变速恒频双馈风力发电机

合集下载

基于LabVIEW的变速恒频双馈风力发电电能监测系统

基于LabVIEW的变速恒频双馈风力发电电能监测系统



维普资讯
,‘
_
试灏■菽赢
基于 L IW 的变速恒频 a V b E 双馈风力发电电能监测系统
司媛媛 郑莹莹

关键词 .风力发电系统 变速恒频
虚拟仪器 电能质量 实时监测
司媛媛 女士 ,合肥工业大学电力电子专业 硕士研究生 郑莹莹女士 ,自动控制专业
恒频的电能。在风力发 电过程中让风车 的转速随风速而变化 ,并通过其他控制 方式得到恒频 电能 的方法称为变速恒
频。 在风力发电系统中,对 电能质量的 监测相当重要。本文以Lb I 为平台 aVE W
限变流器组成。系统的结构框 图如图 1
所示。其工作原理是:通过计算机对风
电能质量进行监测和分析 ( 如图 2 。除 ) 实现 实时检测功 率、功率因数 以及 电 压 电流不平衡度线 分析。通过功能强大 的 Lb I 软件 ,对各种计算结果进行数 aVE W
使发电机能在亚同步、超同步两种运行
状态 工作 。
双 馈异 步
图 7 模拟 系统结 构框图
图 2 监测系 统结构 框图
墨堡壅兰 旦 些
6 ・2 006 1
维普资讯
2 .数据处理
() 1 数字同步算法的实现
在实际系统中,由于各种原因电压 会发生不 同程度的畸变,为了得到非畸 变信号,通常采用锁相技术。将三角函
效值和相应的三相电流有效值的乘积之
和。
S= +U l U l b +U l b
() 3 不平衡度
三相电压不平衡度是指三相 电力系 统三相不平衡的程度。造成三相电压不
定位 ,每半个周期过零点都需要重新定 义 ,否则累计误差就 会导致错误的结 果 。这 么频繁的定位影 响了算 法的速

变速恒频双馈风力发电系统应用研究

变速恒频双馈风力发电系统应用研究

统。其优点如下 。

f± m x厂

系统 、开关磁 阻发 电机系统等 ,这些 变速恒频发 电系统 有 的是发电机 与电力 电子 装置相结 合实现构而实现变速恒 频的。这
些系统都有 自己的特点 , 适用 于不同的场合 。下面对 这
较 高。 2 )输 出波形 中谐波分量小 而且频率高 ,容易滤去 ,
可以得到很好的正弦波形 。
量和系统 的容 量 相 同。有 高频 电流 谐 波注 入 电 网。 目
前 ,永磁发电机 系统 是研 究 的 热点 之 一 ,而且 发 展很 快 ,国外 已经出现了兆 瓦级永磁风力发 电机 系统 。
风速下 ,风轮机吸收的功率不超过最大值。 ()提高了系统的风能利用率 3
围内变化,通过对最佳叶尖速 比的跟 踪 , 风力发 电机 使
组在可发 电风速下均可获得最佳 的功率输 出。风力发 电 机组的控制技术从 机组 的定桨距恒速运行 发展 到变速运 行 ,已经基本实现了风力发 电机组从能够 向电网提供 电 力到理想地 向电网提供 电力 的目的。
2 )电动机为无刷结构 ,易维护。 3 )易调节 。通过 励磁调节 可 以很方 便地控 制它 的 输 出特性 ,使风力机实现最佳叶尖速 比运行。 该系统缺点为 :交交变频控制电路复杂 。可 以考虑
— —
式中 r n ——功率绕组 电流频率 ,与电网频率相 同; 控制绕组 电流频率;
靠。
该系统缺点 为:电力电子变换 装置容量较大 。仅仅 适用于中小型风 电系统 ,研究较少。
3 无刷爪极式发电机 系统… .
无刷爪极式 自 励发 电机 , 子铁心及 电枢绕 组与 同 定 步电动 机相 同 ,区 别仅 在于 它 的励 磁部 分 ,如 图 2所

变速恒频风力发电用交流励磁双馈发电机的研究

变速恒频风力发电用交流励磁双馈发电机的研究
S a - i,LIYi a ,Z HI Xiob n - o HAO e gja mi Fn- n i
( p rme to e tia gn e i gL a nn De a t n fElciest ,Hu u a 2 1 5Chn ) c nc lUn v r i y ld o 13 0 , i a
S u y O t d fAC x i d d u y f d e ct o bl-e e
g e a o s d b ar b e s e d en r t r u e y v i l - p e a
COn t t teqU S an - r enc n y wi d power
围 1并 网 运 行 时 的 交 流 励 磁 双 ?风 力发 电矶 系 统 曩
12 交 流励磁 双馈 发电机 的运行原理 .
交流励磁 双馈 发 电机定子接 入电网 ,转子绕 组由频率 、相位 、 幅值可调的 电 供给三 相低频励磁 电流 ,在转子 中形成一个低速旋 源 转的磁场 ,这个 磁场转 速与转子的机械转速相加等于定子磁场 同步 速,从而发电机 定子绕组中感应 出同步转速 的工频 电压。当风速变 化时转速随之变化,此时相应 改变转子 电流的频率和转子旋转磁场 的转速以补偿电机转速 变化,这样就达到变速恒频的 目的。
维普资讯
堡鲞:
文章编号: 1 7 -0 12 0 )20 1 -2 11 4 (0 70 -0 0 6 6
变速恒频风 力发 电用交流励磁双馈 发 电机 的研 究
史晓斌 ,李漪淼 ,赵凤俭
( 辽宁工程技术大学 电气工程 系,葫芦岛 l5 0) 2 15
摘要 :描述 了变速恒频风力发电用交流励磁双馈发 电机 的结构特点和运行 原 理 ,并通过对该电机基本方 程式 ,等效 电路及时空矢量图的分析 ,导 出了 电 机运 行参数. 如定 ,转子 电流 ,有 功.无功 功率及 电磁转矩 ) 的数 学表达 ( 式,证明了 搬运 性 能可表示 为转 差率.转子励磁电压及与定子 电压的 相位差 角三个变量的函数,为它的应用 提供了理论依据。

现代变速双馈风力发电机的工作原理

现代变速双馈风力发电机的工作原理

现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动质量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并人电网。

如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。

用于变速恒频一步双馈风力发电机组,定转子都是线圈,简单说转子有电流后产生的磁场切割定子线圈,定子就发电了,转子是直流时,相当于永磁发电机,转子转速过快的话,就给转子反向的交流电使实际的旋转磁场低于转子机械转速,达到变频,转子过慢的话,就给转子正向交流电,使旋转磁场转速大于实际机械转速,达到变频目的,通过以上方案,定子侧就能实现发电的恒频。

在风力发电机组中多选用绕线转子感应异步发电机,这种发电机在结构上与绕线式异步电机相似,由绕线转子异步发电机和在转子电路上带交流励磁器组成,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,这种带滑环的双馈式电机被称之为有刷双馈发电机。

双馈式电机的定子接入电网,通过PWM(脉宽调制)AC-DC-AC变频器向发电机的转子绕组提供励磁电流,为了获得较好的输出电压电流波形,输出频率一般不超过输入频率的1/3。

其容量一般不超过发电机额定功率的30%,通常只需配置一台1/4功率的变频器。

其原理图如图1所示。

双馈式异步发电机向电网输出的功率由两部分组成,即直接从定子输出的功率和通过变频器从转子输出的功率。

风力机的机械速度是允许随着风速而变化的。

通过对发电机的控制使风力机运行在最佳叶尖速比,从而使整个运行速度的范围内均有最佳功率系数。

双馈式异步发电机的变速运行是建立在异步电机基础上的,众所周知异步电机既可作为电动机运行,也可作为发电机运行。

我们将转子转速n与同步转速ns的差值定义为转差,转差与同步转速之比的百分值定义为转差率。

在作电动机运行时,异步电动机转子的转速只能是略低于同步转速,此时产生的电磁转矩与转向相同,转差率>0。

而作发电机运行时,转速总是略高于同步转速,其电磁转矩的方向与旋转方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。

双馈电机原理

双馈电机原理
DFIG是一台多变量、强耦合、非线性、时变复杂系统, 必须采取解 耦控制策略, 实现发电机转矩的动态控制, 其中磁场定向矢量控制是有 效策略。
谢谢
17
最大风能追踪机理
最大风能追踪实现
最大风能追踪的本质就是在风速发生变化时调节机组转速,保持最 佳叶尖速比。 实现最大风能追踪,可以通过风力机控制实现,也可以通过发电机控 制实现。
采用通过发电机功率控制实现最大风能追踪的方案的原理是: 通过 控制发电机输出功率来控制发电机阻转矩, 进而控制机组转速,以求 在风速变化时保持最佳叶尖速比,实现最大风能追踪。
率。当电机吸收无功功率时,往往由于功率角变大,使电机稳定度降低。如通过
调节交流励磁的相位,减小机组的功率角,使机组的运行稳定性提高,从而可多 吸收无功功率,克服目前由于晚间负荷下降、电网电压过高的不利局面。因此说
,交流励磁电机较同步机有更优越的运行性能。
双馈电机基本原理
3.交流励磁电机的应用 由于交流励磁电机有三个可调量,通过励磁调节,不仅保持了同步机的可以
fs 0
变频器提供直流励磁
转子回路能量流动
转子功率
P2 Ps sPm sP 1
亚同步发电 s>0 P2>0 变频器向转子绕组输入功率 超同步发电 s<0 P2<0 转子绕组向变频器输入功率 故要求变频器具有能量双向流动能力
最大风能追踪机理
VSCF风力发电 系统运行区域
并网控
就是说,可以变速发电或调速拖动。同时发现这种电机有调节电网功率 因数和提高电网稳定性的功能,而且可以使水轮机、风力机等原动机或
水泵等被拖动机械运行在最佳工况,使机组效率提高。
双馈电机基本原理
2.交流励磁电机的优点

变速恒频双馈风力发电系统并网控制仿真

变速恒频双馈风力发电系统并网控制仿真

类 似 ,上 耋 行时定 子绕 组 通 过 变压 器 与 电网相 连 ,
转 I J { I j 通过双 P WM 变 频 器 和 变 压 器 与 电 网 相 连
接 没定 f 电 流 产 乍 的 旋 转 磁 场 的 同 步 速 为 n , 根 据 馈 电 机 转 子 转 速 的 变 化 ,双 馈 发 电 机 可 有
第3 0卷 第 2期 2 0 1 4年 2月
电 力





Vo l _ 3 O. No . 2
F e b. , 2 01 4
El e c t r i c Po we r S c i e n c e a n d E n g i n e e r i n g
变 速 恒 频 双 馈 风 力发 பைடு நூலகம்系统 并 网控 制仿 真
= ± ( 1 )
力 发 电系 统 ,因 其 具 有 风 能 转 换 效 率 较 高 、可 灵
活 调 节 有 功 和无 功 等 特 点 ,近 年 来 得 到 了广 泛 应
用 。本 文 就 其 控 制 策 略 建 立 模 型 并 仿 真 ,力 求 得
出具 有 指 导 意 义 的理 论 结 果 。
0 引言
风 电系 统 相 比 ,系 统 的 发 电 效 率 大 为 提 高 ,转 速 运 行 范 围也 较 宽 ,而 且 可 灵 活 地 调 节 系 统 的 有 功
风 能 作 为 一 种 可 再 生 的 清 洁 能 源 ,近 年 来 越 和 无 功 。 来 越 受 到 各 国 的重 视 。风 力 发 电 由于 具 有 零 污染 、 交 流 励 磁 变 速 恒 频 风 力 发 电 系 统 的结 构 框 图
作者简介 :高扬 ( 1 9 9 0一 ) ,男 ,硕士研究生 ,研究方 向为新 能源发 电与并 网 ,E — m a i l : j j g y x k y @1 2 6 . C O I n 。

双馈风力发电机

一、
设双馈电机的定转子绕组均为对称绕组,电机的极对数为 ,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速 称为同步转速,它与电网频率 及电机的极对数 的关系如下:
(3-1)
同样在转子三相对称绕组上通入频率为 的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:
双馈风力发电机
鲍立刚
电机0901班
130609107
关键词:双馈发电机、ABB变频器、
引言:电机是利用电磁感应原理工作的机械。随着生产的发展而发展的,反过来,电机的发展又促进了社会生产力的不断提高。从19世纪末期起,电动机就逐渐代替蒸汽机作为拖动生产机械的原动机,一个多世纪以来,虽然电机的基本结构变化不大,但是电机的类型增加了许多,在运行性能,经济指标等方面也都有了很大的改进和提高,而且随着自动控制系统和计算机技术的发展,在一般旋转电机的理论基础上又发展出许多种类的控制电机,控制电机具有高可靠性﹑好精确度﹑快速响应的特点,已成为电机学科的一个独立分支。
它应用广泛,种类繁多。性能各异,分类方法也很多。电机常用的分类方法主要有两种:一种是按功能用途分,可分为发电机﹑电动机,变压器和控制电机四大类。
在现代化工业生产过程中,为了实现各种生产工艺过程,需要各种各样的生产机械。拖动各种生产机械运转,可以采用气动,液压传动和电力拖动。由于电力拖动具有控制简单﹑调节性能好﹑耗损小﹑经济,能实现远距离控制和自动控制等一系列优点,因此大多数生产机械都采用电力拖动。
同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。

双馈风力发电机组故障分析及防范措施

双馈风力发电机组故障分析及防范措施摘要:为保证双馈风力发电机组安全稳定的运行,本文在概述双馈风力发电机组工作原理及结构的基础上,分析了双馈风力发电机组故障及相应的处理措施,并提出了故障的预防措施,以供参阅。

关键词:双馈风力发电机组;故障;处理;防范措施1双馈风力发电机组工作原理及结构1.1双馈风力发电机组工作原理变速风电机组通过风轮输入的风能转化为机械能,然后通过齿轮轴,把机械能传递到双馈发电机,发电机将机械能转化成电能输出到电网中。

发电机与电网间通过两个变流器相连,一个是转子侧变换器AC/DC,转子侧变换器相当于在转子回路中串联一个电压向量,其作用是是对发电机进行励磁控制,可以实现对机组有功和无功功率解耦,使转子达到预期的转速。

而电网侧的变换器DC/AC可以实现直流环节的有功功率和与电网间交换的有功功率的平衡,可以控制直流侧电压的稳定和交流侧功率因数。

1.2双馈风力发电机组结构双馈风力发电机是一种新型的设备,其主要是应用在变速恒频风力发电系统中,其结构与绕线式异步发电机有着较大的相似性。

双馈风力发电机的定子与转子两侧都可以馈送电能,其定子绕组直接与电网连接,而转子绕组是利用双向变流器与电网连接,根据系统运行的要求,对电压幅值、相位以及频率进行调节,从而实现变速恒频运行。

双向变流器是由网测变流器以及机侧变流器构成的,二者具有独立控制的特点,结合双PWM可逆整流控制系统,可以将直流测电容两端的电压保持恒定。

双馈风力发电机组的结构满足了电网自动化并网和运行的要求,但是为了保证电能供给的质量,技术人员还需要对双馈风力发电机组进行不断的优化。

2双馈风力发电机组故障分析及处理措施本文以某省份2135台2MW双馈风力发电机组为例,简要说明双馈风力发电机组常见故障与处理措施。

2.1双馈发电机振动故障分析与处理发电机是风力发电系统中进行能量转换的主要器件,但在长时间运行下,过大的振动会导致发电机零件损坏,轴承断裂,电机飞车,甚至导致滑环与碳刷之间打火放电等故障,不仅影响风力发电系统的稳定性,而且还会危及人身的安全。

变速恒频风力发电系统中双馈发电机的理论分析


作 者 简介 : 波 ( 9 3 ) 男 , 士研 宄 生 , 要 研 究 电 力 电 与 林 18 一 , 硕 主
风 力 发 电。
电工技术 J 0 8J 0 2 5期 J 1 7
维普资讯
电机 技 术
U' 2



lj (
因此 电机 的转 速 必须 满 足 :
n 】=n ±n2
得:
的一些 基 本 理 论 进 行 分 析 ,为后 面 进 一 步 的 控 制 、仿 真 等研 究工 作 打 下基 础 。
() 3
式中: n 为转子本 身的旋转速度 。将式 ( ) 2 代 入 1 、( )
:p 6 n/ 0+ ( 4)
本文试 图对 风 力 发 电 系统 中 所 用 到 的 双馈 发 电机
三相对称绕组通人频率为 的三相对称 电流后所产生 的旋转磁场相对于转子本身的旋转速度 ,rmi。 / n
由 电机学 原 理 可 知 ,为 了实 现 稳 定 有 效 的 机 电 能
量转换 ,电机 中定 、转子旋转磁场必须保持相对静止。
电机为例 ,忽 略定 子铁耗 ,同时定 子侧按照发 电机惯
例 ,转 子侧 按 照 电机 惯 例 ,可 得 到 双 馈发 电 机 的 等 效 电 路和 电压 方 程分 别 如图 2和式 ( ) 8 、( ) 7 、( ) 9 所示 。
U l=一,( l+j 1 l r )+,2 j ) ( () 7
当发 电机 转 速 变 化 时 可 通 过 调 节 转 子 励 磁 电流 频 率 .
保持定子输 出电能频率 恒定 ,这是 变速恒频运行 的 原理。当发电机亚同步运行时 ( n ),转 子绕组 相 n< . r 序与定子相同,转子 电流产生的旋转磁 场转速 n 与转 :

双馈型风力发电变流器及其控制

双馈型风力发电变流器及其控制随着环保意识的日益增强和可再生能源的广泛应用,风力发电技术得到了快速发展。

双馈型风力发电变流器作为风力发电系统中的关键设备之一,在提高风能利用率和电能质量方面具有重要作用。

本文将介绍双馈型风力发电变流器的工作原理、特点优势及其控制方式。

双馈型风力发电变流器是一种交直流变换设备,可将风力发电机发出的交流电转换为直流电,再供给电力系统使用。

其工作原理是采用双馈(交流和直流)线路,通过电力电子器件(如IGBT、SGCT等)的开关动作,控制交流和直流电流的双向流动,实现能量的交直流转换。

高效性:双馈型风力发电变流器具有较高的能量转换效率,可实现风能的最大化利用。

灵活性:双馈型风力发电变流器可通过控制开关器件的占空比,调节输出电流的幅值、频率和相位,满足不同风速和负荷条件下的运行需求。

稳定性:双馈型风力发电变流器可有效平抑风速波动带来的影响,提高电力系统的稳定性。

维护性:双馈型风力发电变流器采用模块化设计,便于维护和检修,降低了运维成本。

矢量控制:通过控制交流侧电流的幅值和相位,实现有功功率和无功功率的解耦控制,提高电力系统的稳定性。

直接功率控制:采用瞬时功率采样,通过控制逆变侧电流的幅值和相位,直接控制有功功率和无功功率,具有快速的动态响应。

神经网络控制:利用神经网络技术,建立风力发电变流器数学模型,实现自适应控制和优化运行。

模糊控制:基于模糊逻辑理论,通过模糊控制器对变流器进行非线性控制,具有良好的鲁棒性和适应性。

双馈型风力发电变流器作为风力发电系统的关键设备之一,具有高效、灵活、稳定和维护简便等特点及优势。

其控制方式多种多样,包括矢量控制、直接功率控制、神经网络控制和模糊控制等,可根据实际应用场景选择合适的控制方式以实现最优运行。

随着风电技术的不断发展,双馈型风力发电变流器在未来将发挥更加重要的作用,为可再生能源的广泛应用和绿色能源转型提供强有力的支持。

随着环境保护和可持续发展的日益重视,风力发电作为一种清洁、可再生的能源,越来越受到人们的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双馈型风力发电机机侧换流器控制分析 (硕电力124班 电机与电器专业) 摘要:本文分析了双馈发电机组运行工作的基本原理,并在建立起双馈发电机在三相静止坐标系下的数学模型和两相同步旋转坐标系下的数学模型,并在两相同步旋转坐标下数学模型的基础上分析了机侧换流器的控制策略。 关键字:双馈风力发电机;数学模型;坐标变换;矢量控制 1 引言 能源是人类生存的基本要素,是人类社会经济发展的基石。随着人类社会的发展和进步, 能源在社会、经济等各个领域的作用和地位越来越突出。目前,世界常规能源主要来自于石油、煤炭以及核能。近十年来,石油资源日渐枯竭,加之受到政治和自然灾害的影响,石油危机已经显现。今天的现代文明是建立在对宝贵而又稀少的化石能源的大量使用的基础上的,现有的能源系统不可持续,在能源安全、环境污染以及气候变化等各个方面都面临着巨大的挑战。 我国人口众多,能源资源相对匮乏。占世界人口1/5的中国,煤炭储量占世界储量的 11%, 石油占 2.4%,而天然气仅占 1.2%。中国目前已是世界上第三大能源生产国和第二大能源消费国。相对应所产生的环境问题也是非常严峻的,目前我国在环境污染和温室气体排放等方面均居世界前列。相关部门报告,目前环境污染所造成的损失直接占到我国国民生产总值的10%左右。因此采用清洁无污染的可再生能源代替常规能源对于经济的发展以及解决环境问题都有着非常重要的意义。 风能是一种清洁无污染的可再生能源,且资源丰富,取之不尽。相对于煤炭、天然气等常规能源,采用风能发电,不受资源短缺的影响,同时不会对环境造成污染。此外,风资源储量充分且分布广泛,据理论计算全球大气中风能总能量是1710 kW,而且是可以再生的,估计大约有123.5×10kW 的蕴藏风能可以被开发利用。正因为风能具有以上诸多优势,目前全球各国都在争相发展风电,风力发电技术也是各国学者研究的热点。1996 年以后风电在全球年均增长速度超过 30%,已经成为发展最快的清洁电源。随着各国对风力发电技术研究的深入以及大规模风场的建设,风力发电成本也逐渐下降,目前在风资源相对充足的风场,风电价格大约为 4 美分/kWh,只是上世纪八十年代风电价格的 20%。由于资源充足,各国的重视以及技术的成熟,风电的发展远远超过预期,2011年全球风机容量已达238GW,预计2015年将到600GW,2020年将超过1500GW。 2 国内外发展现状与发展趋势 2.1 国外风电发展现状 在世界范围内,人类开发风能的热情越来越高,技术也越来越成熟,尤其在丹麦、荷兰、德国等欧洲发达国家风能的开发利用己相当普及。作为全球风能开发利用的佼佼者,在风能的利用史上,丹麦几乎引领了世界100多年,是世界上最早进行风力发电研究和应用的国家,丹麦人早在1891年就研制出了风力发电机,并建成了世界上第一座风力发电站,但是由于各方面原因,在之后的很长一段时间里风力发电在丹麦并没有得到大规模的推广应用,直到20世纪70年代,丹麦94%的能源消耗还是石油,随着第一次石油危机的爆发,迫使丹麦政府不得不寻找替代品,而风能的开发利用也迅速进入了高速发展期。至上世纪末,丹麦政府共投入1亿美元进行风能的研究与开发,并对风电设备实施补贴政策鼓励风机制造业的发展。截至2009年底,丹麦的风电设备在全球所占份额达到了近40%,位居世界第一位。2006年风力发电占丹麦全国总发电量的23%,预计2030年将达到75%,届时丹麦将真正成为“风驱动国家”随着风力发电技术的不断发展,最近几年欧洲国家的风力发电能力大大增加,风电成本大大降低,近二十年间减少了近80%。在目前世界范围内的风力发电市场中,从单位容量投资、年发电量、运行费用及运行稳定性等指标衡量,MW级风电机组都具有较大的竞争优势,且其功率等级还在不断增大。根据2009年国家发改委能源研究所发布的数据,1998年至2008年10年时间内,全球风电年平均增长速度达到了惊人的61%。2008年,北美地区新增装机888.1万千瓦,欧洲地区新增装机887.7万千瓦,亚洲地区新增装机858.9万千瓦,成为拉动世界风电发展的三个极,其装机容量占世界风电总装机容量的90%以上。 2.2国内风电发展现状 我国从二十世纪八十年代才开始发展并网型风力发电,规模远不及欧美,尚处于探索阶段。由于中国已经具备规模化发展可再生能源的条件,同时政府对新能源发展的支持,进入二十世纪九十年代以来,我国风电发展势头强劲,年平均增长速度在 20%以上,成为我国发展速度最快的能源工业。2011年中国新增安装风电装机容量17.6GW ,累计风电装机容量62.3GW,居世界首位。按照我国“十二五”规划纲要,2015年的风电总装机容量为1亿千瓦,即未来每年的新增风电装机容量应保持在1000万瓦以上。建设千万千瓦级风电基地思路的提出和实施,落实“建设大基地,融入大电网”的发展方针,以使中国到2020年非石化能源占一次能源比重达到15%,这是巨大工程,巨大的挑战。在我国,安装的大型风电机组中,90%依靠进口,严重束缚了我国民族风电产业的健康发展,成为影响我国风电规模持续发展的瓶颈。想要从根本上改变这种状况,最为有效的途径就是推进大型风电机组国产化进程。 3 双馈风力发电系统介绍 按照发电机转速的不同,风力发电系统可分为定转速、受限变转速和变转速3种。在定转速和受限变转速发电情况下风力机只能在某一风速下工作于最大出力点,不能实现最大风能捕获,利用效率低,且可靠性不高。变速发电机采用同步电机或双馈电机,在风速变化时,转速也随之改变,保证在不同转速下,风力机都处于风能的最大捕获状态,并将发电机所产生的电能通过电力电子变流器传送至恒频恒压电网。双馈型风力发电系统和直驱型风力发电系统是目前变速恒频风力电场上的主流机型。 3.1 双馈风力发电机组构成 风力发电系统一般主要由风轮、齿轮箱、发电机、变流器等设备以及控制系统构成。典型的双馈风力发电系统构成如图1所示。风轮首先捕获波动的风能并转换为旋转的机械能,再由发电机将机械能转化为电能后经由变压器馈入电网。

图1 双馈风力发电系统 其中双馈电机在结构上与三相绕线式异步电机相类似,其定子侧直接接入工频电网,转子绕组通过转差功率变流器与电网连接。所谓变速恒频是指,稳态运行时,转差功率变流器根据所检测到的电机转速调节流入双馈电机转子绕组的励磁电流频率以保证定转子电流所产生的旋转磁场在空间上保持相对静止,实现定子侧感应电势的频率与电网频率相同。 转差功率变流器也称双馈变流器,如图1所示,是由两个“背靠背”连接的电压型PWM变换器构成。在该风电系统中,控制转子励磁的双馈变流器是系统的核心,它应具备: 1) 保证能量能够双向流动。 2) 输出电流幅值、频率、相位连续可调,以控制定子的电压频率、有功功率、无功功率,实现发电系统的顺利并网和最佳叶尖速比控制。 3) 输出频率满足双馈电机的调速范围要求。70%同步速至130%同步速连续可调,滑差频率±30%同步速调节。 3.2 双馈风力发电机工作基本原理 双馈发电机稳态运行时,满足: 

11rpmsrns

 (1)

其中, r为转子机械旋转的电角度,pn为发电机的极对数, m为转子机械角速度,s为转子电流电角度,s为转差率。

双馈发电机运行状况分为三种:当发电机的转速小于同步转速时,即1r时,系统处于亚同步状态,电网通过双馈变流器向发电机转子回路提供转差功率;当1r时,系统处于超同步状态,发电机转子侧通过双馈变流器向电网馈送能量;当1r时,系统处于同步状态,双馈变流器给电机转子提供直流励磁。根据不同运行情况,双馈发电机与电网通过双馈变流器实现能能量的双向流动。

转子旋转磁场相对于转子的旋转角速度为s,则稳态时,转子励磁电流频率即为转差频率,即有:

12pmfnff (2)

其中1f为电网频率,mf为转子旋转频率,2f为转子电流频率。 由式(2)知,当风速发生变化,相应的mf发生变化时,通过调节2f使得电网频率维持在50Hz不变,从而实现变速恒频运行。 3.3 双馈风力发电机的数学模型 双馈电机有两套绕组:定子三相绕组和转子三相绕组"转子绕组如果施以三相对称电时,转子电流就会在空间产生旋转磁场,旋转磁场切割定子绕组产生三相电动势进而产生三相电流;定子电流也会在空间产生旋转磁场,同时对转子电流产生影响。因此,从本质上讲,双馈电机是一个非线性、强耦合、多变量的系统。为便于分析,对双馈电机作初步假设:假设双馈电机定转子绕组三相对称,忽略空间谐波;忽略磁饱和,忽略铁芯损耗;忽略电机参数的非线性变化;转子绕组的各参数都归算到定子侧。 3.3.1 双馈发电机在静止坐标系下的数学模型

将双馈电机定转子绕组等效为星型,电路如图2所示,左侧为定子侧,右侧围转子侧,定转子绕组均取电动机惯例,输入电流为正,则可得到三相静止坐标下的电压方程、磁链方程、转矩方程如下:

图2 双馈电机定转子等效电路图 1)电压方程 三相定子绕组电压方程:

AAsA

BBsB

CCsC

duRidtduRidtduRidt





 (3)

三相转子绕组归算到定子侧的电压方程:

aara

bbrb

ccrc

duRidtduRidtduRidt





 (4)

其中:Au,Bu,Cu为定子侧相电压瞬时值;au,bu,cu为转子侧相电压瞬时值;Ai, Bi,Ci为定子侧相电流;A,B,C,a,b,c为定转子每相绕组磁链;sR为定

子每相绕组电阻,rR为转子每相绕组电阻。 将以上(3)(4)两式写成矩阵形式:

相关文档
最新文档