多元函数微分学讲座.

合集下载

高数多元函数微分学教案 第五讲 隐函数的求导公式

高数多元函数微分学教案  第五讲   隐函数的求导公式

第五讲 隐函数的求导公式授课题目:§8.4 隐函数的求导公式教学目的与要求:会求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。

教学重点与难点:重点:求由一个方程确定的隐函数的偏导数。

难点:求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。

讲授内容:一、一个方程的情形隐函数存在定理1 设函数F (x , y )在点P (x 0, y 0)的某一邻域内具有连续偏导数, F (x 0, y 0)=0, F y (x 0, y 0)≠0, 则方程F (x , y )=0在点(x 0, y 0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y =f (x ), 它满足条件y 0=f (x 0), 并有yx F F dx dy -=. (2) 公式(2)的推导:将y =f (x )代入F (x , y )=0, 得恒等式F 【x , f (x )】≡0,等式两边对x 求导得0=⋅∂∂+∂∂dxdy y F x F , 由于F y 连续, 且F y (x 0, y 0)≠0, 所以存在(x 0, y 0)的一个邻域, 在这个邻域同F y ≠0, 于是得yx F F dx dy -= 例1 验证方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ), 并求这函数的一阶与二阶导数在x =0的值.解 设F (x , y )=x 2+y 2-1, 则F x =2x , F y =2y , F (0, 1)=0, F y (0, 1)=2≠0. 因此由定理1可知, 方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ).y x F F dx dy y x -=-=,00==x dx dy ; 332222221)(y y x y y y x x y y y x y dx y d -=+-=---='--=, 1022-==x dx y d . 隐函数存在定理还可以推广到多元函数,一个二元方程F (x , y )=0可以确定一个一元隐函数, 一个三元方程F (x , y , z )=0可以确定一个二元隐函数. 隐函数存在定理2 设函数F (x , y , z )在点P (x 0, y 0, z 0)的某一邻域内具有连续的偏导数, 且F (x 0, y 0, z 0)=0, F z (x 0, y 0, z 0)≠0 , 则方程F (x , y , z )=0在点(x 0, y 0, z 0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z =f (x , y ), 它满足条件z 0=f (x 0, y 0), 并有z x F F x z -=∂∂, z y F F yz -=∂∂ (4) 公式(4)的推导:将z =f (x , y )代入F (x , y , z )=0, 得F 【x , y , f (x , y )】≡0, 将它的两端分别对x 和y 求导, 得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y . 因为F z 连续且F z (x 0, y 0, z 0)≠0, 所以存在点(x 0, y 0, z 0)的一个邻域, 使F z ≠0, 于是得z x F F x z -=∂∂, z y F F yz -=∂∂. 例2. 设函数由方程3.=+-xy z e z 所确定, 求22x z ∂∂. 解 设F (x , y , z )= 3.-+-xy z e z , 则F x =y , F z =1-z e , zz z x e y e y F F x z -=--=-=∂∂11,3222222)1()1(1)1()(z z z z z z e e y e e y ye e x z e y x z -=--⋅=-∂∂--=∂∂ 二、方程组的情形 在一定条件下, 由个方程组F (x , y , u , v )=0, G (x , y , u , v )=0可以确定一对二元函数u =u (x , y ), v =v (x , y ), 例如方程xu -yv =0和yu +xv =1可以确定两个二元函数22y x y u +=, 22y x x v +=.一般地,方程组 ⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F (5) 如何根据原方程组求u , v 对x 和,y 的偏导数?介绍二阶行列式、简要介绍解线性方程的克莱姆法则。

高数多元函数微分学教案 第一讲 多元函数的基本概念

高数多元函数微分学教案  第一讲  多元函数的基本概念

第八章 多元函数微分法及其应用第一讲 多元函数的基本概念授课题目:§8.1多元函数的基本概念教学目的与要求:1、理解多元函数的概念.2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质.教学重点与难点:重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容:一、平面点集 n 维空间1、平面点集平面上一切点的集合称为二维空间, 记为R 2 即R 2=R ⨯R={(x , y ):x , y ∈R }坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作E ={(x , y ):(x , y )具有性质P }.例如,平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y ):x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成C ={P :|OP |<r }.回顾数轴上点的邻域。

邻域:设P 0(x 0, y 0)是xOy 平面上的一个点,δ是某一正数,与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体,称为点P 0的δ邻域,记为U (P 0, δ),即}||{),(00δδ<=PP P P U :或 })()(),{(),(20200 y y x x y x P U δδ<-+-=:. 点P 0的去心δ邻域, 记作) ,(0δP U ,即 }||0{),(00δδ<<=P P P P U :.如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U..点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点.(2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点.(3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E .(4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点.由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集E ={(x , y )|1<x 2+y 2≤2}.,则满足1<x 2+y 2<2的一切点(x , y )都是E 的内点;满足x 2+y 2=1的一切点(x , y )都是E 的边界点;它们都不属于E ;满足x 2+y 2=2的一切点(x , y )也是E 的边界点;它们都属于E ;点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集:如果点集E 的点都是内点, 则称E 为开集.闭集:如果点集的余集E c 为开集, 则称E 为闭集.例如,E ={(x , y )|1<x 2+y 2<2}是开集;E ={(x , y )|1≤x 2+y 2≤2}是闭集; 集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性:如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域):连通的开集称为区域或开区域.例如,E ={(x , y )|1<x 2+y 2<2}是区域.闭区域:开区域连同它的边界一起所构成的点集称为闭区域. 例如,E = {(x , y )|1≤x 2+y 2≤2}.有界集:对于平面点集E , 如果存在某一正数r ,使得E ⊂U (O , r ),其中O 是坐标原点, 则称E 为有界点集.无界集:一个集合如果不是有界集,就称这集合为无界集.例如,集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域;集合{(x , y )| x +y >1}是无界开区域;集合{(x , y )| x +y ≥1}是无界闭区域..2.n 维空间设n 为取定的一个自然数,我们用表示n 元有序数组(x 1, x 2, ⋅ ⋅ ⋅ , x n )的全体所构成的集合记为R n ,即R n =R ⨯R ⨯⋅ ⋅ ⋅⨯R ={(x 1, x 2, ⋅ ⋅ ⋅ , x n ):x i ∈R ,i =1, 2, ⋅ ⋅ ⋅, n }.这样定义了线性运算的集合R n 称为n 维空间.R n 中点x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与点y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )之间的距离,记作ρ(x , y ), 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ.R n 中元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中,通常将||x ||记作|x |), 即22221 ||||nx x x ⋅⋅⋅++=x . 采用这一记号,结合向量的线性运算, 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x .二、多元函数概念回顾一元函数的概念。

多元函数微分学

多元函数微分学
同样, 同样, 当固定 v = v0 或固定 u = u0 , 可分别得 曲线: 到一条 u曲线:r = r (u, v0 ) , 一条 v曲线: 曲线:
r = r (u0 , v) , 所有这样的 u曲线和 v曲线构
上的参数曲线网 参数曲线网, 成曲面 S 上的参数曲线网, 而影射 r 将
uov 平面上的区域 D 变成 R 3 中的曲面 S.
z
= R sin ϕ sin θ
ϕ
o
P( x, y, z)
z = OP cos ϕ
= R cos ϕ
R
ϕ R y
R
y
x
x
θ
M
( x , y, 0)
的球面参数方程: 于是得半径为 R 的球面参数方程:
r = r (ϕ ,θ ) = { R sin ϕ cosθ , R sinϕ sinθ , R cosϕ }
= rv′ ( u0 , v ) v0
19
曲面S 在点P (u0 , v0 )处的v曲线的切向量 0
r
v0
N
u = u0
P0 = r (u0 , v0 )
S
v = v0
o
20
满足
ru′ × rv′
P0
P0
( u0 , v 0 )
≠ 0,
′ 这说明 ru × rv′
n
P0
是个确定了方向的向量,且 是个确定了方向的向量 且
曲线: 得球面的 ϕ曲线: 一族以球心为圆心的大 的交线(经线 经线)。 圆——是球面与射面θ = θ 0 的交线 经线 。 是球面与射面 正螺面的参数方程。 例4 正螺面的参数方程。 或
x = u ⋅ cos( 0 .3 v ) y = u ⋅ sin( 0 .3 v ) z = 4v

《高等数学教学课件》9.1多元函数微分学法及其应用

《高等数学教学课件》9.1多元函数微分学法及其应用

在社会科学中的应用(如人口动态学、市场均衡分析等)
在工程科学中的应用(如机器人控制、信号处理等)
总结词:优化和控制
感谢观看
THANKS
全微分的定义
线性性质、可加性、全微分与偏导数的关系、全微分与方向导数的关系。
全微分的性质
全微分的定义与性质
03
梯度的性质
梯度与方向导数的关系、梯度的几何意义。
01
方向导数的定义
在某一方向上函数值的变化率。
02
梯度的定义
方向导数在各个方向上的最大值,表示函数值变化最快的方向。
方向导数与梯度
04
多元函数的极值
在物理科学中的应用(如流体动力学、热传导等)
总结词:揭示内在机制 总结词:预测和政策制定 总结词:复杂系统分析 详细描述:在人口动态学和市场均衡分析等社会科学领域,多元函数微分学也具有广泛的应用。通过建立微分方程模型,我们可以揭示人口动态变化和市场供需关系的内在机制,预测未来的发展趋势。此外,这些模型还可以为政策制定提供依据,帮助政府和企业制定有效的政策和措施。在复杂系统分析中,多元函数微分学也为我们提供了理解和预测系统动态行为的有力工具。
极值点处的函数一阶导数必须为零
如果一个多元函数在某点的所有偏导数都为零,并且该点的二阶导数矩阵正定,那么该点就是函数的极值点。
费马定理是判断多元函数极值点的充分条件,但在实际应用中,需要结合其他条件进行判断,例如函数的单调性、凹凸性等。
极值的充分条件(费马定理)
费马定理的应用
费马定理
最大值与最小值的定义
多元函数的表示方法
可以用数学符号表示,如$z = f(x, y)$,其中$x$和$y$是自变量,$z$是因变量。
多元函数的定义域

多元微分与积分复习ppt课件

多元微分与积分复习ppt课件

8
多元函数微分法的应用
1.在几何中的应用 求曲线在切线及法平面 (关键: 抓住切向量) 求曲面的切平面及法线 (关键: 抓住法向量)
2. 极值与最值问题 • 极值的必要条件与充分条件 • 求条件极值的方法 (消元法, 拉格朗日乘数法) • 求解最值问题(求区域内部的驻点和边界上 可能的极值点)
9
1.
切平面方程
Fx (x0 , y0 , z0 ) (x x0 ) Fy (x0 , y0 , z0 ) ( y y0 )
法线方程
Fz (x0, y0, z0 )(z z0 ) 0
x x0 y y0 z z0 Fx (x0 , y0 , z0 ) Fy (x0 , y0 , z0 ) Fz (x0 , y0 , z0 )
切线方程 x x0 y y0 z z0
(t0 ) (t0 ) (t0 )
法平面方程
(t0 )(x x0 ) (t0 ) ( y y0 ) (t0 )(z z0 ) 0
6
2. 曲面的切平面与法线
1) 隐式情况 . 空间光滑曲面
曲面 在点
的法向量
n (Fx (x0 , y0 , z0 ), Fy (x0 , y0 , z0 ), Fz (x0 , y0 , z0 ))
7
2) 显式情况. 空间光滑曲面
法向量 n ( f x , f y ,1)
切平面方程
z z0 f x (x0 , y0 ) (x x0 ) f y (x0 , y0 ) ( y y0 )
法线方程
x x0 y y0 z z0 f x (x0 , y0 ) f y (x0 , y0 ) 1
grad f
f ,f ,f x y z
• 二元函数

多元函数全微分ppt课件-PPT精选文档

多元函数全微分ppt课件-PPT精选文档
二 元 函 数 对 二 元 函 数 对 y y的 x和 和 对 的 偏 微 分 对 偏 改 变 量x
全改变量的概念
z f(x ,y )在 (x , y)的 如 果 函 数 点 某 邻 域 内 (x P x , y y)为 有 定 义 , 并 设 这 邻 域 内 的 任 意 一 点 , 则 称 这 两 点 的 函 数 值 之 差 f(x x , y y) f(x , y) x , y的 为 函 数 在 点 P对 应 于 自 变 量 改 变 量 全 z 改 变 量 ( 全 增 量 ) , 记 为
0 0

0 , x 0 , y 0 . 即 lim z lim f ( x x , y y ) f ( x , y ) 0 , 0 0 0 0 0 x 0
x 0 y 0
y 0 lim f( x x ,y y )f(x ,y ) 0 0 0 0
( x , y ) z f ( x , y ) 故 函 数 在 点 处 连 续 . 0 0
定理 2 :如果函数 z f (x , y)在点( x )可微 0, y 0 (x 则函数 z f (x , y) 的两个偏导数 fx 0, y 0), (x fy 存在,且 0, y 0) dz f ( x , y ) x f (x y x 0 0 y 0, y 0) (x , y )
0 0
即可微分定义中 z A x B y o ( ) A f ( x ,y ) , B f ( x ,y ) x 0 0 y 0 0
P ( x , y ) 证: 如 0 0 z f ( x , y ) 果 函 数 在 点 可 微 分 ,

专升本辅导-第10讲多元函数微分学

专升本辅导-第10讲多元函数微分学

这是多元函数与一元函数的
一个本质区别.

在热力学中, 已知压强 P 、体积 V 和
温度 T 之间满足关系 PV = k T ,其中, k P V T 1 . 为常数, 证明: V T P
T 由关系 PV k T 得 P k V
一元函数 f ( x) sin a x 的导数
f ( x, a) sin a x
将函数表示为 含参数的形式
f ( x) a cosa x
f x( x , a) a cosa x
用下标显示 是对 x 求导
一元函数 f ( x) sin a x 的导数
f ( x, a) sin a x y y
空间 R 中邻域的定义
2
设 X 0 R , 0 为实数,则称集合
2
U( X 0 , ) { X | d( X , X 0 ) }
为 R n 中点 X 0 的 邻域,记为 X 0 , ) 。 U(
想想:二维空间中点的邻域是什么样子 ?
在 R 2 中:
U( X 0 , ) {( x, y ) | ( x x0 ) 2 ( y y0 ) 2 }
2
U( X 0 , ) {( x, y ) | 0 ( x x0 ) 2 ( y y0 ) 2 }
开区域、闭区域
有界区域 无界区域
第二节 多元函数的极限与连续性
极限 极限的运算法则 连续性 连续函数的运算法则 有界闭区域上连续函数的性质
推广的思路
第二节 多元函数的极限与连续性

x X ( x0 x, y0 ) ( x0 , y0 )
为变量 X 在点 ( x0 , y0 ) 处关于 x 的偏增量.

课件:多元复合函数微分法

课件:多元复合函数微分法

例 5.设 z f ( x y, xy2 ) ,f 有二阶连续偏导数,
x
求z x

2z x 2
, 2z xy

f
u v
y x y
解:设 u x y ,v xy2 , 则 z f (u,v),
x
z x
fu
u x
fv
v x
fu
y2
fv

fu
u v
y x y
2z x 2
( x
fu
y2
fv
)
fu x
y2
fv x

z x
xe xy ez 2

补充题 证明当 y , y 时,方程
x
x2
2z x2
2 xy
2z xy
y2
2z y2
0
可以化为
2z
2 0
24
代入
x2
2z x2
2 xy
2z xy
y2
2z y2
0
可以化为
2z
2 0
25
作业
习 题 五 (P126)
1(2)(4); 2 (2)(3)(4); 3(2)(4)(5); 4 ;5;6(1);8 ;10 。
函数 z f (u,v) 在对应点(u, v) 处可微,则复合函数 z f [( x),( x)] 在 点x 可 导 ,且
d z z d u z dv (全导数公式)。 ① dx u d x v d x
ux 全导数公式可形象地表示为 z v x
简言之“按线相乘,分线相加”。
例 1.设 zeusinv ,而 u 2a2 x , v x2 a2 ,求 dz 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 多元函数微分学 第一节 基本概念、定理与公式一、二元函数的定义及定义域 1 二元函数的定义定义1 设x ,y ,z 是三个变量.如果当变量x ,y 在在一定范围D 内任意取定一对数值时,变量z 按照一定的法则f 总有确定的数值与它们对应,则称变量z 是变量x ,y 的二元函数,记为(,)zf x y =.其中x ,y 称为自变量,z 称为因变量.自变量x ,y 的取值范围D 称为函数的定义域.二元函数在点()00,x y 所取得的函数值记为00x x y y z==,(,)x y z 或00(,)f x y2 二元函数的定义域二元函数的定义域一般为平面区域上的点集.二元函数的定义域较复杂,它可以是一个点,也可能是一条曲线或几条曲线所围成的部分平面,甚至可能是整个平面.整个平面或由曲线围成的部分平面称为区域;围成区域的曲线称为该区域的边界;边界上的点称为边界点,边界内的点称为内点.不包括边界的区域称为开区域,连同边界在内的区域称为闭区域,部分包括边界的区域称为半开半闭区域.能用封闭曲线围成的区域称为有界区域,反之称为无界区域.开区域如: {}22(,)14x y x y <+<闭区域 如:{}22(,)14x y xy ≤+≤注:和一元函数一样,二元和二元以上的函数也只与定义域和对应关系有关,,与用什么字母表示自变量与因变量无关.例1 求下列函数的定义域,并画出的图形.(1)ln z = (2)arcsin()zx y =+解(1) 要使函数有意义,应有2210x y --> 即221x y +<,定义域为有界开区域{}22(,)1x y x y +< (2)要使函数有意义,应有1x y +≤,即11x y -≤+≤xx定义域为无界闭区域{}(,)11x y x y -≤+≤3 二元函数的几何意义设(,)P x y 是二元函数(,)z f x y =的定义域D 内的任一点,则相应的函数值为(,)z f x y =,有序数组x ,y ,z 确定了空间一点(,,)M x y z ,称点集{}(,,)(,),(,)x y z z f x y x y D =∈为二元函数的图形. 二元函数(,)zf x y =的图形通常是一张曲面.注:和一元函数一样,二元和二元以上的函数也只与定义域和对应关系有关,与用什么字母表示自变量与因变量无关.二、二元函数的极限与连续 1.二元函数的极限以点000(,)P x y 为中心,δ为半径的圆内所有点的集合{}2200(,)()()x y x x y y δ-+-<称为点0P 的δ邻域,记作0(,)U P δ.定义2 设二元函数(,)zf x y =在点000(,)P x y 的某一邻域内有定义(点0P 可以除外),点(,)P x y 是该领域内异于0P 的任意一点.如果当点(,)P x y 沿任意路径趋于点000(,)P x y 时,函数(,)f x y 总无限趋于常数A ,那么称A 为函数(,)z f x y =当00(,)(,)x y x y →时的极限,记为0lim (,)x x y y f x y A →→= 或 00(,)(,)lim(,)x y x y f x y A →=说明:(1)定义中0P P →的方式可能是多种多样的,方向可能任意多,路径可以是千姿百态的,所谓极限存在是指当动点从四面八方以可能有的任何方式和任何路径趋于定点时,函数都趋于同一常数.(2)倘若沿两条不同的路径,0lim (,)x x y y f x y →→不相等,则可断定0lim (,)x x y y f x y →→不存在,这是证明多元函数极限不存在的有效方法.(3)二元函数的极限运算法则与一元函数类似,如局部有界性、局部保号性、夹逼准则、无穷小、等价无穷小代换等.例2 求极限22200sin()lim x y x y x y →→+解 22200sin()lim x y x y x y →→+2222200sin()lim x y x y x y x y x y →→=+ 其中 22212x y x x y ≤+ 22200sin()lim 0x y x y x y →→∴=+ 例3 证明 36200lim x y x y x y →→+不存在.证明:设3y kx =,则36200lim x y x y x y →→+6626200lim 1x y kx k x k x k →→==++其值随k 的不同而变化,故极限不存在.确定极限不存在的方法:(1)令点(,)P x y 沿y kx =趋向于000(,)P x y ,若极限值与k 有关,则(,)f x y 在点000(,)P x y 处极限不存在;(2)找出两种不同趋近方式,使0lim (,)x xy y f x y →→存在,但两者不相等,则此时(,)f x y 在点000(,)P x y 处极限不存在;2.二元函数的连续性 定义 3 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,如果000lim (,)(,)x xy y f x y f x y →→=,则称函数(,)f x y 在点000(,)P x y 处连续.定义4 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,分别给自变量x ,y 在0x ,0y 处以增量x ∆,y ∆,得全增量0000(,)(,)z f x x y y f x y ∆=+∆+∆-如果极限 00lim 0x y z ∆→∆→∆=则称(,)z f x y =在000(,)P x y 处连续.如果函数(,)z f x y =在区域D 内每一点都连续,则称函数(,)f x y 在区域D 内连续.如果函数(,)z f x y =在点000(,)P x y 不连续,则称点000(,)P x y 是函数(,)f x y 的间断点. 例4 求23limx y x yxy→→+. 解 因为函数(,)x y f x y xy+=是初等函数,且点(2,3)在该函数的定义域内,故235lim (2,3)6x y x y f xy →→+==. 例5 讨论函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩的连续性.解 当(,)(0,0)x y ≠时,(,)f x y 为初等函数,故函数在(,)(0,0)x y ≠点处连续.当(,)(0,0)x y =时,由例6知00lim (,)x y f x y →→=22lim x y xyx y →→+不存在,所以函数(,)f x y 在点(0,0)处不连续,即原点(0,0)是函数的间断点.3.有界闭区域上连续函数的性质性质1(最值定理) 在有界闭区域上连续的二元函数,在该区域上一定有最大值和最小值.性质2(介值定理) 在有界闭区域上连续的二元函数,必能取得介于函数的最大值与最小值之间的任何值.三、偏导数 1.偏导数的定义 定义 5 设函数(,)z f x y =在000(,)P x y 的某邻域内有定义, 固定0y y =,在0x 处给自变量x 以增量x ∆,相应地得到函数z 关于x 的得增量(称为偏增量):0000(,)(,)x z f x x y f x y ∆=+∆-如果极限000000(,)(,)limlimx x x z f x x y f x y x x∆→∆→∆+∆-=∆∆ 存在, 则称此极限值为函数(,)z f x y =在点000(,)P x y 处对x 的偏导数,记为00x x y y zx==∂∂,00x x y y f x==∂∂,00x x xy y z =='或00(,)x f x y '.类似地,函数(,)z f x y =在点00(,)x y 处对y 的偏导数定义为:00000(,)(,)limlimy y y z f x y y f x y yy∆→∆→∆+∆-=∆∆,记为 00x x y y zy==∂∂,00x x y y fy==∂∂,00x x yy y z =='或00(,)y f x y '.例6 求223z x xy y =++在点(1, 2)处的偏导数. 解 把 y 看成常数,得23zx y x∂=+∂,则1221328x y z x ==∂=⨯+⨯=∂;把x 看成常数,得32z x y y ∂=+∂,则1231227x y z y==∂=⨯+⨯=∂.例7 求函数(,)arctan x f x y y=的偏导数. 解:222111z y xy x y x y ∂==∂+⎛⎫+ ⎪⎝⎭,222211z x x xy x yx y ⎛⎫∂-=-= ⎪∂+⎛⎫⎝⎭+ ⎪⎝⎭例8设u =,证明2221u u u x y z ⎛⎫∂∂∂⎛⎫⎛⎫++= ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭. 证明:因为u xx u∂=∂,u y y u ∂=∂,u zz u∂=∂, 所以2222222221u u u x y z u x y z u u ⎛⎫∂∂∂++⎛⎫⎛⎫++=== ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 例9 已知理想气体的状态方程(R 为常数).求证:1P V TV T P∂∂∂⋅⋅=∂∂∂ 证: 因为RT P V=,2P RT V V∂=-∂;RTV P=,V RT P∂=∂;PV T R=,T VP R∂=∂.所以P V T V T P ∂∂∂⋅⋅∂∂∂2RTV ⎛⎫=- ⎪⎝⎭R P ⋅1VRT RPV ⋅=-=-. 注:偏导数的记号z x ∂∂,zy∂∂是一个整体,不能看成微商,否则导致运算错误.例10 求222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处的偏导数. 解:220000(0,0)(0,0)()0(0,0)lim lim 0x x x x f x f x f x x∆→∆→∆⋅-+∆-∆+===∆∆ 220000(0,0)(0,0)()0(0,0)lim lim 0y y y y f y f y f y y∆→∆→∆⋅-+∆-∆+===∆∆. 注意: (1)二元函数在某点存在偏导数,并不能保证函数在该点连续,与一元函数可导必连续是不相同的.(2)在分界点处的偏导数,用偏导数定义求. (3)由偏导数的概念可知,(,)f x y 在点00(,)x y 处关于x 的偏导数00(,)x f x y '显然就是偏导数(,)x f x y '在点00(,)x y 处的函数值;00(,)y f x y '是偏导数(,)y f x y '在点00(,)x y 处的函数值.从偏导数的定义中可以看出,偏导数的实质就是把一个自变量固定,而将二元函数看作另一自变量的一元函数的导数.2.偏导数的几何意义:设00000(,,(,))P x y f x y 为曲面(,)z f x y =上的一点,过0P 作平面0y y =截此曲面(,)z f x y =得一曲线,其方程为0(,)z f x y =,则导数00(,)x f x y '就是曲线0(,)z f x y =在点00000(,,(,))P x y f x y 处的切线对x 轴的斜率(设切线与x 轴的倾斜角为α,则00(,)tan x f x y α'=).同样,偏导数00(,)y f x y '是曲面(,)z f x y =与平面0x x =的交线在点00000(,,(,))P x y f x y 处的切线对y 轴的斜率(设切线与y 轴的倾斜角为β,则00(,)tan y f x y β'=). 3、高阶偏导数 函数(,)z f x y =的两个偏导数(,)x zf x y x∂'=∂,(,)y z f x y y ∂'=∂它们都是x ,y 的二元函数,如果这两个函数关于x ,y 的偏导数也存在, 即z x x ∂∂⎛⎫ ⎪∂∂⎝⎭,z y x ∂∂⎛⎫ ⎪∂∂⎝⎭,z x y ⎛⎫∂∂ ⎪∂∂⎝⎭,z y y ⎛⎫∂∂ ⎪∂∂⎝⎭,称它们为二元函数(,)z f x y =的的二阶偏导数.二元函数的二元偏导数最多有4个.将z x x ∂∂⎛⎫⎪∂∂⎝⎭表为22z x ∂∂或(,)xxf x y ''或xx z ''; z y x ∂∂⎛⎫⎪∂∂⎝⎭表为2z x y ∂∂∂或(,)xy f x y ''或xy z ''; z x y ⎛⎫∂∂ ⎪∂∂⎝⎭表为2z y x ∂∂∂或(,)yxf x y ''或yx z ''; z y y ⎛⎫∂∂ ⎪∂∂⎝⎭表为22z y ∂∂或(,)yyf x y ''或yy z ''. 其中,2(,)xy xy z z f x y z y x x y ∂∂∂⎛⎫''''=== ⎪∂∂∂∂⎝⎭,2(,)yx yx z zf x y z x y y x⎛⎫∂∂∂''''=== ⎪∂∂∂∂⎝⎭是二阶混合偏导数类似地,二阶偏导数的偏导数,称为原来函数的三阶偏导数,二元函数(,)z f x y =的三阶偏导数最多有8个:xxxf ''',xxy f ''',xyx f ''',xyy f ''',yxx f ''',yxy f ''',yyx f ''',yyy f ''' 一般地,1n -阶偏导数的偏导数,称为原来函数的n 阶偏导数,二元函数(,)z f x y =的n 阶偏导数最多有2n 个.二阶及二阶以上的偏导数称为高阶偏导数,而z x∂∂和z y∂∂称为函数的一阶偏导数.注:二阶偏导数的计算方法是逐次求偏导数. 定理1(求偏导数次序无关的定理) 如果函数(,)z f x y =的两个二阶混合偏导数2z x y∂∂∂,2z y x∂∂∂在区域D 内连续,则对任何(,)x y D ∈有2z x y ∂∂∂2zy x ∂=∂∂. 即二阶混合偏导数连续的条件下,混合偏导数与求导的次序无关,对更高阶的偏导数也有类似的结论.4.全导数的定义 设(,)z f u v =,()u t ϕ=,()v t ψ=,且f、ϕ、ψ均可导,则关于t 的一元函数[(),()]z f t t ϕψ=也可导,且有dz f du f dvdt u dt v dt∂∂=+∂∂ z 对t 的导数叫全导数.四、全微分 1.定义 设函数(,)z f x y =在点000(,)P x y 的某邻域内有定义,给x ,y 在00(,)x y 分别以增量x ∆、y ∆,相应地得到函数的全增量z ∆,若其可表示为()z A x B y o ρ∆=∆+∆+其中A 、B 与x ∆、y ∆无关.ρ=()o ρ为0x ∆→,0y ∆→时ρ的高阶无穷小.则称函数(,)f x y 在000(,)P x y 处可微.A x B y ∆+∆称为(,)f x y 在000(,)P x y 处的全微分,记为00(,)(,)x y dz df x y A x B y ==∆+∆当(,)z f x y =在000(,)P x y 可微时,0000(,)x x x y y zA f x y x==∂'==∂,0000(,)y x x y y z B f x y y==∂'==∂,于是000(,)x y x x x x y y y y z z dz x y xy====∂∂=∆+∆∂∂注意:规定自变量的增量等于自变量的微分,即x dx ∆=,y dy ∆=,则全微分又可记为z zdz dx dy x y∂∂=+∂∂. 五、二元函数的连续、偏导数及全微分之间的关系 定理 2 若函数(,)z f x y =在点(,)P x y 处可微,则函数在点(,)P x y 连续.定理3 (可微的必要条件)如果函数(,)z f x y =在点(,)P x y 处可微,则在该点处的两个偏导数zx∂∂、z y∂∂必都存在,且z zdz dx dy x y∂∂=+∂∂. 定理4 (可微的充分条件)若函数(,)z f x y =的两个偏导数z x∂∂、z y ∂∂在点(,)P x y 的某领域存在,并且在点(,)P x y 处连续,则函数(,)z f x y =在点(,)P x y 处必可微.注:若(,)z f x y =在(,)P x y 处,z x∂∂、z y∂∂都存在,不能保证(,)z f x y =在(,)P x y 处可微分.例如:222222,0(,)0,0xyx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处(0,0)0x f =,(0,0)0y f '=但它在点(0,0)处不可微分.注:(1)关于二元函数全微分的定义及可微分的充分条件可以完全类似地推广到三元和三元以上的多元函数.(2)函数(,)z f x y =的偏导数存在与否与函数是否连续毫无关系.六、多元复合函数微分定理(复合函数的偏导数)设函数(,)u x y ϕ=,(,)v x y ψ=在点(,)x y 处有偏导数,函数(,)z f u v =在对应点(,)u v 处有连续偏导数,,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 处的偏导数存在,且z z u z v x u x v x∂∂∂∂∂=+∂∂∂∂∂z z u z v y u y v y∂∂∂∂∂=+∂∂∂∂∂七、隐函数微分zu vxy1.一元隐函数求导公式方程 (,)0()F x y y y x =⇒=,(,())0F x y x ≡,链式图两边对x 求导,得:0F F dy x y dx∂∂+⋅=∂∂, 则xy FFdy x F dx F y∂∂=-=-∂∂2.二元隐函数求导公式方程(,,)0(,)F x y z z z x y =⇒=得(,,(,))0F x y z x y ≡ 两边对x 求导:0F F z x z x∂∂∂+⋅=∂∂∂ 两边对y 求导:0F F z y z y∂∂∂+⋅=∂∂∂ 得x zF zx F ∂=-∂ y zFz yF ∂=-∂7.2 偏导数在几何上的应用一、空间曲线的切线与法平面空间曲线()()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩,下面给出曲线Γ的切线的定义.定义:设点0000(,,)M x y z 是空间曲线Γ上的一个定点,M 是曲线Γ上的一个动点,当点M 沿着曲线Γ趋近于0M 时,割线0M M 的极限位置0M T (如果存在)称为曲线Γ在点0M 的切线,并称过点0M 而且垂直于切线0M T的平面为曲线Γ在点0M 的法平面.下面推导曲线Γ在点0M 的切线和法平面方程.Fxyx设对应于定点0M 的参数为0t ,令00()x x t =,00()y y t =,00()z z t =,则点0M 的坐标为000(,,)x y z ,设曲线Γ上对应于参数为0t t +∆的点M 的坐标为000(,,)x x y y z z +∆+∆+∆,根据解析几何知识,割线0M M 的方向向量为{,,}x y z ∆∆∆,也可取为{,,}x y zt t t∆∆∆∆∆∆,当0t ∆→时,点M 沿着曲线Γ趋于0M ,割线0M M 的极限位置就是曲线Γ在点0M 的切线,若()x t ,()y t ,()z t 在0t 处可导且导数不同时为零,那么此时切线的方向向量为000{(),(),()}x t y t z t ''',从而曲线Γ在点0000(,,)M x y z 处的切线方程为000000()()()x x y y z z x t y t z t ---=='''曲线Γ在点0M 的法平面方程为000000()()()()()()0x t x x y t y y z t z z '''-+-+-=二、曲面的切平面与法线设曲面方程为(,,)0F x y z =,过点0000(,,)M x y z 且完全在曲面上的曲线为Γ,其参数方程为()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩,因此((),(),())0F x t y t z t =.对t 求导,在0t t =处(即在点0M 处)有000000000000(,,)()(,,)()(,,)()0x y z F x y z x t F x y z y t F x y z z t ''''''++=向量000{(),(),()}x t y t z t '''是曲线Γ在点0M 的切线的方向向量,向量000000000{(,,),(,,),(,,)}x y z F x y z F x y z F x y z '''和这些切线垂直,又由于所取曲线Γ的任意性,可知曲面上任意一条过0M 的曲线,它在点0M 的切线皆垂直于向量000000000{(,,),(,,),(,,)}x y z F x y z F x y z F x y z ''',因此这些切线应位于同一平面上,这个平面称为曲面在点0M 处的切平面,向量000000000{(,,),(,,),(,,)}x y z F x y z F x y z F x y z '''是切平面的法向量.曲面在点0M 处的切平面方程为000000000000(,,)()(,,)()(,,)()0x y z F x y z x x F x y z y y F x y z z z '''-+-+-=曲面在点0M 处的法线方程为000000000000(,,)(,,)(,,)x y z x x y y z z F x y z F x y z F x y z ---=='''. 7.3 二元函数的极值一、二元函数的极值 定义1:设函数(,)z f x y =在点000(,)P x y 的某个邻域内有定义,若该邻域内00(,)(,)f x y f x y ≤,点00(,)x y 为极大点,00(,)f x y 为极大值;00(,)(,)f x y f x y ≥,点00(,)x y 为极小点,00(,)f x y 为极小值.极小值点和极大值点统称为极值点,极小值和极大值通称为极值. 定义2:方程组(,)0(,)0x yf x y f x y '=⎧⎨'=⎩的解,称为函数(,)z f x y =的驻点. 定理1(取极值的必要条件):若函数(,)z f x y =在点000(,)P x y 一阶偏导数存在,且000(,)P x y 是(,)z f x y =的极值点,则该点的偏导数必为零,即0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩.定理2(极值存在的充分条件):设点000(,)P x y 是函数(,)z f x y =的驻点,且函数在点000(,)P x y 的某邻域内二阶偏导数连续,令00(,)xxA f x y ''=00(,)xyB f x y ''=00(,)yyC f x y ''= 则 (1)当20B AC -<时,点000(,)P x y 是极值点,且(i )当0A <(或0C <)时,点000(,)P x y 是极大值点;()当0A >(或0C >)时,点000(,)P x y 是极小值点.(2)当20B AC ->时,点000(,)P x y 不是极值点.(3)当20B AC -=时,点000(,)P x y 可能是极值点也可能不是极值点.例1 求函数322(,)421f x y x x xy y =-+-+的极值. 解: (1)求偏导数2(,)382x f x y x x y '=-+,(,)22y f x y x y '=-,(,)68xxf x y x '=-,(,)xy f x y y '=,(,)2yy f x y '=-(2)解方程组2(,)3820(,)220x y f x y x x y f x y x y '⎧=-+=⎪⎨'=-=⎪⎩得驻点(0,0)及(2,2) 在(0,0)处,8A =-,2B =,2C =-,20B AC ∆=-< 在(2,2)处,4A =,2B =,2C =-,20B AC ∆=->结论: 函数在(0,0)处取得极大值(0,0)1f =,在(2,2)无极值. 注意:对一般函数,可能的极值点包括驻点或至少一个偏导数不存在的点.二、条件极值与无条件极值 1.求二元函数无条件极值步骤如下: (1)求(,)x f x y ',(,)y f x y ',并解方程组(,)0(,)0x y f x y f x y '=⎧⎨'=⎩,求得所有驻点;(2)对于每一个驻点(,)x y ,求出二阶偏导数的值00(,)xxA f x y ''=,00(,)xyB f x y ''=,00(,)yyC f x y ''=; (3)定出2B AC -的符号,利用极值存在的充分条件判断驻点(,)x y 是否为极值点,若是,是极大值点还是极小值点,并求出极值.2.求二元函数(,)z f x y =在约束条件(,)0x y ϕ=下的极值的方法和步骤如下:方法一:条件极值⇒无条件极值 (1)从约束条件(,)0x y ϕ=中求出()y x ψ=;(2)将()y x ψ=代入二元函数(,)f x y 中化为一元函数(,())f x x ψ,变为无条件极值;(3)求出一元函数(,())f x x ψ的极值即为所求.方法二:条件极值不能转化为无条件极值(运用拉格朗日乘数法).(1)构造辅助函数(,,)(,)F x y f x y λ=(,)x y λϕ+,称为拉格朗日函数,其中参数λ称为拉格朗日乘数;(2)由(,,)F x y λ的一阶偏导数组成如下方程组:(,)(,)(,)0(,)(,)(,)0(,)0x x x y y y F x y f x y x y F x y f x y x y x y λϕλϕϕ'''=+=⎧⎪'''=+=⎨⎪=⎩(3)结上述方程组得驻点00(,)x y ,则00(,)x y 就是函数的极值点,依题意判断00(,)f x y 是极大值还是极小值.上述方法即拉格朗日乘数法可平行地推广到多元函数、多个限制条件上去.例2 求表面积为2a ,而体积为最大的长方体的体积. 解:设长方体长、宽、高分别为x ,y ,z ,则长方体体积为V xyz =,约束条件为22()xy yz xz a ++=即2(,,)2()0x y z xy yz xz a ϕ=++-=构造辅助函数2(,,)2()2a F x y z xyz xy yz xz λ=+++-解联立方程组2(,,)2()0(,,)2()0(,,)2()02()0x yz F x y z yz y z F x y z xz x z F x y z xy x y xy yz xz a λλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪++-=⎩解得x y z ===λ=因为是唯一可能的极值点,所以由问题的实际意义知3max 36V a =. 三、最值的求解在有界闭区域D 上连续的函数一定在该区域D 上取得最大值和最小值,最值点可能在D 的内部也可能在D 的边界点上,如果假定函数在D 上连续,在D 内可微分且只有有限个驻点,这时如果函数在D 的内部取得最大值(最小值),那么这个最大值(最小值)也是函数的极大值(极小值).因此在上述假定下,求函数的最大值和最小值的一般方法是:将函数(,)f x y 在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较,其中最大的就是最大值,最小的就是最小值.但是这种做法并不简单,因为求函数在边界上的最大值和最小值一般来说仍然是相当复杂的,在通常遇到的实际问题中,如果根据问题的性质,知道函数(,)f x y 的最大值(最小值)一定在D 的内部取得,而函数在D 内只有一个驻点,那么可以肯定该驻点处的函数值就是函数(,)f x y 在D 上的最大值(最小值).例 3 要做一个容积为V 的长方体箱子,问箱子各边的尺寸多大时,所用材料最省?解 设箱子的长、宽分别为, x y ,则高为Vxy .箱子所用材料的表面积为2()V VS xy y x xy xy=+⋅+⋅2()V V xy x y =++ (0x >,0y >).当面积S 最小时,所用材料最省.为此求函数(, )S x y 的驻点,222()0,2()0,SV y x x S V x yy ∂⎧=-=⎪∂⎪⎨∂⎪=-=∂⎪⎩解这个方程组,得唯一驻点. 根据实际问题可以断定,S 一定存在最小值且在区域D 内取得.而在区域D内只有唯一驻点,则该点就是其最小值点,即当===z y x 3V 时,所用的材料最省.最新文件仅供参考已改成word文本。

相关文档
最新文档