天线挂高 下倾角 方位角

天线挂高 下倾角 方位角
天线挂高 下倾角 方位角

天线的覆盖范围主要取决于天线高度、下倾、天线增益、天线口功率、无线链路等因素。

①天线挂高:是指不算地面只算天线悬空的长度或高度。计算方法:算建筑物的高度加支撑架到天线的中点的距离。

②方位角:正北方向的平面顺时针旋转到和天线所在平面重合所经历的角度。在实际的天线放置中,方位角通常有0度,120度和240度。分别对应于A小区、B小区、C小区

③下倾角是天线和竖直面的夹角。

天线下倾角的计算可以建立在如图1所示的模型下。其中H表示天线的高度,D表示基站的覆盖半径,α就表示天线的下倾角,β/2 表示半功率角。那么天线的下倾角α为arctan(H/D)+β/2。在实际中只要已知了基站的高度、覆盖半径和半功率角就可以计算出天线的下倾角。

Andorid中的方位倾角仪(antenna downtilt):是Android平台下的一款测量方位角和下倾角的软件。根据软件自身的功能描述,只要将手机的背面对着天线,软件就可以测量出天线的方位角和下倾角。

天线下倾角的调整是网络优化中的一个非常重要的事情。选择合适的下倾角可以使天线至本小区边界的射线与天线至受干扰小区边界的射线之间处于天线垂直方向图中增益衰减变化最大的部分,从而使受干扰小区的同频及邻频干扰减至最小;另外,选择合适的覆盖范围,使基站实际覆盖范围与预期的设计范围相同,同时加强本覆盖区的信号强度。

天线方向角的调整对移动通信的网络质量非常重要。一方面,准确的方向角能保证基站的实际覆盖与所预期的相同,保证整个网络的运行质量;另一方面,依据话务量或网络存在的具体情况对方向角进行适当的调整,可以更好地优化现有的移动通信网络。

根据理想的蜂窝移动通信模型,一个小区的交界处,这样信号相对互补。与此相对应,在现行的GSM系统(主要指ERICSSON设备)中,定向站一般被分为三个小区,即:A小区:方向角度0度,天线指向正北;B小区:方向角度

120度,天线指向东南;C小区:方向角度240度,天线指向西南。

在GSM建设及规划中,我们一般严格按照上述的规定对天线的方位角进行安装及调整,这也是天线安装的重要标准之一,如果方位角设置与之存在偏差,则易导致基站的实际覆盖与所设计的不相符,导致基站的覆盖范围不合理,从而导致一些意想不到的同频及邻频干扰。

一般网络规划对市区可按照:

(a) 繁华商业区;

(b) 宾馆、写字楼、娱乐场所集中区;

(c) 经济技术开发区、住宅区;

(d)工业区及文教区等进行分类。

一般来说:(a)(b)类地区应设最大配置的定向基站,如8/8/8站型,站间距在0.6~1.6km;

(c) 类地区也应设较大配置的定向基站,如6/6/6站型或4/4/4站型,基站站间距取1.6~3km;

(d) 类地区一般可设小规模定向基站,如2/2/2站型,站间距为3~5km;若基站位于城市边缘或近郊区,且站间距在5km以上,可设以全向基站。以上几类地区内都按用户均匀分布要求设站。郊县和主要公路、铁路覆盖一般可设全向或二小区基站,站间距离5km-20km左右。覆盖的目的就是为了给客户带来更好无线业务服务,不过还需要注意几个方面:

1、看覆盖环境,不同的地区采用不同下倾方式和天线挂高;

2、看天线类型、参数,是否带电倾角,看天线参数以及其方向图进行评估;

3、实地CQT测试,更加贴近用户的方式。

天线高度的调整天线高度直接与基站的覆盖范围有关。一般来说,我们用仪器测得的信号覆盖范围受两方向因素影响:一是天线所发直射波所能达到的最远距离;二是到达该地点的信号强度足以为仪器所捕捉。900MHz移动通信是近地表面视线通信,天线所发直射波所能达到的最远距离(S)直接与收发信天线的高度有关,具体关系式可简化如下:S=2R(H+h)其中:R-地球半径,约为6370km;H-基站天线的中心点高度;h-手机或测试仪表的天线高度。由此可见,基站无线信号所能达到的最远距离(即基站的覆盖范围)是由天线高度决定的。GSM网络在建设初期,站点较少,为了保证覆盖,基站天线一般架设得都较高。

随着近几年移动通信的迅速发展,基站站点大量增多,在市区已经达到大约500m左右为一个站。在这种情况下,我们必须减小基站的覆盖范围,降低天线的高度,否则会严重影响我们的网络质量。其影响主要有以下几个方面:

a. 话务不均衡。基站天线过高,会造成该基站的覆盖范围过大,从而造成该基站的话务量很大,而与之相邻的基站由于覆盖较小且被该基站覆盖,话务量较小,不能发挥应有作用,导致话务不均衡。

b. 系统内干扰。基站天线过高,会造成越站无线干扰(主要包括同频干扰及邻频干扰),引起掉话、串话和有较大杂音等现象,从而导致整个无线通信网络的质量下降。

c. 孤岛效应。孤岛效应是基站覆盖性问题,当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"与相邻基站之间没有切换关系,"飞地"因此成为一个孤岛,当

手机占用上"飞地"覆盖区的信号时,很容易因没有切换关系而引起掉话。

电子下倾角与物理下倾角作用是一样的,就是控制天线主瓣的覆盖范围。电子的优点是下倾后旁瓣不会扩展太多。判断是否需要下倾角主要还是根据预测的主瓣覆盖距离和天线高度进行计算。这种计算是一种繁琐的计算过程,其实目前有很多天线覆盖计算软件,不过原理都是基于下面的思想:公式

B=arctg(H/R)+A/2,天线高度H,所希望得到的覆盖半径R,天线垂直平面的半功率角A,B就是天线的倾角。该算法是以天线垂直波瓣的外边界作为覆盖的,也可以根据主瓣方向作边界,你可以根据三角形公式自行推算DC= H/tan(a-HPBW/2)转换过来就是:a=arctan(H/DC)+HPBW/2;

根据覆盖公式:下倾角=Atan(天线高度h/覆盖距离)*180/Pi+V-HPBW/2+经验修正值,在乡村修正值为0、市区为1、基站密集区为2具体说明:天线所发直射波所能达到的最远距离(S)直接与收发信天线的高度有关,具体关系式可简化如下:S=2R(H+h)其中:R-地球半径,约为6370km;H-基站天线的中心点高度;h-手机或测试仪表的天线高度。由此可见,基站无线信号所能达到的最远距离(即基站的覆盖范围)是由天线高度决定的。

在目前的移动通信网络中,由于基站的站点的增多,使得我们在设计市区基站的时候,一般要求其覆盖范围大约为500M左右,而根据移动通信天线的特性,如果不使天线有一定的俯仰角(或俯仰角偏小)的话,则基站的覆盖范围是会远远大于500M的,如此则会造成基站实际覆盖范围比预期范围偏大,从而导致小区与小区之间交叉覆盖,相邻切换关系混乱,系统内频率干扰严重;另一方面,如果天线的俯仰角偏大,则会造成基站实际覆盖范围比预期范围偏小,导致小区之间的信号盲区或弱区,同时易导致天线方向图形状的变化(如从鸭梨形变为纺锤形),从而造成严重的系统内干扰。因此,合理设置俯仰角是保证整个移动通信网络质量的基本保证。

一般来说,俯仰角的大小可以由以下公式推算:θ=arctg(h/R)+A/2其中:θ--天线的俯仰角h--天线的高度R--小区的覆盖半径A-天线的垂直平面半功率角上式是将天线的主瓣方向对准小区边缘时得出的,在实际的调整工作中,一般在由此得出的俯仰角角度的基础上再加上1-2度,使信号更有效地覆盖在本小区之内。

链路损耗计算:基站的选址和布局直接影响到整个系统的服务质量情况。因此,根据合适的传播模型及路径损耗,可以计算出基站的覆盖半径。在过去的基站覆盖半径计算中,典型的传播模型是Hata城市传播模型。Hata模型如(1)式表述:Hata城市传输模型

L=46.3+33.9log(f)-13.82log(Hb)+(44.9-6.55log(Hb))log(d)+Cm (1)

其中,L为最大路径损耗(dB);f为载波频率(MHz);Hb为天线高度(米);

d为到基站的距离(千米)。中等规模城市或市郊中心,树木的稀疏程度中等时:Cm=0,大城市市区中心:Cm=3。

针对3G系统,3G组织也特别推荐了一个模型,该传播模型如下:3G传输模型:

L=40(1-0.004Hb)log(d)-18log(Hb)+21log(f)+80 (2)

其中,各参数的意义同(1)式。

在WCDMA中,当f=2000MHz时,则上述两式简化为:Hata城市传播模型:L=161.17-13.82log(Hb)+(44.9-6.55log(Hb))log(d) (3)

3G传播模型:L=149.32-18log(Hb)+40(1-0.004Hb)log(d) (4)

电子下倾的原理是通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大小,改变合成分量场强强度,从而使天线的垂直方向性图下倾。由于天线各方向的场强强度同时增大和减小,保证在改变倾角后天线方向图变化不大,使主瓣方向覆盖距离缩短,同时又使整个方向性图在服务小区扇区内减小覆盖面积但又不产生干扰。实践证明,电调天线下倾角度在1°-5°变化时,其天线方向图与机械天线的大致相同;当下倾角度在5°-10°变化时,其天线方向图较机械天线的稍有改善;当下倾角度在10°-15°变化时,其天线方向图较机械天线的变化较大;当机械天线下倾15°后,其天线方向图较机械天线的明显不同,这时天线方向图形状改变不大,主瓣方向覆盖距离明显缩短,整个天线方向图都在本基站扇区内,增加下倾角度,可以使扇区覆盖面积缩小,但不产生干扰,这样的方向图是我们需要的,因此采用电调天线能够降低呼损,减小干扰。常用的有内置电机和外置电机两种驱动方式。一般有手动和遥控调节。内置电调,是已经改变了功率分配,出厂前就有几度的下倾。

坐标方位角计算

=(PI()*(1 - SIGN(B3-$B$1) / 2) - ATAN((A3-$A$1) /(B3-$B$1)))*180/PI() Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。 度分秒格式: =INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()) &"-"& INT( ((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180 /PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/ PI()))*60)&"-"&INT( (((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3- $b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3- $b$1)))*180/PI()))*60-INT(((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) / (B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) / (B3-$b$1)))*180/PI()))*60))*600)/10 其中:A1,B1中存放测站坐标,a3,b3放终点坐标。 上面的计算出来的是度分秒格式,也就是字符串格式,不能用来计算,只是用来看的哟! 下面这个简单一点: =INT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI())*10000+INT(((PI()*(1-S IGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI()-INT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4) /(C6-C4)))*180/PI()))*60)*100+(((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI()-I NT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI()))-(INT(((PI()*(1-SIGN(C6-C4)/ 2)-ATAN((B6-B4)/(C6-C4)))*180/PI()-INT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*1 80/PI()))*60))/60)*3600 Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。 求距离公式: =Round(SQRT(POWER((A3-$A$1),2)+POWER((B3-$B$1),2)),3)

天线下倾角的计算方法

天线下倾角的计算方法 一、基础理论 1、定义 天线下倾角=机械下倾角+电子下倾角 机械下倾角:通过天线的上下安装件来调整的,这种方式是以安装抱杆为参照物,与天线形成夹角来计算的。 电子下倾角:通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大 小,改变合成分量场强强度,从而使天线的垂直方向性图下倾 2、理论计算 已知:H--天线的高度, D--小区的覆盖半径, β-天线的垂直平面半功率角, P—预制下倾角,为可选项,计算α--天线的俯仰角 答:α=arctg(H/D)+β/2-{P} 二、实例说明 1、某县级市平均站间距为443米,本地区采购的天线水平半功率角为65°,垂直半功 率为6°,内置电子下倾角分两类:0度,6度,采购原则如下:总下倾角小于等于 9度的,采购电子下倾角为0度的天线,总下倾角大于9度的,采购电子下倾角为 6度的天线。假设本期新增的基站均为三扇区定向站,请分别计算站高为20米、30 米、40米、50米的基站,天线下倾角分别是多少,机械下倾角分别是多少? 答:

(1)根据上图所示,且新增基站为三扇区定向站,小区半径R=站间距D/1.5=443÷1.5≈295(米) (2)通过《天线下倾角与覆盖距离计算》软件计算 20米站高基站:总下倾角=7°,机械下倾角=总下倾角-电子下倾角=7°-0°=7°

=9° 40米站高基站:总下倾角=11°,机械下倾角=总下倾角-电子下倾角=11°-6°=5°

-6°=7° 总结:根据以上经验可以推算出,在该地区20米站高基站天线下倾角为7°, 站高每增加5米,天线下倾角增加1° 三、运行软件

坐标方位角计算

二 计算坐标与坐标方位角的基本公式 控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。 一、坐标正算和坐标反算公式 1.坐标正算 根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。 如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为 AB A B AB A B y y y x x x ?+=?+= } (5—1) 式中 AB x ? 、AB y ?——坐标增量。 由图5—5可知 AB AB AB AB AB AB S y S x ααsin cos =?=? } (5—2) 式中 AB S ——水平边长; AB α——坐标方位角。 将式(5-2)代入式(5-1),则有 AB AB A B AB AB A B S y y S x x ααsin cos +=+= }

(5—3) 当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。 从图5—5可以看出AB x ?是边长AB S 在x 轴上的投影长度, AB y ?是边长AB S 在 y 轴上的投影长度,边长是有向线段,是在 实地由A 量到B 得到的正值。而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。

104373_坐标方位角计算公式

坐标方位角计算公式(通用) 用极坐标法放样必须计算出测站点(仪器点)到放样点得距离和方位角,才能进行放样。 原计算公式为: S12=sqr( (x2-x1)2+(y2-y1)2)= sqr(△x221+△y221) A12=arcsin((y2-y1)/S12) S12为测站点1至放样点2的距离; A12为测站点1至放样点2的坐标方位角。 x1,y1为测站点坐标; x2,y2为放样点坐标。 按公式A12=arcsin((y2-y1)/S12)计算出的方位角都要进行象限判断后加常数才是真正的方位角。 新计算公式为: A12=arccos(△x21/S12)*sgn(△y21)+360° 式中sgn()为取符号函数,改公式只需加上条件(A12>360°, A12= A12-360°)就可以计算出坐标方位角,不需要进行象限判断。 我的这个公式要更好一些,计算结果就是正确结果: SGN是正负号的函数。括号内的数字大于零SGN()就是+号,反之就是-号。

===================================函数开始=================================== 'jiaodu10(x,splitStr)函数将60进制度转换为10进制度格式.x为度数,splitStr为分隔符号,'如x为43%67%367,则splitStr为"%",参数要用双引号括起来,jiaodu10("x","%") Function jiaodu10(x,splitStr) If InStr(1,x,splitStr) Then Dim s s=Split(x,splitStr) jiaodu10=s(0)+s(1)/60+s(2)/3600 Else jiaodu10="错误" End If End Function '-------------------------------------------------------------------------------- 'jiaodu60(x,splitStr)函数将10进制度转换为60进制度格式,splitStr分隔表示 'x为数字,可以不用双引号括起来,参数splitStr要用双引号括起来iaodu10(12.31313,"-") Function jiaodu60(x,splitStr) Dim fen,miao Fen =Round((fen-Int(fen))*60,0) If miao >= 60 Then miao = miao-60 fen = fen+1 End If jiaodu60=Int(x) & splitStr & Int(fen) & splitStr & miao End Function '-------------------------------------------------------------------------------- 'juli(待算点纵坐标x,待算点横坐标y,测站点纵坐标m,测站点纵坐标n)用于计算距离。 Function juli(x,y,m,n) juli=Math.Spr((x-m)^2+(y-n)^2) End Function '-------------------------------------------------------------------------------- 'jiaodu(x,y,m,n)计算角度 Function jiaodu(x,y,m,n) Dim dx,dy,a,jdu10 dx=x-m dy=y-m a=Math.Abs(Math.Atn(dy/dx) * 180 / 3.14159265) jdu10=0 If (dx > 0) Then If (dy > 0) Then jdu10 = a Else jdu10 = 360-a End If Else If (dy > 0) Then jdu10 = 180-a

公路测量计算公式

计算公式 一、 方位角的计算公式 二、 平曲线转角点偏角计算公式 三、 平曲线直缓、缓直点的坐标计算公式 四、 平曲线上任意点的坐标计算公式 五、 竖曲线上点的高程计算公式 六、 超高计算公式 七、 地基承载力计算公式 八、 标准差计算公式 一、 方位角的计算公式 1. 字母所代表的意义: x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角 2. 计算公式: ()()212212y y x x S -+-=

1)当y 2- y 1>0,x 2- x 1>0时:1 21 2x x y y arctg --=α 2)当y 2- y 1<0,x 2- x 1>0时:1 21 2360x x y y arctg --+?=α 3)当x 2- x 1<0时:1 21 2180x x y y arctg --+?=α 二、 平曲线转角点偏角计算公式 1. 字母所代表的意义: α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角 2. 计算公式: β=α2-α1(负值为左偏、正值为右偏) 三、 平曲线直缓、缓直点的坐标计算公式 1. 字母所代表的意义: U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD ) T :曲线的切线长,23 22402224R L L D tg R L R T s s s -+??? ? ??+= D :JD 偏角,左偏为-、右偏为+

2. 计算公式: 直缓(直圆)点的国家坐标:X′=U+Tcos(A+180°) Y′=V+Tsin(A+180°) 缓直(圆直)点的国家坐标:X″=U+Tcos(A+D) Y″=V+Tsin(A+D) 四、 平曲线上任意点的坐标计算公式 1. 字母所代表的意义: P :所求点的桩号 B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1 C :J D 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标 T :曲线的切线长,23 22402224R L L D tg R L R T s s s -+??? ? ??+= I=C-T :直缓桩号 J=I+L :缓圆桩号 s L DR J H -+ =180 π:圆缓桩号

天线俯仰角

天线的覆盖范围主要取决于天线高度、下倾、天线增益、天线口功率、无线链路等因素。 一般网络规划对市区可按照: (a) 繁华商业区; (b) 宾馆、写字楼、娱乐场所集中区; (c) 经济技术开发区、住宅区; (d) 工业区及文教区;等进行分类。 一般来说: (a)(b)类地区应设最大配置的定向基站,女口8/8/8站型,站间距在 0.6~ 1.6km; (c) 类地区也应设较大配置的定向基站,如6/6/6站型或4/4/4站型,基站站间距取 1.6~ 3km; (d) 类地区一般可设小规模定向基站,如2/2/2站型,站间距为3?5km;若 基站位 于城市边缘或近郊区,且站间距在5km以上,可设以全向基站。 上几类地区内都按用户均匀分布要求设站。郊县和主要公路、铁路覆盖一般可设全 向或二小区基站,站间距离5km-20km 左右。 覆盖的目的就是为了给客户带来更好无线业务服务,不过还需要注意几个方

面: 1、看覆盖环境,不同的地区采用不同下倾方式和天线挂高; 2、看天线类型、参数,是否带电倾角,看天线参数以及其方向图进行评估; 3、实地CQT测试,更加贴近用户的方式。 天线高度的调整 天线高度直接与基站的覆盖范围有关。一般来说,我们用仪器测得的信号覆盖范围受两 方向因素影响: 一是天线所发直射波所能达到的最远距离; 二是到达该地点的信号强度足以为仪器所捕捉。 900MHz 移动通信是近地表面视线通信,天线所发直射波所能达到的最远距离(S)直接与收发信天线的高度有关,具体关系式可简化如下: S=2R(H+h) 其中: R-地球半径,约为6370km; H-基站天线的中心点高度; h-手机或测试仪表的天线高度。 由此可见,基站无线信号所能达到的最远距离(即基站的覆盖范围)是由天线高度 决定的。 GSM 网络在建设初期,站点较少,为了保证覆盖,基站天线一般架设得都较高。随着近几年移动通信的迅速发展,基站站点大量增多,在市区已经达到大约500m 左右为一个站。

天线下倾角调测

下倾角一般指天线向下和水平面之间的角度.一个合适的下倾角能加强本覆盖区域的信号强度,同时也能减少小区之间的信号盲区或弱区,也不会导致小区与小区之间交叉覆盖、相邻的关系混乱,一个合理的下倾角是保证整个移动通信网络质量的基本保证,所以目前天线下倾角的调整是我们网络优化中的一个非常重要的事情。 一般的天线下倾角共分为机械下倾角跟电子下倾角,机械下倾角是通过人工来调整天线物理下倾来实现,电子下倾角就是通过电子仪器来调整天线的阵子来实现。在这里我再明确一下,就是我们在施工过程中必须严格按照设计图纸来调整下倾角,机械下倾角和电子下倾角设计是多少度就应该是多少度,包括在我们在验收文档里面,下倾角是不允许有偏差的,就算相差一度也是不行的! 根据我们目前的设备,我主要就讲解下京信天线和安德鲁天线的电调仪使用方式。 目前我们使用的安德鲁电调仪

安德鲁的电调仪是没有自带显示屏的,所以我们需要用电脑联接电调仪再联接到天线来调整天线的电子下倾角,

联接天线后,打开软件,点击面板上“Find Dcvices”按钮 软件开始执行新的搜索任务,进度条显示搜索进程,界面下方状态栏显示伴随进程正在搜索的内容

完成搜索后弹出对话框,检查已搜索出的设备,如果正确点击“YES”,反之点击“NO”。 经过搜索发现天线后,界面内会弹出一个对话框,显示目前发现驱动器的数量。 同时,软件界面内会显示出已搜索到的天线驱动器的基本信息,其数据显示结构。

进入编辑选择窗口。 在编辑窗口内填写所有的信息后,点击“Configure”,跳出对话框询问点击“YES”,再次跳出对话框点击’“OK”。

LTE天线电子下倾角课题研究

LTE天线电子下倾角课题研究

1研究背景 3月27日,对校园内基站进行勘察,发现现场勘察的电子下倾角与后台网管配置的 电子下倾角不一致,见下表所示: 不一致。对于这种情况,后期进行RF优化时,由于电子下倾角不匹配,无法通过电子下倾角来有效控制覆。 目前市的基站主要采用京信以及国人的天线,主要型号为:

2分析思路 针对前后台电子下倾角不一致问题,我们首先建立了一个实验基站,为电信一枢纽6楼,选择天线型号为ODV2-065R18K-G,如下图所示: 1.我们初步怀疑为后台基站没有校准,因此在后台对该小区天线进行校准,校准 之后,后台电子下倾角显示为0度,但是此时天线上显示为1.8度。前后台仍然不一致。说明校准之后仍然无效。 2.将天线的电子下倾角都归零进行验证,在后台将电子下倾角设置为0度后,此 时天线上电子下倾角显示为0度,保持一致。说明归零时,前后台可以保持一致。 3.此时在后台将电子下倾角调整到6度时,天线上显示的电子下倾角为8度;在 将后台电子下倾角调整到9度时,此时天线的电子下倾角已经为10度。 以上说明通过校准天线、通过归零后在进行调整都没有效果,前后台电子下倾角仍然不一致。

因此我们怀疑为天线的配置文件错误,之后分别联系京信以及国人的天线厂家,拿到最新的配置文件,然后进行研究验证。

3研究验证 通过同基站工程师沟通,在配置电调天线时,他们首先需要拿到每种天线型号的配置文件,然后将配置文件导入系统中。因此我们初步怀疑为配置文件的问题。 因此我们联系天线厂家,拿到最新的配置文件,然后进行导入验证。 3.1国人天线验证 国人天线的最新配置文件如下: 选择师院实验楼基站进行验证,师院实验楼基站的天线型号为SGR-TX-100122。 进行数据导入,在动态管理里面,选择需要配置的站点,点开发送配置数据,如下图所示: 导入成功后需要将天线进行校准:

天线的分类与选择

第二讲天线的分类与选择 移动通信天线的技术发展很快,最初中国主要使用普通的定向和全向型移动天线,后来普遍使用机械天线,现在一些省市的移动网已经开始使用电调天线和双极化移动天线。由于目前移动通信系统中使用的各种天线的使用频率,增益和前后比等指标差别不大,都符合网络指标要求,我们将重点从移动天线下倾角度改变对天线方向图及无线网络的影响方面,对上述几种天线进行分析比较。 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 根据组网的要求建立不同类型的基站,而不同类型的基站可根据需要选择不同类型的天线。选择的依据就是上述技术参数。比如全向站就是采用了各个水平方向增益基本相同的全向型天线,而定向站就是采用了水平方向增益有明显变化的定向型天线。一般在市区选择水平波束宽度B为65°的天线,在郊区可选择水平波束宽度B为65°、90°或120°的天线(按照站型配置和当地地理环境而定),而在乡村选择能够实现大范围覆盖的全向天线则是最为经济的。 2.3 机械天线 所谓机械天线,即指使用机械调整下倾角度的移动天线。 机械天线与地面垂直安装好以后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。 实践证明:机械天线的最佳下倾角度为1°-5°;当下倾角度在5°-10°变化时,其天线方向图稍有变形但变化不大;当下倾角度在10°-15°变化时,其天线方向图变化较大;当机械天线下倾15°后,天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,在相邻基站扇区内也会收到该基站的信号,从而造成严重的系统内干扰。 另外,在日常维护中,如果要调整机械天线下倾角度,整个系统要关机,不能在调整天线倾角的同时进行监测;机械天线调整天线下倾角度非常麻烦,一般需要维护人员爬到天线安放处进行调整;机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差;机械天线调整倾角的步进度数为1°,三阶互调指标为-120dBc。

天线方位角俯仰角以及指向计算

创新实验课作业报告 姓名:王紫潇苗成国 学号:1121830101 1121830106 专业:飞行器环境与生命保障工程 课题意义:随着科学技术的迅猛发展,特别是航天科技成果不断向军事、商业领域的转化,航天科技得到了极大的发展,航天器机构朝着高精度、高可靠性的方向发展。因此对航天机构的可靠性、精度、寿命等要求越来越高,对航天器机构精度的要求显得愈发突出,无论是航天器自身的工作,还是航天器在轨服务都对其精度有着严格的要求。航天器中的外伸指向机构通常指的是星载天线机构,星载天线是航天器对地通信的主要设备,肩负着对地通信的主要任务,同时随着卫星导航的广泛应用,星载天线就愈发的重要起来,而其指向精度的要求就愈发的突出,指向精度不足,将会导致通信信号质量下降,卫星导航精度下降等结果。民用方面移动通信和车载导航等,军用方面舰船导航、精确打击等这些都对星载天线的指向精度有着极高的依赖性。 因此,星载天线的指向精度是非常重要的。要保证星载天线的指向精度,

课题一双轴驱动机构转角到天线波束空间指向 首先就是要确保星载天线驱动机构在地指向精度分析的正确性,只有这样才能对接下来的在轨指向精度分析和指向误差补偿进行分析。星载天线驱动机构的末端位姿误差主要来源于机构的结构参数误差和热变形误差,这些误差是驱动机构指向误差最原始的根源,由于受实际生产加工装配能力和空间环境的限制,这些引起末端指向误差的零部件结构参数误差是必须进行合理控制的,引起结构参数变 化的热影响因素是必须加以考虑的,只有这样才能使在轨天线驱动机构指向精度动态分析和误差补偿都得到较理想的结果。纵观整个星载天线驱动机构末端位姿误差的分析,提出源于结构参数误差和热变形误差引起的星载天线驱动机构末端位姿误差的研究是必要的。 发展现状:星载天线最初大多是以固定形式与卫星本体相连的,仅仅通过增大天线波束宽度和覆盖面积来提高其工作范围,对其精度要求不是很高,但是随着航天科技的不断发展和市场需求的不断变化,这就要求,星载天线要具备一定的自由度,因此促使了星载天线双轴驱动机构的发展。星载天线双轴驱动机构能够实现对卫星天线的二自由度驱动,是空间环境下驱动天线运动的专用外伸执行机构。卫星天线的二自由度运动能够满足对地通信、星间通信、卫星导航定位、以及对目标的实时观测跟踪,在满足这些需求的同时也要保证其精度的提高,随着需求的不断提高,精度已经成为衡量星载天线双轴驱动机构性能的一个重要指标,同时也是系统设计与实现的一个难点。综上所述可以看出,星载天线双轴驱动机构是驱动卫星天线系统进行准确空间定位的核心部分。 与此同时,我国对星载天线驱动机构的研究、生产制造技术进行了一定时间的学习积累,也成功的应用到了一些卫星上,具有一定的自主能力。自2000年后,我国在发射的卫星中,有很多采用了自主研发的天线驱动机构。相应的研究单位也蓬勃发展,航天科技集团、上海航天局等相关单位对星载天线驱动机构的研究已经取得了很大的成就和进展。特别是伴随着我国自主导航系统一北斗导航系统的不断发展,以及空间实验室和“嫦娥计划”的不断深入。星载天线双轴驱动机构得到了极大地发展。即便如此,我们跟国外还是有一定差距的,目前国内与国外的差距主要在双轴驱动机构精度、使用寿命、可靠性方面,因此还是需要进行深入研究,提高其精度、使用寿命、可靠性。 那么,我们小组也秉承着对航天事业的极大热忱开始对天线指向问题进行研

天线下倾角设置参考表之令狐文艳创作

天线下倾角设置参考表 令狐文艳 一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。 1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。(1)为减少干扰,应选用水平半功率角接近于60度的天线。这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。如下图所示。 (2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。

综上所述,城区基站宜选用水平半功率角为60度左右的中等增益的双极化天线。例如水平半功率角为65度的15dBi双极化天线。 2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。但由于密集城区基站站距往往只有400米到600米,在使用水平半功率角为65度的15dBi双极化天线,且天线有效挂高35米的情况下,天线下倾角可能设置在14.0度到11.5度之间。此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。所以密集城区基站选用电子式倾角的水平半功率角为60度左右的中等增益双极化天线较为合适。 3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。(1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。例如水平半功率角为90度的天线。(2)对于GSM网络而言,为提高覆盖质量,在平原地区使用水平半功率角较大的天线效果较好,但同时会产生切换区域增大的问题;而在山区和丘陵地带使用水平半功率角较小的天线

定向天线天线下倾角的设置

定向天线天线下倾角的设置 摘要:天线下倾角设置是否合理,将对天线的覆盖产生重要的影响,同时会对相邻小区形成不良的影响,因此,正确的理解天线下倾角的设置原理,合理的设置天线下倾角,将对无线基站设计起到积极的作用,使基站能够发挥更好的作用,为无线用户提供更好的服务。 关键词:GSM 下倾覆盖 1、概述 在过去两个月的工作中,我主要从事无线基站的设计,在勘查和设计的过程中,发现了不少需要解决的问题,针对这些问题,我收集了一些资料进行学习和整理,希望能够为自己和同事在将来的查勘设计过程中提供相关技术应用的理论依据,其中,一个比较重要的课题就是定向天线下倾角的设置。 2、天线下倾的方法 2.1 天线倾角的作用 为了使信号限制在自己的小区覆盖范围内,并且降低对其他同频小区的干扰,使定向天线波束图形向下倾斜一定角度是非常有效的方法。天线下倾技术是利用天线的垂直方向性有效控制干扰和覆盖的重要手段: 1)天线下倾可以使小区覆盖范围变小; 2)天线下倾安装使天线在干扰方向上的增益减小,相当于天线在垂直面上去耦增加; 3)天线下倾后加强了本覆盖区内的信号强度,既改善了小区的场强,又增加了抗同频干扰的能力。 2.2 天线下倾的方法 有两种使天线方向图向下倾斜的方法: 1)机械下倾,通过机械调整改变天线向下倾角。 2)电调下倾。通过改变天线阵的激励系数来调整波束的倾斜角度。 两种不同的下倾方法将产生不同的辐射情况,在下倾角度较小时,这种区别不明显;但随着角度的加大,它们的区别就非常显著了。 在采用电倾角时,随着下倾角的增加,在主瓣方向覆盖距离明显缩短,天线方向图仍然保持原有形状,能够降低呼损、减小干扰。但对于机械下倾,随着下倾角的加大,天线主瓣方向信号强度迅速降低,当下倾角增大到一定数值时主瓣方向逐渐凹陷下去,同时旁瓣增益随之增大,这就造成旁瓣对其他方向上的同频基站的干扰。 目前GSM网在高话务密度区的呼损较高,干扰较大,其中一个重要原因是机械下倾角过大,天线方向图严重变形,要解决高话务区的容量不足,必须缩短站距、加大天线下倾角度,因此采用机械天线很难解决用户高密度区呼损高、干扰大的问题,建议在高话务密度区用带电倾角的天线,而把机械倾角天线安装 在农村、郊区等低话务密度地区。 3、天线倾角的设计 3.1 天线倾角覆盖的范围 定向天线覆盖的角度受天线出场设置限制,天线扇区在水平覆盖范围内信号一般集中在65度内,在垂直覆盖范围内信号一般集中在13度内。 定向天线下倾角度有2种设置方式:一种是内置角(出厂已设置好)、一种是现场调整

万能方位角计算公式

先计算出坐标增量: dX=Xb-Xa dY=Yb-Ya dY=dY+1E-10 为了使除数不为零而加一个很小的数 方位角计算万能公式:Az=pi * (1-Sgn(dY)/2)-Atn(dX / dY)单位为弧度 Az=Az * 180 /pi 单位为度 此公式计算无需判断象限,只需在值小于0时加上360即可! 其中,sgn()为求符号函数,若dX<0时其值为-1,dX>0时为1,dX=0时为0。使用此公式不用判断所在象限,直接将坐标增量代入即可求出方位角值,在用计算器编程时若没有SGN()函数可自行判断并用一个变量代替! VBA代码: '方位角计算函数 Azimuth() 'Sx为起点X,Sy为起点Y 'Ex为终点X,Ey为终点Y 'Style指明返回值格式 'Style=-1为弧度格式 'Style=0为“DD MM SS”格式 'Style=1为“DD-MM-SS”格式 'Style=2为“DD°MMˊSS""”格式 'Style=其它值时返回十进制度值 Function Azimuth(Sx As Double, Sy As Double, Ex As Double, Ey As Double, Style As Integer) Dim DltX As Double, DltY As Double, A_tmp As Double, Pi As Double Pi = Atn(1) * 4 '定义PI值 DltX = Ex - Sx DltY = Ey - Sy + 1E-20 A_tmp = Pi * (1 - Sgn(DltY) / 2) - Atn(DltX / DltY) '计算方位角 A_tmp = A_tmp * 180 / Pi '转换为360进制角度 Azimuth = Deg2DMS(A_tmp, Style) End Function '转换角度为度分秒 'Style=-1为弧度格式 'Style=0为“DD MM SS”格式

天线下倾角设置参考表

天线下倾角设置参考表 一、天线类型选择 在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。 (1)为减少干扰,应选用水平半功率角接近于60度的天线。这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。如下图所示。 (2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。 (3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。 综上所述,城区基站宜选用水平半功率角为60 度左右的中等增益的 双极化天线。例如水平半功率角为65度的15dBi双极化天线。 2、密集城区基站天线 密集城区基站天线的选择与一般城区基站类似。但由于密集城区基站站距往往只有400米到600 米,在使用水平半功率角为65度的15dBi 双

极化天线,且天线有效挂高35 米的情况下,天线下倾角可能设置在14.0 度到11.5 度之间。此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。所以密集城区基站选用电子式倾角的水平半功率角为60 度左右的中等增益双极化天线较为合适。 3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。 (1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。例如水平半功率角为90 度的天线。 (2)对于GSM网络而言,为提高覆盖质量,在平原地区使用水平半功率角较大的天线效果较好,但同时会产生切换区域增大的问题;而在山区和丘陵地带使用水平半功率角较小的天线易于控制覆盖方向和范围,效果较好。 ( 3)为保证覆盖半径,应选择高增益天线。 ( 4)由于极化分集依赖于移动台周围反射体和散射体的分布,对于地物分布相对较稀疏的农村地区,极化分集效果不如空间分集。因此在安装条件具备的情况下,应尽可能使用单极化天线。 (5)如果基站周围各方向上都没有明显阻挡,话务需求较小,预期覆盖范围也较小,可以选用全向天线。 综上所述,CDMA网络农村地区定向基站宜选用水平半功率角较大的高增益单极化天线,例如水平半功率角为90度的17dBi 单极化天线;GSM 网络农村地区定向基站宜选用水平半功率角适配的高增益单极化天线,例如水平半功率角为90度或65度的17dBi 单极化天线。全向基站则可以

方位角的计算方法

方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角 坐标增量的计算方法: 平距×COS方位角=△X坐标增量 平距×Sin方位角=△Y坐标增量 坐标的计算方法: 已知X坐标±△X坐标增量=X坐标 已知Y坐标±△Y坐标增量=Y坐标 高差、平距的计算方法: 斜距×Sin倾角=高差 斜距×COS倾角=平距 高差÷Sin倾角=斜距 平距÷cos已知度分秒=斜距 高程的计算方法: 已知高程-仪器高+前视高±高差=该点的顶板高差 原始记录计算方法: 前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″

前视92°49′02″272°49′13″水平角= 92°49′03″ 实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″ 实例: 270°30′38″-270°= 00°30′38″ 激光的计算方法:两点的高程相减: 比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、798 8、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点) 测量:1、先测后视水平角:归零,倒镜180°不能误差15′ 2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。 要求方位角-已知方位角±180°=拨角方位 画两千的图:展点用0.6正好. 倾角的计算方法:180°以下的-90° 270°-超过180°的 两点的高差除平距按tan=倾角

测量方位角计算公式VB源代码

测量方位角计算公式VB源代码 角度化弧度 Public Function Radian(a As Double) As Double Dim Ra As Double Dim c As Double Dim FS As Double Dim Ib As Integer Dim Ic As Integer Ra = pi / 180# Ib = Int(a) c = (a - Ib) * 100# Ic = Int(c) FS = (c - Ic) * 100# Radian = (Ib + Ic / 60# + FS / 3600#) * Ra End Function '弧度化角度 Public Function Degree(a As Double) As Double Dim B As Double Dim Fs1 As Double Dim Im1 As Integer Dim Id1 As Integer B = a Call DMS(B, Id1, Im1, Fs1) Degree = Id1 + Im1 / 100# + Fs1 / 10000# End Function Public Sub DMS(a As Double, ID As Integer, IM As Integer, FS As Double) Dim B As Double Dim c As Double c = a c = 180# / pi * c ID = Int(c + 0.0000005) B = (c - ID) * 60 + 0.0005 IM = Int(B) FS = (B - IM) * 60 End Sub '计算两点间的方位角 Public Function azimuth(x1 As Double, y1 As Double, x2 As Double, y2 As Double) As Single Dim dx As Double Dim dy As Double Dim fwj As Double dx = x2 - x1 dy = y2 - y1 If dy <> 0 Then fwj = pi * (1 - Sgn(dy) / 2) - Atn(dx / dy) azimuth = Degree(fwj) Else If dx > 0 Then

基站天线的下倾角设置建议

基站天线的下倾角设置建议 一、 下倾角概述 基站天线作为移动通信网络的终端,承载了电磁波发射与接收的双工功能,即移动通信信号传递的载体,其应用效果的好坏直接决定了移动通信网络的优劣。 基站天线的应用效果的好坏,一般受限于基站电磁环境、天线挂高、天线方位角及天线下倾角四大重要因素,只有四大因素相辅相成,方能实现基站天线的最佳应用效果,本文结合基站的各种电磁环境、天线挂高对基站天线下倾角的设置进行简单的分析介绍。 合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例(对CDMA 网络而言),而且可以加强本基站覆盖区内的信号强度。通常天线下倾角的设定有两个侧重方向,即侧重于干扰抑制和侧重于加强覆盖。这两个侧重方向分别对应不同的下倾角算法。一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。 1.1.考虑干扰抑制时的下倾角 在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线增益(尤其是上波瓣)衰减很快。因此从控制干扰的角度考虑,可认为半功率角的延长线到地面的交点(B 点)为该基站的实际覆盖边缘。在基站周围环境理想情况下,下倾角可按以下公式计算。 α=actan (H/R )+β/2 公式一 倾角θ 天线高度 同频小区 基站天线覆盖示意图 覆盖距离 服务区异频区 图1、 基站天线控制干扰时的下倾角应用图 其中α为天线的下倾角,H 为天线有效高度,β为天线的垂直半功率角。R 为该小区最远的覆盖距离,即覆盖长径R 。

1.2.考虑加强覆盖时的下倾角 在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。在基站周围环境理想情况下,下倾角可按以下公式计算。 α=actan(H/R)公式二公式二含义如下图所示。 图二、基站天线控制信号强度时的下倾角应用图 二、下倾角设置的应用分析 2.1.下倾角分类 目前天线行业内天线的下倾角实现方式有三种:机械下倾角、预置电下倾角以及电调下倾角;需要下倾角=机械下倾角+预置电下倾角+电调下倾角。 1)机械下倾角:通过调整安装支架,改变天线物理位置,从而实现下倾角连续调节的 调节方式。 2)预置电下倾角:通过天线赋形技术,调整天线馈电网络,改变天线阵列中各振子的 相位,从而在天线物理位置不变的前提下,实现某个电下倾角的调节方式。 3)电调下倾角:通过天线关键器件移相器,连续调整天线馈电网络,连续改变天线阵 列中各振子的相位,从而在天线物理位置不变的前提下,实现天线电下倾角的连续 调节的调节方式。

天线方向角及下倾角测试方法

天线方向角及下倾角测试 天线方向角测试方法: 使用仪器:指南针 型号:DQY-1型 指南针的工作环境要求: 1.在使用指南针时应距离金属物体、金属管道、导线等2米以上,以免指南针自身磁场受其他磁场干扰,无法获取准确数据。2.应在晴好天气使用,避免空气中过多的带电粒子对指南针造成影响。 3.使用时应在远离强磁场,如变压器、旋转电机、高压走廊等。4.应避免在太阳黑子活跃期内使用,由于该期间地球磁场会发生偏转及磁暴现象,指南针获取数据与平时要存在较大差距。5.在测试者使用指南针时,不要在其半径1米内使用手机通话,以免影响测试数据。 第一种测试方法 1.测量者在待测天线正后方一定距离(根据实际情况,尽量远离 天线),选择一适当位置。安装好三脚架并把指南针放置于三脚 架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板水 平,调节三脚架将指南针调至水平(或测量者手持); 2.视线从指南针刻度盘边上的准针通过反光镜中间的观察孔,与 前边的校准针再与要测量的天线的支撑杆成直线;

3.此时指南针黑针所指的刻度就是该天线的方位角; 4.换另一名测试者重复上述步骤;或用另外一块表进行测量。取 得数据的平均值即 第二种测试方法 1.测量者在待测天线正前方一定距离(根据实际情况,尽量远离天线),选择一适当位置。安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板水平,调节三脚架将指南针调至水平(或测量者手持); 2.从指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线; 3.此时指南针白针所指的刻度就是该天线的方位角; 4.换另一名测试者重复上述步骤;或用另外一块表进行测量。取得数据的平均值即 第三种测试方法 1.测量者在待测天线板面垂直方向一定距离(根据实际情况,尽量远离天线),选择一适当位置。安装好三脚架并把指南 针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立 起与天线面板侧面水平,调节三脚架将指南针调至水平(或 测量者手持); 2.指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线; 3.此时指南针黑针所指的刻度加或减90度(在面向天线正面

相关文档
最新文档