 平分AEF ∠;②//EF AC ;③180EFG A ∠+∠=︒;④12EGC A ∠=∠.其中正确的有( )A .1个B .2个C .3个D .4个8.如图,在四边形ABCD 中,∠A =∠BDC =90°,∠C =∠ADB ,点P 是BC 边上的一动点,连接DP ,若AD =4,则DP 的长不可能是( )A .6B .5C .4D .3二、填空题目 9.如图,已知AB ∥CD ,∠BFC =127°4',观察图中尺规作图的痕迹,可知∠BCD 的度数为_____.10.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(a +2b ,a +1),则a +b =________.11.我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比Ω”(1Ω≥),那么三边长分别为7,24,25的三角形的最小角割比Ω是______. 12.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.13.如图所示,已知AOB ∠,求作射线OC ,使OC 平分AOB ∠,作法的合理顺序是__.(将①②③重新排列)①作射线OC ;②以O 为圆心,任意长为半径画弧交OA 、OB 于D 、E ;③分别以D 、E 为圆心,大于12DE 的长为半径作弧,在AOB ∠内,两弧交于点C .14.如图,在Rt △ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB ,垂足为D ,其中CE =4.5,AB =10,那么△ABE 的面积为_____.三、解答题15.如图AOB ∠是一个锐角.(1)用尺规作图法作出AOB ∠的平分线OC ;(2)若点P 是OC 上一点,过点P 作PD OA ⊥于点D ,PE OB ⊥于点E ,求证:OD OE =. 16.如图,已知//58AM BN A ∠=︒,,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点C ,D .(1)①ABN ∠的度数是_______度;②∵//AM BN ,∴ACB ∠=∠________.(2)求CBD ∠的度数.(3)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律.17.如图,将ABC 绕点A 按逆时针方向旋转DAC ∠的度数得到AED .(1)尺规作图:确定AED 的顶点E 的位置(保留作图痕迹,不写作法与证明过程);(2)连接AE ,DE ,设BC 的延长线交DE 于点G ,连接AG .求证:AG 平分DGB ∠.18.如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交边AB ,BC 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的相同长度为半径作弧,两弧交于点F ; ③作射线BF 交AC 于点G .(1)根据上述步骤补全作图过程(要求:规作图,不写作法,保留作图痕迹);(2)如果8AB =,12BC =,那么ABG 的面积与CBG 的面积的比值是________.19.(1)如图1,ABC 中,ABC ∠的角平分线与ACB ∠的外角ACD ∠的平分线交于1A .当A ∠为80︒时,则为1A ∠的度数.(2)在(1)的条件下,若1A BC ∠的角平分线与1ACD ∠的角平分线交于2A ,2A BC ∠与A CD 2的平分线交于3A ,如此继续下去可得1A …,n A ,则6A ∠=______°;(3)如图2,四边形ABCD 中,F ∠为ABC ∠的角平分线及外角DCE ∠的平分线所在的直线构成的角,若230A D ∠+∠=︒,则F ∠=_________°;(4)如图3,ABC 中,ABC ∠的角平分线与ABC 的外角ACD ∠的平分线交于1A ,若E 为BA 延长线上一动点,连EC ,AEC ∠与ACE ∠的角平分线交于Q ,①求证1Q A ∠+∠的值为定值;②1Q A ∠-∠的值为定值.其中有且只有一个是正确的,请写出正确的结论 (填编号),并写出其值.20.如图,△ABC 中,∠C =90°,请按要求解决问题.(1)求作∠A 的平分线交BC 边于点D .(用尺规作图,保留作图痕迹,不写画法)(2)若AC =6,AB =10,求△ABD 的面积.21.如图所示,在ABC 中,AB AC =.(1)尺规作图:过点A 作ABC 的角平分线AD (不写作法,保留作图痕迹); (2)在AD 上任取一点E ,连接BE 、CE .求证:ABE ACE ∠∠. 22.如图,CA 平分∠BCD ,AB =AD ,AE ⊥BC ,AF ⊥CD ,垂足分别为E 、F . (1)若∠ABE =60°,求∠CDA 的大小;(2)若AE =2,BE =1,CD =3,求四边形AECD 的面积.祝福语祝你考试成功!。
人教版八年级上册数学课件12.3角平分线的性质3

OC,在OC 上任取一点P,过点P 画出OA,OB 的垂
线,分别记垂足为D,E,测量 PD,PE 并
作比较,你得到什么结论?
A
在OC 上再取几个点试一试. 通过以上测量,你发现了角
D
的平分线的什么性质?
C
P
O
E
B
求证经; 历实验过程,发现并证明角的平分线的性质
求证:PD =PE.
追问2 由角的平分线的性质的证明过程,你能概
经历实验过程,发现并证明角的平分线的性质
追问1 通过动手实验、观察比较,我们发现“角 经历实验过程,发现并证明角的平分线的性质
∴∠DOP=∠BOP(角平分线定义)
线.你能说明它的道理吗?
的平分线上的点到角的两边的距离相等”,你能通过严 求证:PD =PE.
受到哪些启发?如何利用直尺和圆规作一个角的平分线?
在△OPD和△OPE 中
格的逻辑推理证明这个结论吗? 边放下,沿AC 画一条射线AE,AE 就是∠DAB 的平分
CA=CA(公共边)
追问2 由角的平分线的性质的证明过程,你能概
受到哪些启发?如何利用直尺和圆规作一个角的平分线?
追问3 角的平分线的性质的作用是什么?
已知:如图,OC平分∠AOB, 追问3 角的平分线的性质的作用是什么?
追问4 你能说明为什么射线OC 是∠AOB 的平分线吗?
如图,任意作一个角∠AOB,作出∠A的平分线
(3)经过分析,找出由已知推出求证的途径,写出证 在△ACD和△ACB中
D
B
问题2 利用尺规我们可以作一个角的平分线,那
格的逻辑推理证明这个结论吗?
证明:∵ OC平分∠AOB, P是OC上一点(已知)
E
【微专题】2023学年八年级数学上册常考点提分精练(人教版) 角平分线与全等三角形结合(解析版)
角平分线与全等三角形结合1.如图 A B 两点分别在射线OM ON 上 点C 在MON ∠的内部且CA CB = CD OM ⊥ CE ON ⊥ 垂足分别为D E 且AD BE =.(1)求证:OC 平分MON ∠;(2)如果10AO = 4BO = 求OD 的长.【答案】(1)见解析(2)7【解析】【分析】(1)证明Rt △ACD ≌Rt △BCE (HL ) 得CD =CE .再由角平分线的判定即可得出结论;OC 平分∠MON ;(2)证Rt △ODC ≌Rt △OEC (HL ) 得OD =OE 设BE =AD =x .则OE =OD =4+x 再由AO =OD +AD =4+2x =10 得x =3.即可得出答案.(1)证明:∵CD OM ⊥ CE ON ⊥∴90CDA CEB ∠=∠=︒.在Rt ACD △与Rt BCE 中 CA CB AD BE =⎧⎨=⎩∴Rt ACD △≌Rt BCE (HL )∴CD CE =.又∵CD OM ⊥ CE ON ⊥∴OC 平分MON ∠.(2)解:在Rt ODC △与Rt OEC △中 CD CE OC OC =⎧⎨=⎩∴Rt ODC △≌Rt OEC △(HL )∴OD OE =设BE AD x ==.∵4BO = ∴4OE OD x ==+∵AD BE x == ∴4210AO OD AD x =+=+=∴3x = ∴437OD =+=.【点睛】本题考查了全等三角形的判定与性质、角平分线的判定等知识 证明Rt △ACD ≌Rt △BCE 和Rt △ODC ≌Rt △OEC 是解题的关键.2.已知∠MAN AC 平分∠MAN D 为AM 上一点 B 为AN 上一点.(1)如图①所示 若∠MAN =120° ∠ABC =∠ADC =90° 求证:AB +AD =AC ;(2)如图②所示 若∠MAN =120° ∠ABC +∠ADC =180° 则(1)中的结论是否仍然成立?请说明理由.【答案】(1)见解析;(2)成立 见解析【解析】【分析】(1)根据AC 平分∠MAN 可得CB =CD ∠CAB =60° 即可证明RT △ACD ≌RT △ACB 可得AD =AB 再根据AC =2AB 即可解题;(2)根据AC 平分∠MAN 可得CB =CD ∠CAB =60° 易证∠FCD =∠BCE 即可证明△CDF ≌△CBE 可得BE =DF 再根据(1)中证明AC =AE +AF 即可解题.【详解】解:(1)证明:∵AC 平分∠MAN∴CB =CD ∠CAB =60°在Rt △ACD 和Rt △AC B 中AC AC CD CB =⎧⎨=⎩∴Rt △ACD ≌Rt △ACB (HL )∴AD =AB∵∠ACB =90°﹣∠CAB =30°∴AC =2AB∴AD +AB =AC ;(2)成立 过C 作CE ⊥AN 于E CF ⊥AM 于F∵AC 平分∠MAN∴CB =CD ∠CAB =60°∵∠ABC +∠ADC =180°∴∠DCB =60°∵∠FCE =180°﹣∠BAD =60°∴∠FCE =∠BCD∵∠FCD +∠DCE =∠FCE ∠BCE +∠DCE =∠BCD∴∠FCD =∠BCE在△CDF 和△CBE 中90FCD BCE CF CE CFD CEB ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△CDF ≌△CBE (ASA )∴BE =DF∴AD +AB =AD +AE +BE =AD +DF +AE =AE +AF∵AC =AE +AF∴AD +AB =A C .【点睛】本题考查了全等三角形的判定和性质 考查了全等三角形对应边相等的性质 本题中求证△CDF ≌△CBE 是解题的关键.3.如图:在直角△AB C 中 ∠ABC =90° 点D 在AB 边上 连接C D .(1)如图1 若CD 是∠ACB 的角平分线 且AD =CD 探究BC 与AC 的数量关系 说明理由; (2)如图2 若BC =BD BF ⊥AC 于点F 交CD 于点G 点E 在AB 的延长线上且AD =BE 连接GE 求证:BG +EG =A C .【答案】(1)12BC AC =理由见解析;(2)见解析 【解析】【分析】 (1)如图1 过点D 作DM AC ⊥于点M 证明()Rt CDM Rt CDB HL ≌ 由全等三角形的性质得出CM CB = 则可得出结论;(2)作DK AB ⊥交BF 的延长线于点K 证明()Rt CAB Rt BKD AAS ≌ 得出BK AC = DK AB = 证明()DKG DEG SAS ∆≅∆ 得出KG EG = 则结论可得出.【详解】解:(1)12BC AC =. 理由如下:如图1 过点D 作DM AC ⊥于点MAD CD =M ∴为AC 的中点12CM AM AC ∴== CD 平分ACB ∠DM DB ∴=在Rt CDM 和Rt CDB 中CD CD DM DB=⎧⎨=⎩ ()Rt CDM Rt CDB HL ∴≌CM CB ∴=12BC AC ∴=; (2)证明:如图2 作DK AB ⊥交BF 的延长线于点KBF AC ⊥90AFK ∴∠=︒A K ∴∠=∠又90BDK ABC ∠=∠=︒ BC BD =()Rt CAB Rt BKD AAS ∴≌BK AC ∴= DK AB =AD BE =AD BD BE BD ∴+=+即AB DE =DK DE ∴=又DB BC = 90ABC ∠=︒45CDB ∴∠=︒45KDG EDG ∴∠=∠=︒又DG DG =()DKG DEG SAS ∴∆≅∆KG EG ∴=AC BK KG BG EG BG ∴==+=+.【点睛】本题考查了全等三角形的判定与性质 角平分线的性质 等腰三角形的性质 等腰直角三角形的性质等知识 解题的关键是熟练掌握全等三角形的判定与性质.4.观察、猜想、探究:在△AB C 中 ∠ACB =2∠B .(1)如图① 当∠C =90° AD 为∠BAC 的角平分线时 过D 作AB 的垂线DE,垂足为E 可以发现AB 、AC 、CD 存在的数量关系是 ;(2)如图② 当∠C ≠90° AD 为∠BAC 的角平分线时 线段AB 、AC 、CD 是否还存(1)中的数量关系?如果存在 请给出证明.如果不存在 请说明理由;(3)如图③ 当AD 为△ABC 的外角平分线时 线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想 并对你的猜想给予证明.【答案】(1)AB =AC +CD ;(2)存在 理由见解析;(3)AB =CD ﹣AC 理由见解析【解析】【分析】(1)根据∠ACB =90° ∠ACB =2∠B 得到∠B =45° CD ⊥AC 由线段垂直平分线的性质可得DE =CD 再证明∠B =∠EDB 得到BE =ED =CD 最后证明Rt △AED ≌Rt △ACD 得到AE =AC 即可得到结论;(2)在AB 上截取AG =AC 证明△ADG ≌△ADC 得到CD =DG ∠AGD =∠ACB 再由∠ACB =2∠B 得到∠B =∠GDB 则BG =DG =DC 即可得到AB =BG +AG =CD +AC ;(3)在AF 上截取AG =AC 由AD 为∠F AC 的平分线 得到∠GAD =∠CAD 可证△ADG ≌△ACD 得到CD =GD ∠AGD =∠ACD 即可推出∠ACB =∠FGD 再由∠ACB =2∠B 推出∠B =∠GDB 得到BG =DG =DC 则AB =BG ﹣AG =CD ﹣A C .【详解】解:(1)AB =AC +CD 理由如下:∵∠ACB =90° ∠ACB =2∠B∴∠B =45° CD ⊥AC∵DE ⊥AB AD 平分∠BAC∴DE =CD ∠DEB =∠DEA =90°∴∠EDB =180°-∠B -∠DEB =45°∴∠B =∠EDB∴BE =ED =CD在Rt △AED 和Rt △AD C 中DE DC AD AD =⎧⎨=⎩∴Rt △AED ≌Rt △ACD (HL )∴AE =AC∴AB +AE +BE =AC +CD ;(2)还存在AB =CD +AC 理由如下:在AB 上截取AG =AC 如图2所示∵AD 为∠BAC 的平分线∴∠GAD =∠CAD∵在△ADG 和△AD C 中AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS )∴CD =DG ∠AGD =∠ACB∵∠ACB =2∠B∴∠AGD =2∠B又∵∠AGD =∠B +∠GDB∴∠B =∠GDB∴BG =DG =DC则AB =BG +AG =CD +AC ;(3)AB =CD ﹣AC 理由如下:在AF 上截取AG =AC 如图3所示∵AD 为∠F AC 的平分线∴∠GAD =∠CAD∵在△ADG 和△AC D 中AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ACD (SAS )∴CD =GD ∠AGD =∠ACD∵∠FGD =180°-∠AGD ∠ACB =180°-∠ACD∴∠ACB =∠FGD∵∠ACB =2∠B∴∠FGD =2∠B又∵∠FGD =∠B +∠GDB∴∠B =∠GDB∴BG =DG =DC则AB =BG ﹣AG =CD ﹣A C .【点睛】本题主要考查了全等三角形的性质与判定 角平分线的性质与定义 三角形外角的性质 三角形内角和定理 解题的关键在于能够熟练掌握全等三角形的性质与判定条件.5.已知:如图1 在ABC 中 AD 是BAC ∠的平分线.E 是线段AD 上一点(点E 不与点A 点D 重合) 满足2∠=∠ABE ACE .(1)如图2 若18∠=︒ACE 且EA EC = 则DEC ∠=________︒ AEB ∠=_______︒. (2)求证:AB BE AC +=.(3)如图3 若BD BE = 请直接写出ABE ∠和BAC ∠的数量关系.【答案】(1)36 126;(2)见解析;(3)3180∠+∠=︒ABE BAC【解析】【分析】(1)18∠=︒ACE 且EA EC = 再结合三角形的外角定理即可求DEC ∠ 18∠=︒ACE 且EA EC = AD 是BAC ∠的平分线 2∠=∠ABE ACE 再结合三角形内角和定理即可求解AEB ∠; (2)在AC 上截取AF AB = 连接FE 可证()≌AEF AEB SAS 故EF EB = AFE ABE 从而可得FEC FCE ∠=∠ 所以EF FC =进而可证得:=+=+AC AF FC AB BE (3)由BD BE = 可得BED BDE ∠=∠ BED ABE BAE ∠=∠+∠ ∠=∠+∠BDE DAC ACD 又AD 是BAC ∠的平分线 可得ABE ACD ∠=∠ 故CE 是ACD ∠的平分线 所以BE 是ABD ∠的平分线 故∠=∠=∠ABE ACD DBE 又180ACB ABC BAC ∠+∠+∠=︒ 所以ABE ∠和BAC ∠的数量关系即可求解.【详解】(1)∵18∠=︒ACE 且EA EC =∴∠EAC =∠ACE =18°∴∠DEC =∠EAC +∠ACE =36°又∵AD 是BAC ∠的平分线∴∠BAD =∠CAD =18°∵2∠=∠ABE ACE∴∠ABE =36°∴1801836126∠=︒-︒-︒=︒AEB ;故答案为:36 126(2)在AC 上截取AF AB = 连接FE又∵AE =AE EAF EAB ∠=∠∴()≌AEF AEB SAS∴EF EB = AFE ABE∵∠AFE =∠ACE +∠FEC ∠ABE =2∠ACE∴FEC FCE ∠=∠∴EF FC =∴=+=+AC AF FC AB BE ;(3)∵BD BE =∴BED BDE ∠=∠∵BED ABE BAE ∠=∠+∠ ∠=∠+∠BDE DAC ACD∠CAD =∠BAE∴∠ACD =∠ABE∵∠ABE =2∠ACE∴∠ACD =2∠ACE∴CE 平分∠ACB∴点E 到CA 、CB 的距离相等又∵AD 是BAC ∠的平分线∴点E 到AC 、AB 的距离相等∴点E 到BA 、BC 的距离相等∴BE 是ABD ∠的平分线∴∠ABE =∠CBE∴∠=∠=∠ABE ACD DBE又∵180ACB ABC BAC ∠+∠+∠=︒∴2180∠+∠+∠=︒ABE ABE BAC即3180∠+∠=︒ABE BAC .【点睛】本题考查了三角形外角的性质、三角形的内角和定理、角平分线的性质、三角形全等的判定和性质 解题的关键是熟练掌握各知识点 准确作出辅助线 熟练运用数形结合的思想.6.已知:如图 D 为△ABC 外角∠ACP 平分线上一点 且DA =DB DM ⊥BP 于点M .(1)若AC =6 DM =2 求△ACD 的面积;(2)求证:AC =BM +CM .【答案】(1)6;(2)见解析【解析】【分析】(1)如图作DN ⊥AC 于N .根据角平分线的性质定理可得DM =DN =2 由此即可解决问题; (2)由Rt △CDM ≌Rt △CDN 推出CN =CM 由Rt △ADN ≌Rt △BDM 推出AN =BM 由此即可解决问题.【详解】(1)解:如图作DN ⊥AC 于N .∵DC 平分∠ACP DM ⊥CP DN ⊥CA∴DM =DN =2∴S △ADC =12•AC •DN =12×6×2=6.(2)∵CD =CD DM =DN∴Rt △CDM ≌Rt △CDN∴CN =CM∵AD =BD DN =DM∴Rt △ADN ≌Rt △BDM∴AN =BM∴AC =AN +CN =BM +CM .【点睛】本题考查全等三角形的判定和性质、角平分线的性质定理等知识 解题的关键是学会添加常用辅助线 构造全等三角形解决问题 属于中考常考题型.7.如图 在∠EAF 的平分线上取点B 作BC ⊥AF 于点C 在直线AC 上取一动点P .在直线AE 上取点Q 使得BQ=BP .(1)如图1 当点P 在点线段AC 上时 ∠BQA +∠BP A = °;(2)如图2 当点P 在CA 延长线上时 探究AQ 、AP 、AC 三条线段之间的数量关系 说明理由; (3)在满足(1)的结论条件下 当点P 运动到在射线AC 上时 直接写出AQ 、AP 、PC 三条线段之间的数量关系为: .【答案】(1)180;(2)2AQ AP AC -=;理由见解析;(3)2AQ AP PC -=或2AP AQ PC -=.【解析】【分析】(1)作BM ⊥AE 于点M 根据角平分线的性质得到BM =BC 证明Rt BMQ ∆Rt ()BPC HL ∆≌,继而证明BQA BPC ∠=∠解题即可;(2)作BM AE ⊥于M 先证明Rt Rt ABM ABC ∆∆≌(HL ) 继而得到ABM ABC ∠=∠ AM AC = BM BC = 再证明Rt Rt BMQ BCP ∆∆≌(HL ) 从而得到PC QM = 据此解题即可;(3)分两种情况讨论 当点P 在线段AC 上时 或当点P 在线段AC 的延长线上时 分别画出适合的图 再由QBM PBC ∆∆≌(AAS )可得QBM PBC ∠=∠ QM PC = BM BC = 再由Rt Rt ABM ABC ∆∆≌(HL )可得AM AC = 利用线段和差计算即可.【详解】(1)证明:过点B 作BM AE ⊥于M∵BA 平分EAF ∠ BC AF ⊥∴BM BC =在Rt BMQ ∆和Rt BPC ∆中BQ BP BM BC =⎧⎨=⎩∴Rt Rt BMQ BPC ∆∆≌(HL )∴BQA BPC ∠=∠又∵180BPC BPA ∠+∠=︒∴180BQA BPA ∠+∠=︒故答案为180;(2)解:2AQ AP AC -=理由如下:如图2 作BM AE ⊥于M∵AB 平分∠EAF BC AF ⊥∴BM =BC 90BMA BCA ∠=∠=︒在Rt ABM ∆和Rt ABC ∆中BM BC AB AB=⎧⎨=⎩ ∴Rt Rt ABM ABC ∆∆≌(HL )∴ABM ABC ∠=∠ AM AC =在Rt BMQ ∆和Rt BCP ∆中BQ BP BM BC =⎧⎨=⎩∴Rt Rt BMQ BCP ∆∆≌(HL )∴PC QM =∴()()2AQ AP AM QM PC AC AM AC AC -=+--=+=(3)当点P 在线段AC 上时 如图 2AQ AP PC -=理由如下:作BM AE ⊥于M∵BC ⊥AF∴90BMA BCA ∠=∠=︒∵180BQA BPA ∠+∠=︒ ∠BPC +∠BP A =180°∴∠BPC =∠BQM在QBM ∆和PBC ∆中BMQ BCP BQM BPC QB PB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴QBM PBC ∆∆≌(AAS )∴QBM PBC ∠=∠ QM PC = BM BC =在Rt ABM ∆和Rt ABC ∆中BM BC AB AB =⎧⎨=⎩∴Rt Rt ABM ABC ∆∆≌(HL )∴AM AC =∴()2AQ AP AM QM AC PC QM PC PC -=+--=+=当点P 在线段AC 的延长线上时 如图 2AP AQ PC -=理由如下:作BM AE ⊥于M∵BC ⊥AF∴90BMA BCA ∠=∠=︒∵180BQA BPA ∠+∠=︒ ∠BQM +∠BQA =180°∴∠BPC =∠BQM在QBM ∆和PBC ∆中BMQ BCPBQM BPCQB PB∠=∠⎧⎪∠=∠⎨⎪=⎩∴QBM PBC ∆∆≌(AAS )∴QBM PBC ∠=∠ QM PC = BM BC =在Rt ABM ∆和Rt ABC ∆中BM BCAB AB =⎧⎨=⎩∴Rt Rt ABM ABC ∆∆≌(HL )∴AM AC =∴()2AP AQ AC CP AM QM MQ PC PC -=+--=+=故答案为:2AQ AP PC -=或2AP AQ PC -=.【点睛】本题考查全等三角形的判定与性质 角平分线性质 分类讨论思想等知识 掌握相关知识利用辅助线画出准确图形是解题关键.8.如图 在ABC 中 BAD DAC ∠=∠ DF AB ⊥ DM AC ⊥ 10AF cm = 14AC cm = 动点E 以2/cm s 的速度从A 点向F 点运动 动点G 以1/cm s 的速度从C 点向A 点运动 当一个点到达终点时 另一个点随之停止运动 设运动时间为t .(1)CM = :AE CG = ;(2)当t 取何值时 DFE △和DMG △全等;(3)在(2)的前提下 若:119:126BD DC = 228cm AED S =△ 求BFD S .【答案】(1)4 2;(2)143;(3)293cm 2.【解析】【分析】(1)根据角平分线的性质可证Rt △AFD ≌Rt △AMD 得AF =AM 从而求出即可;(2)分两种情况进行讨论:①当0<t <4时 ②当4≤t <5时 分别根据△DFE ≌△DMG 得出EF =GM 据此列出关于t 的方程 进行求解即可.(3)利用等高三角形的面积比等于对应底的比 即可求得答案.【详解】(1)∵∠BAD =∠DAC DF ⊥AB DM ⊥AC ∴DF =DM在Rt △AFD 和Rt △AM D 中DF DMAD AD =⎧⎨=⎩∴Rt △AFD ≌Rt △AMD (HL );∴10AF AM cm ==14104CM AC AM cm ∴=-=-=2AE t = CG t = :2AE CG ∴=(2)①当0<t <4时 点G 在线段CM 上 点E 在线段AF 上.EF =10﹣2t MG =4﹣t∴10﹣2t=4﹣t∴t=6(不合题意舍去);②当4<t<5时点G在线段AM上点E在线段AF上.EF=10﹣2t MG=t﹣4∴10﹣2t=t﹣4∴t=143;综上所述当t=143时△DFE与△DMG全等;(3)∵t=14 3∴AE=2t=28 3∵DF=DM∴S△ABD:S△ACD=AB:AC=BD:CD=119:126 ∵AC=14∴AB=119 9∴BF=AB﹣AF=1199﹣10=299∵S△ADE:S△BDF=AE:BF=283:299S△AED=28cm2∴S△BDF=293cm2.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、三角形的面积公式以及动点问题解题的难点在于第二问中求运动的时间此题容易漏解和错解.9.在平面直角坐标系中A(﹣3 0)、B(0 7)、C(7 0)∠ABC+∠ADC=180° BC⊥C D.(1)如图1①求证:∠ABO=∠CAD;②AB与AD是否相等?请说明理由;(2)如图2 E为∠BCO的邻补角的平分线上的一点且∠BEO=45° OE交BC于点F求BF 的长.【答案】(1)①见解析;②AB=AD见解析;(2)7【解析】【分析】(1)根据四边形的内角和定理、直角三角形的性质证明;(2)过点A作AF⊥BC于点F作AE⊥CD的延长线于点E△ABF≌△ADE得到AB=AD(3)过点E作EH⊥BC于点H作EG⊥x轴于点G根据角平分线的性质得到EH=EG证明△ABF ≌△ADE得到EB=EO根据等腰三角形的判定定理解答.【详解】证明:①在四边形ABC D中∵∠ABC+∠ADC=180°∴∠BAD+∠BCD=180°∵BC⊥CD∴∠BCD=90°∴∠BAD=90°∴∠BAC+∠CAD=90°∵∠BAC+∠ABO=90°∴∠ABO=∠CAD;解:②AB=AD如图:过点A 作AF ⊥BC 于点F 作AE ⊥CD 的延长线于点E ∵B (0 7) C (7 0)∴OB =OC∴∠BCO =45°∵BC ⊥CD∴∠BCO =∠DCO =45°∵AF ⊥BC AE ⊥CD∴AF =AE ∠F AE =90°∴∠BAF =∠DAE在△ABF 和△ADE 中BAF DAE AF AEAFB AED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF ≌△ADE (ASA )∴AB =AD(3)过点E 作EH ⊥BC 于点H 作EG ⊥x 轴于点G∵E 点在∠BCO 的邻补角的平分线上∴EH =EG∵∠BCO =∠BEO =45°∴∠EBC =∠EOC在△EBH 和△EOG 中EBH EOG EHB EGO EH EG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EBH ≌△EOG (AAS )∴EB =EO∵∠BEO =45°∴∠EBO =∠EOB =67.5° 又∠OBC =45°∴∠BOE =∠BFO =67.5°∴BF =BO =7.【点睛】本题考查的是全等三角形的判定和性质、角平分线的性质 掌握全等三角形的判定定理和性质定理是解题的关键.10.如图所示 直线AB 交x 轴于点A (a 0) 交y 轴于点B (0 b )且a 、b2(4)0a -= C 的坐标为(﹣1 0) 且AH ⊥BC 于点H AH 交OB 于点P .(1)如图1 写出a 、b 的值 证明△AOP ≌△BOC ;(2)如图2 连接OH 求证:∠OHP =45°;(3)如图3 若点D 为AB 的中点 点M 为y 轴正半轴上一动点 连接MD 过D 作DN ⊥DM 交x 轴于N 点 当M 点在y 轴正半轴上运动的过程中 求证:S △BDM ﹣S △ADN =4.【答案】(1)a =4 b =﹣4 见解析;(2)见解析;(3)见解析【解析】【分析】(1)先依据非负数的性质求得a 、b 的值从而可得到OA OB = 然后再90COB POA ∠=∠=︒OAP OBC ∠=∠ 最后 依据ASA 可证明OAP OBC ∆∆≌;(2)要证45OHP ∠=︒ 只需证明HO 平分CHA ∠ 过O 分别作OM CB ⊥于M 点 作ON HA ⊥于N 点 只需证到OM ON = 只需证明COM PON ∆∆≌即可;(3)连接OD 易证ODM ADN ∆∆≌ 从而有ODM ADN S S ∆∆= 由此可得12BDM ADN BDM ODM BOD AOB S S S S S S ∆∆∆∆∆∆-=-==. 【详解】(1)解:2(4)0a -=0a b ∴+= 40a -=4a ∴= 4b =-则4OA OB ==.AH BC ⊥即90AHC ∠=︒ 90COB ∠=︒90HAC ACH OBC OCB ∴∠+∠=∠+∠=︒HAC OBC ∴∠=∠.在OAP ∆与OBC ∆中90COB POA OA OBOAP OBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()OAP OBC ASA ∴∆∆≌;(2)证明:过O 分别作OM CB ⊥于M 点 作ON HA ⊥于N 点.在四边形OMHN 中 36039090MON ∠=︒-⨯︒=︒90COM PON MOP ∴∠=∠=︒-∠.OAP OBC ∆∆≌OC OP ∴=在COM ∆与PON ∆中90COM PON OMC ONP OC OP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()COM PON AAS ∴∆∆≌OM ON ∴=.OM CB ⊥ ON HA ⊥HO ∴平分CHA ∠1452OHP CHA ∴∠=∠=︒; (3)证明:如图:连接OD .90AOB ∠=︒ OA OB = D 为AB 的中点OD AB ∴⊥ 45BOD AOD ∠=∠=︒ OD DA BD ==45OAD ∴∠=︒ 9045135MOD ∠=︒+︒=︒135DAN MOD ∴∠=︒=∠.MD ND ⊥即90MDN ∠=︒90MDO NDA MDA ∴∠=∠=︒-∠.在ODM ∆与ADN ∆中MDO NDA DOM DAN OD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ODM ADN ASA ∴∆∆≌ODM ADN S S ∆∆∴=.11114442222BDM ADN BDM ODM BOD AOB S S S S S S AO BO ∆∆∆∆∆∆∴-=-===⨯⋅=⨯⨯⨯=. 【点睛】本题是一次函数综合题 考查了全等三角形的判定与性质、等腰直角三角形的性质、角平分线的判定、二次根式及完全平方式的非负性等知识 在解决第(3)小题的过程中还用到了等积变换而运用全等三角形的性质则是解决本题的关键.11.在△AB C 中 ∠BAC =90° AB =A C .(1)如图1 若A 、B 两点的坐标分别是A (0 4) B (﹣2 0) 求C 点的坐标;(2)如图2 作∠ABC 的角平分线BD 交AC 于点D 过C 点作CE ⊥BD 于点E 求证: BD =2CE【答案】(1)(4 2);(2)证明过程见解析【解析】【分析】(1)作CM ⊥OA 垂足为M 证明△ABO ≌△CAM 即可得解;(2)延长CE 、BA 相交于点F 证明△ABD ≌△ACF (ASA ) 得到BD =CF 证明△BCE ≌△BFE (ASA ) 即可得解;【详解】(1)作CM ⊥OA 垂足为M∵∠AOB =∠BAC =90°∴∠BAO +∠CAM =90° ∠BAO +∠ABO =90°∴∠ABO =∠CAM在ABO 和CAM 中AOB CMA ABO CAM AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△CAM∴MC =AO =4 AM =BO =2 MO =AO -AM =2∴点C 坐标(4 2);(2)如图2 延长CE 、BA 相交于点F∵∠EBF+∠F =90° ∠ACF+∠F =90°∴∠EBF =∠ACF在ABD △和ACF 中ABD ACF AB ACBAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD ≌△ACF (ASA )∴BD=CF在BCE 和BFE △中CBE FBE BE BEBEF BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BCE ≌△BFE (ASA )∴CE =EF∴BD =CF =2 CE .【点睛】本题主要考查了全等三角形的判定与性质 角平分线的性质 准确分析证明是解题的关键. 12.如图1 点A 、D 在y 轴正半轴上 点B 、C 分别在x 轴上 CD 平分∠ACB 与y 轴交于D 点 ∠CAO +∠BDO =90°.(1)求证:AC =BC ;(2)如图2 点C 的坐标为(6 0) 点E 为AC 上一点 且∠DEA =∠DBO 求BC +EC 的值;(3)如图3 过D 作DF ⊥AC 于F 点 点H 为FC 上一动点 点G 为OC 上一动点 当H 在FC 上移动、点G 在OC 上移动时 始终满足∠GDH =∠GDO +∠FDH .试判断FH 、GH 、OG 这三者之间的数量关系 写出你的结论并加以证明.【答案】(1)证明见解析;(2)BC +EC =12;(3)GH =FH +OG 证明见解析.【解析】【分析】(1)由题意∠CAO +∠BDO =90° 可知∠CAO =∠CBD 再结合CD 平分∠ACB 所以可由AAS 定理证明△ACD ≌△BCD 由全等三角形的性质可得AC =BC ;(2)过D 作DN ⊥AC 于N 点 可证明Rt △BDO ≌Rt △EDN 、△DOC ≌△DNC 因此 BO =EN 、OC =NC 所以 BC +EC =BO +OC +NC -NE =2OC 即可得BC +EC 的长;(3)在x 轴的负半轴上取OM =FH 可证明△DFH ≌△DOM 、△HDG ≌△MDG 因此 MG =GH 所以 GH =OM +OG =FH +OG 即可证明所得结论.【详解】(1)证明:∵x 轴⊥y 轴∴∠CBD +∠BDO =90°∵∠CAO +∠BDO =90°∴∠CAO =∠CB D .∵CD 平分∠ACB∴ACD BCD ∠=∠在△ACD 和△BC D 中ACD BCD CAO CBD CD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCD (AAS ).∴AC =BC AD =DE ;(2)解:由(1)知∠CAD =∠DEA =∠DBO∴BD =AD =DE过D 作DN ⊥AC 于N 点 如右图所示:∵∠ACD =∠BCD∴DO =DN在Rt △BDO 和Rt △EDN 中BD DE DO DN=⎧⎨=⎩ ∴Rt △BDO ≌Rt △EDN (HL )∴BO =EN .在△DOC 和△DN C 中90DOC DNC OCD NCD DC DC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△DOC ≌△DNC (AAS )可知:OC =NC ;∴BC +EC =BO +OC +NC -NE =2OC =12;(3)GH =FH +OG .证明:由(1)知:DF =DO在x 轴的负半轴上取OM =FH 连接DM 如图所示: 在△DFH 和△DOM 中90DF DO DFH DOM OM FH ︒=⎧⎪∠=∠=⎨⎪=⎩∴△DFH ≌△DOM (SAS ).∴DH =DM ∠1=∠ODM .∴∠GDH =∠1+∠2=∠ODM +∠2=∠GDM . 在△HDG 和△MDG 中DH DMGDH GDM DG DG=⎧⎪∠=∠⎨⎪=⎩ ∴△HDG ≌△MDG (SAS ).∴MG =GH∴GH =OM +OG =FH +OG .【点睛】本题考查坐标与图形 全等三角形的性质和判定 角平分线的性质.能正确作出辅助线构造全等三角形是解题关键.。
人教版八年级数学上册-中线与角平分线、中线与角平分线
11.1.2 三角形的高、中线与角平分线教学目标认识三角形的高、中线与角平分线.会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于点. 重点、难点1.重点:(1)了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.(2)了解三角形的三条高、三条中线与三条角平分线分别交于一点. 2.难点:(1)三角形平分线与角平分线的区别,三角形的高与垂线的区别.(2)不同的三角形三条高的位置关系. 教学过程 一、 看一看三角形按边分可以,分成几类?按角分呢? (1)三角形按边分类如下:三角形 不等三角形 等腰三角形 底和腰不等的等腰三角形 等边三角形 (2)三角形按角分类如下:三角形 直角三角形 斜三角形 锐角三角形 钝角三角形把下面图表投影出来:⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩仔细观察投影表中的内容,并回答下面问题.(1)什么叫三角形的高?三角形的高与垂线有何区别和联系?(2)什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?(3)什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系?三角形的高、中线和角平分线是代表线段而不是射线或直线注意区别!!三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.二、做一做1.在练习本上画出三角形,并在这个三角形中画出它的三条高.三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部.2.在练习本上画三角形,并在这个三角形中画出它的三条中线.观察这三条中线的位置有何关系?。
人教版八年级数学上册12.3第2课时角的平分线的判定及性质的应用
上,且DC=EF,△BCD与△BEF的面积相等.求证: 4.如图,B是∠CAF内一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.
例2 如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD. (3)若BC=12,AD=13,求S△AMD.
1 2
S梯形ABCD.
∵S梯形ABCD=12 (CD+AB)·BC=12 ×13×12=78,
∴S△AMD=12 ×78=39.
ห้องสมุดไป่ตู้ 练习
1.教材P50 练习第2题. 2.如图,点P是∠MON内一点,PA⊥ON于点A, PB⊥OM于点B,且PA=PB.若∠MON=50°,C为OA 上一点且∠OPC=30°,则∠PCA的度数为( B ) A.50° B.55° C.60° D.80°
AB平分∠CAF. (3)若BC=12,AD=13,求S△AMD.
(1)若连接AM,则AM是否平分∠BAD?请证明你的结论;
∴∠BFD=∠CED=90°.
证∴ 明D如C证·下BM:=明过点EM:F作·BMN过E. ⊥A点D于点BE.作BM⊥AC于点M,BN⊥AF于点N.
(3) 我们能不能证明上面的结论?
(1)若连接AM,则AM是否平分∠BAD?请证明你的结论; 3-5,要在S区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路与铁路的交叉处500m,这个集贸市场应建于何处(在图上
标如出图它 12又的. 位∵置,比M例尺E为⊥1:200A00)D? ,∠B=90°,∴AM平分∠BAD;
∵S梯形ABCD= (CD+AB)·BC= ×13×12=78,∴S△AMD= ×78=39.
4.如图,B是∠CAF内一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.
人教版八年级数学上册《12-3 角的平分线的性质(第1课时)》课堂教学课件PPT初中公开课
人教版 数学 八年级 上册ABDCE下图是一个平分角的仪器,其中AB = AD ,BC =DC .将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是这个角的平分线,你能说明它的道理吗?导入新知3. 熟练地运用角平分线的性质解决实际问题.1. 学会角平分线的画法.2. 探究并认知角平分线的性质.素养目标在纸上画一个角,你能得到这个角的平分线吗? 用量角器度量,也可用折纸的方法. 如果把前面的纸片换成木板、钢板等,还能用对折的方法得到木板、钢板的角平分线吗?探究新知知识点 1角平分线的画法问题1:问题2:提炼图形如图,是一个角平分仪,其中AB=AD ,BC=DC .将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分线,你能说明它的道理吗?AB C(E )D其依据是SSS ,两全等三角形的对应角相等.问题3:【思考】如果没有此仪器,我们用数学作图工具,能实现该仪器的功能吗?ABO请大家找到用尺规作角的平分线的方法,并说明作图方法与仪器的关系.提示(1)已知什么?求作什么?(2)把平分角的仪器放在角的两边,仪器的顶点与角的顶点重合,且仪器的两边相等,怎样在作图中体现这个过程呢?(3)在平分角的仪器中,BC=DC ,怎样在作图中体现这个过程呢?(4)你能说明为什么OC 是∠AOB 的平分线吗?做一做ABMNCO 已知: ∠AOB.求作:∠AOB 的平分线.仔细观察步骤作角平分线是最基本的尺规作图,大家一定要掌握噢!作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N .(2)分别以点M ,N 为圆心,大于 MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C .(3)画射线OC .射线OC 即为所求.12半径小于MN 或等于MN ,可以吗?1212已知:平角∠AOB.求作:平角∠AOB 的角平分线.结论:作平角的平分线的方法就是过直线上一点作这条直线的垂线的方法.ABOC1. 操作测量:取点P 的三个不同的位置,分别过点P 作PD ⊥OA ,PE ⊥OB ,点D,E 为垂足,测量PD,PE 的长.将三次数据填入下表:2. 观察测量结果,猜想线段PD 与PE 的大小关系,写出结果:__________PD PE第一次第二次 第三次COBAPD=PE pDEOC 是∠AOB 的平分线,点P 是射线OC 上的任意一点.猜想:角的平分线上的点到角的两边的距离相等.角平分线的性质知识点 2已知:如图, ∠AOC= ∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E .求证:PD=PE .PA OB CDE证明:∵ PD ⊥OA ,PE ⊥OB ,∴ ∠PDO= ∠PEO=90 °.在△PDO 和△PEO 中,∠PDO= ∠PEO ,∠AOC = ∠BOC ,OP= OP ,∴ △PDO ≌△PEO (AAS).∴PD=PE .角的平分线上的点到角的两边的距离相等.验证猜想一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即1.明确命题中的已知和求证;2.根据题意,画出图形,并用数学符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.归纳总结u性质定理:角的平分线上的点到角的两边的距离相等. u应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离.u定理的作用:证明线段相等.u应用格式:∵OP 是∠AOB的平分线,∴PD = PE 推理的理由有三个,必须写完全,不能少了任何一个.PD⊥OA,PE⊥OB,BADO PEC判一判:(1)∵ 如下左图,AD 平分∠BAC (已知),∴ =,( )在角的平分线上的点到这个角的两边的距离相等BD CD ×B ADC(2)∵ 如上右图, DC ⊥AC ,DB ⊥AB (已知). ∴ = ,( )在角的平分线上的点到这个角的两边的距离相等BD CD ×B ADC缺少“垂直距离”这一条件缺少“角平分线”这一条件如图,在△ABC中,∠B,∠C的平分线交于点O,OD⊥AB 于点D,OE⊥AC于点E,则OD与OE的大小关系是( ) A. OD>OE B.OD=OEC. OD<OE D.不能确定B 巩固练习例1已知:如图,在△ABC 中,AD 是它的角平分线,且BD=CD ,DE ⊥AB ,DF ⊥AC .垂足分别为E ,F .求证:EB=FC.ABCDEF 证明: ∵AD 是∠BAC 的角平分线, DE ⊥AB ,DF ⊥AC ,∴ DE=DF , ∠DEB=∠DFC =90 °.在Rt △BDE 和 Rt △CDF 中,DE=DF ,BD=CD ,∴ Rt △BDE ≌ Rt △CDF (HL).∴ EB=FC .探究新知角平分线的性质的应用素养考点 1如图,已知:OD 平分∠AOB ,在OA ,OB 边上取OA =OB ,PM ⊥BD ,PN ⊥AD ,垂足分别为M ,N.求证:PM =PN.证明:∵OD 平分∠AOB ,∠1=∠2,又∵OA =OB ,OD =OD ,∴△AOD ≌△BOD ,∴∠3=∠4,又∵PM ⊥DB ,PN ⊥DA ,∴PM =PN.(角平分线上的点到角两边的距离相等)巩固练习例2 如图,A M 是∠B A C 的平分线,点P 在A M 上,P D ⊥A B ,PE ⊥AC ,垂足分别是D,E ,PD=4cm ,则PE =______cm.BACP MDE4提示:存在两条垂线段——直接 应用.探究新知利用角平分线的性质求线段的长度素养考点 2AB CP 如图,在Rt △ABC 中,AC=BC ,∠C =90°,AP 平分∠BAC 交BC 于点P ,若PC =4, AB =14.(1)则点P 到AB 的距离为_______.D4提示:存在一条垂线段——构造应用.巩固练习1.应用角平分线性质:存在角平分线涉及距离问题2.联系角平分线性质:面积周长条件利用角平分线的性质所得到的等量关系进行转化求解探究新知归纳总结如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )A.30°B.35°C.45°D.60°B解析:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°–∠ADC=70°.∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=12∠DAB=35°.N连接中考2.△ABC 中, ∠C=90°,AD 平分∠CAB ,且BC =8,BD =5,则点D 到AB 的距离是 .ABC D3E1. 如图,DE ⊥AB ,DF ⊥BG ,垂足分别是E ,F , DE =DF , ∠EDB= 60°,则 ∠EBF =度,BE = .60BF EBDFACG 基础巩固题3. 用尺规作图作一个已知角的平分线的示意图如图所示,则能说明∠AOC=∠BOC 的依据是()A.SSS B.ASA C.AASD.角平分线上的点到角两边的距离相等AB MCOA4.如图,OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,下列结论中错误的是( )A.PC =PD B. OC =OD C. ∠CPO =∠DPO D. OC =PCD 5. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是( )A .6 B .5 C .4 D .3D BC EADFEA68101. 在Rt △ABC 中,BD 平分∠ABC ,DE ⊥AB 于E ,则:(1)哪条线段与DE 相等?为什么?(2)若AB =10,BC =8,AC =6,求BE ,AE 的长和△AED 的周长.解:(1)DC=DE .理由如下:角平分线上的点到角两边的距离相等.(2)在Rt △CDB 和Rt △EDB 中,DC=DE ,DB=DB ,∴Rt △CDB ≌Rt △EDB (HL),∴BE =BC =8.∴ AE =AB–BE =2.∴△AED 的周长=AE+ED+DA=2+6=8.能力提升题CD2.如图所示,D 是∠ACG 的平分线上的一点.DE ⊥AC ,DF ⊥CG ,垂足分别为E ,F . 求证:CE =CF .证明:∵CD 是∠ACG 的平分线,DE ⊥AC ,DF ⊥CG ,∴DE =DF .在Rt △CDE 和Rt △CDF 中,∴Rt △CDE ≌Rt △CDF (HL),∴CE =CF .,,=⎧⎨=⎩CD CD DE DF如图,已知AD ∥BC ,P 是∠BAD 与∠ABC 的平分线的交点,PE ⊥AB 于E ,且PE=3,求AD 与BC之间的距离.解:过点P 作MN ⊥AD 于点M ,交BC 于点N.∵ AD ∥BC ,∴ MN ⊥BC ,MN 的长即为AD 与BC 之间的距离.∵ AP 平分∠BAD , PM ⊥AD , PE ⊥AB ,∴ PM= PE .同理, PN= PE .∴ PM= PN= PE=3.∴ MN=6.即AD 与BC 之间的距离为6.拓广探索题角平分线尺规作图属于基本作图,必须熟练掌握性质定理一个点:角平分线上的点;二距离:点到角两边的距离;两相等:两条垂线段相等辅助线添加过角平分线上一点向两边作垂线段课堂小结为证明线段相等提供了又一途径课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习谢谢观看 Thank You。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的平分线的性质
广州市第21中学 数学科 黄艳筠
教学目标
知识与技能 1. 会用尺规作已知角的平分线.. 2. 能够利用三角形全等,证明角平分线的性质和判定
3.能利用角平分线性质进行简单的计算和推理,
解决一些实际问题.
过程与方法 经历探索、猜想、证明的过程,进一步发展学生
的推理证明意识和能力.
情感态度价值观
在探讨作角的平分线的方法及角的平分线的性
质的过程中,培养学生探究问题的兴趣,增强解
决问题的信心,获得解决问题的成功体验,逐步
培养学生的理性精神
教学重点 角平分线画法、性质.
教学难点 角的平分线的性质的探究
教学准备 平分角的仪器(自制)三角尺、多媒体课件等.
教学过程(师生活动) 设计理念与解析
一、创设情境,导入新课 1.在纸上任意画一个角,用剪刀剪下,用折纸的方法,如何确定角的平分线? 2. 有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD的平分线,为什么? 复习旧知识,回忆角的平分线的定义 让学生体验利用证明三角形全等的方法来
对画法做出说明.
要求学生能说明所作
的射线是角平分线的
理由.
二、探索新知,建立模型 探究1. (1)从上面对平分角的仪器的探究中,可以得出作已知角的平分线的方法。已知什么?求作什么? 【已知:∠AOB 求作:∠AOB的平分线】 (2)把简易平分角的仪器放在角的两边.且平分角的仪器两边相等,从几何角度怎么画? 【以点O为圆心,适当长为半径画弧,交OA 从实验中抽象出几何模型,明确几
何作图的基本思路和
方法.
于点M,交OB于点N.】 (3) 简易平分角的仪器BC=DC,从几何角度如何画 【分别以点M,N为圆心,大于二分之一MN长为半径画弧,两弧在角的内部交于点C. (4)OC与简易平分角的仪器中,AE是同一条射线吗? 【是】 (5)你能说明OC是∠AOB的平分线吗? 【提示:利用全等的性质】 探究2. (1)在已画好的角的平分线OC上任意找一点P,过P点分别作OA、OB的垂线交OA、OB于M、N, PM、PN的长度是∠AOB的平分线上一点到∠AOB两边的距离。量出它们的长度,你发现了什么? ABCPMNO 【多媒体课件动态演示(可用“几何画板”制作),当拖动∠AOB平分线OC上的点P时,观察PM、PN(PM⊥OA,PN⊥OB)度量值的变化规律. 探究结果后可得到:当PM⊥OA,PN⊥OB时,有PM=PN (2)你能归纳角的平分线的性质吗? 角的平分线上的点到角的两边的距离相等 (3)你能用三角形全等证明这个性质吗? (4) 角平分线的性质定理及其数学语言表示。 【性质定理】:角的平分线上的点到角的两边的距离相等。
培养学生运用
直尺和圆规作已知角
的平分线的能力.
让学生体验成
功
在已有成功经验的基
础上,继续探究与应
用,提升分析解决问
题的能力并增进运用
数学的情感体验.
【性质定理的数学语言表述】: ∵P在∠AOB平分线OC上,PM⊥OA,PN⊥OB ∴PM=PN (5)角平分线的性质定理成立条件辨识。
三、简单的
计算和推
理
思考1:
如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,
PE⊥OB,垂足分别是D,E,PD=4cm,则PE=______m.
解答
解:∵OC是∠AOB的角平分线,PD⊥OA,PE⊥OB,
∴PD=PE,即PE=4cm.
发展学生应用数学的
意识与能力
解析
根据角平分线的性质
进行解答,角平分线
的性质:角的平分线
上的点到角的两边的
距离相等,由此可知
PE=PD.
思考2:
如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=8cm,
BC=5,BD=3cm,则△ABD的面积为________cm
2
解:过点D作DE⊥AB于E,
∵BC=5,BD=3cm,
∴CD=BC-BD=5-3=2cm,
∵∠C=90°,AD平分∠BAC,
∴DE=CD=2cm,
∴△ABD的面积= AB•DE=21×8×2=8cm2
解析
过点D作DE⊥AB于
E,先求出CD的长,
再根据角平分线上的
点到角的两边的距离
相等可得DE=CD,然
后利用三角形的面积
公式列式计算即可得
解.
思考3:
如图,在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,
AB=13cm,∠CAB的平分线交BC于D,过点D作DE⊥AB
于E,则△BDE的周长为_________ cm.
解:∵AD是∠CAB的平分线,
∠C=90°,DE⊥AB,DE⊥AB
∴CD=DE,
在Rt△ACD和Rt△AED中,
DECD
ADAD
∴Rt△ACD≌Rt△AED(HL),
∴AE=AC=5cm,
∴BE=AB-AE=13-5=8cm,
∴△BDE的周长=BE+BD+CD=BE+BD+CD
=BE+BC=8+12=20cm.
解析
根据角平分线上的点
到角的两边距离相等
可得CD=DE,再利用
“HL”证明Rt△ACD
和Rt△AED全等,根
据全等三角形对应边
相等可得AC=AE,再
利用勾股定理列式求
出AB,然后求出BE,
最后根据三角形的周
长列式计算即可得
解.
思考4:
如图,△ABC中,AD是它的角平分线,P是AD上的
一点,2PE∥AB交BC于E,PF∥AC交BC于F.求证:
D到PE的距离与D到PF的距离相等.
证明:
如图所示,作DM∥PE于M,DN⊥PF于N.根据已知
的条件容易证得∠3=∠4,所以PD是∠EPF的平分
线,所以DM=DN,即D到PE的距离与D到PF的距
离相等.
解析
利用角平分线的性质
证明.
思考5:
如图,AD是∠BAC的平分线,DE⊥AB于E,
DF⊥AC于F,且DB=DC.求证:BE=CF.
证明:由角平分线的性质知DE=DF,又BD=CD,
得Rt△EBD≌Rt△FCD(HL),则BE=CF.
解析
利用角平分线的性质
证明.
四、应用与
拓展
思考6:
如图,BD是∠ABC的平分线,DE⊥AB,DF⊥BC,垂
足分别为E、F,S△ABC =36cm²,AB=18cm,BC=12cm,
求DE的长.
解答 解:∵BD是∠ABC的角平分线,DE⊥AB,DF⊥BC, ∴DE=DF, ∵S△ABC=36cm²,S△BCD= 12BC•DF, 又∵S△ABC=S△ABD+S△BCD,AB=18cm,BC=12cm, ∴ 12×18•DE+ 12×12•DF=36, ∴9DE+6DF=36. 又∵DE=DF, ∴9DE+6DE=36, ∴DE= 512cm. 解析 把S∆ABC=36cm²分成两部分即△ABD和△BCD,利用三角形的
面积公式可得等量关
系式,求这个等量关
系即可.
思考7:
如图,OD平分∠AOB,OA=OB,点P在OD上,PM⊥BD
于M,PN⊥AD于N,求证:PM=PN 解析
由已知容易求证
△OBD≌△OAD(SAS),
可得∠3=∠4,再根据
角平分线性质的逆定
理,可证PM=PN.
证明:因为,OD平分∠AOB,
所以,∠1=∠2.
在△OBD和△OAD中,
OB=OA
∠1=∠2
OD=OD
∴△OBD≌△OAD(SAS)
∴∠3=∠4.
∵PM⊥BD,PN⊥AD,
∴PM=PN.
小结与作业
五、小结提高 我们学习了关于角平分线的两个性质: ①角平分线的做法步骤和做法的原理(利用sss全等); ②角平分线的性质定理及数学表述; ③角平分线的性质定理的应用(计算与证明): 与角平分线有关的求证线段相等的问题,可以直接利用角平分线的性质,而不必再去证明三角形全等来得出线段相等. 通过小结归纳,完善
学生对知识的梳理.
六、布置作业 1.必做题:《学案》典型问题、三基训练
2.选做题:变式与拓展
本题是对所学内容的
复习,又为下节课学
习做准备.
授课时间:2015年10月13日第3节
授课班级:初二(3)班