初二上动点问题

初二上动点问题
初二上动点问题

初二上动点问题

1.如图,已知△ABC中,∠B=90 o,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

(1)出发2秒后,求线段PQ的长?

(2)当点Q在边BC上运动时,出发几秒钟后,△PQB是等腰三角形?

(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间?

2.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=10cm,直线CM⊥BC,动点D从点

C开始沿射.线.C.B.方向以每秒3厘米的速度运动,动点E也同时从点C开始在直.线.C.M.上以每秒2厘米的速度运动,连接AD、AE,设运动时间为t秒.

(1)求AB的长;(2)当t为多少时,△ABD的面积为15cm2?

(3)当t为多少时,△ABD≌△ACE,并简要说明理由.(请在备用图中画出具体图形)

3.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F 分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G.使DG=BE.连结AG,先证明

△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;

(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,

且∠EAF= 1∠BAD上述结论是否仍然成立,并说明理由;

2

(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙

在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰

艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以 80海里/小时的

速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹

角为70°,试求此时两舰艇之间的距离.

4.(12分)在等腰△ABC中,AB=AC=2, ∠BAC=120°,AD⊥BC于D,点O、点P分别在射线AD、BA上的运动,且保证∠OCP=60°,连接OP.

(1)当点O运动到D点时,如图一,此时AP= _______ ,△OPC是什么三角形。

(2)当点O在射线AD其它地方运动时,△OPC还满足(1)的结论吗?请用利用图二说明

理由。

5.探究题

如图,点O是等边△ ABC内一点,∠ A OB﹦ 1100 ,∠ BOC﹦ a ,

将△ BOC 绕点 C 按顺时钟方向旋转60O得△ADC,连接OD.

(1)求证:△ COD是等边三角形;

(2)当 a﹦150O时,试判断△AOD的形状,并说明理由;

(3)探究:当仅为多少度时,△ AOD是等腰三角形?

6.如图,在△ABC 中,∠ACB 为锐角,点 D 为 BC 边上一动点,连接 AD,以 AD 为直角边且在 AD的上方作等腰直角三角形 ADF.

(1)如图1,若AB=AC,∠BAC=90°,当点D在线段BC上时(不与点B重合),证明:

△ACF≌△ABD

(2)如图2,当点D在线段BC的延长线上时,其它条件不变,猜想CF与BD的数量关系和位置关系是什么,并说明理由;

(3)如图 3,若AB≠AC,∠BAC≠90°,∠BCA=45°,点 D 在线段 BC 上运动(不与点 B 重合),试探究 CF 与 BD 位置关系.

数量关系?请写出你的猜想并证明;

(2)如图③,当 AD 为△ABC 的外角平分线时,线段 AB 、AC 、CD 又有怎样的数量关系? 请写出你的猜想,并对你的猜想给予证明.

8.如图,在等边△ABC 中,线段 AM 为 BC 边上的中线.动点 D 在直线 AM 上时,以 CD 为一边在 CD 的下方作等边△CDE,连结 BE .

(1)填空:∠CAM= __________ 度;

(2)若点D 在线段AM 上时,求证:△ADC≌△BEC;

(3)当动点D 在直.线.AM 上时,设直线BE 与直线 AM 的交点为O ,试判断∠AOB 是否为 定值?并说明理由.

9.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线 m 经过点

7.在△ABC 中,∠ACB=2∠B,如图①,当∠C=90°,AD 为∠BAC 的角平分线时,在 AB 上截取 AE=AC ,连接 DE ,易证 AB=AC+CD .

A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:△ABD≌△ACE DE=BD+CE

(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC= ,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

10.如图①,等腰直角三角形的顶点的坐标为,的坐标为,直

角顶点在第四象限,线段AC与x轴交于点D.将线段DC绕点D逆时针旋转90°至DE.(1)直接写出点B、D、E 的坐标并求出直线DE的解析式.

(2)如图②,点P以每秒1个单位的速度沿线段AC从点A运动到点C的过程中,过点P 作与x 轴平行的直线PG,交直线DE于点G,求与△DPG的面积S与运动时间t 的函数关系式,并求出自变量t 的取值范围.

(3)如图③,设点 F 为直线DE上的点,连接AF,一动点M从点 A 出发,沿线段AF 以每秒 1 个单位的速度运动到F,再沿线段FE 以每秒 2 个单位的速度运动到 E 后停止.当点F的坐标是多少时,是否存在点M在整个运动过程中用时最少?若存在,请求出点F 的坐标;若不存在,请说明理由.

初二数学动点问题练习(含答案)

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始 沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P, Q分别从A,C同时出发,设移动时间为t秒。 当 t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点, 则DN+MN的最小值为 5 3、如图,在Rt ABC △中,9060 ACB B ∠=∠= °,°,2 BC=.点O是AC的中点,过 点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB ∥交直线l于点E,设直线l的旋转角为α. (1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为; ②当α=度时,四边形EDBC是直角梯形,此时AD的长为; (2)当90 α=°时,判断四边形EDBC是否为菱形,并说明理由. 解:(1)①30,1;②60,; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC∵CE∴AB=4,AC=23. ∴AO= 1 2 AC = 3 .在Rt△AOD 中,∠A=300,∴AD=2. O E C D A α l O C A (备用图)

∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形, ∴四边形EDBC 是菱形 4、在△ABC 中,∠ACB =90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E. (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB ② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE (3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD. 5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o ,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证 AME ECF △≌△,所以AE EF =. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗如果正确,写出证明过 C B A E D 图1 N M A B C D E M N 图2 A C B E D N M 图3

最新最新中考二次函数动点问题(含答案)

二次函数的动点问题 1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长. (2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度. (3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =o ∠的点P 有 个. (抛物线()2 0y ax bx c a =++≠的顶点坐标是2424b ac b a a ?? -- ??? ,.

[解] (1)作BF y ⊥轴于F . ()()01084A B Q ,,,, 86FB FA ∴==,. 10AB ∴=. (2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=Q ,. P Q ∴,两点的运动速度均为每秒1个单位. (3)方法一:作PG y ⊥轴于G ,则PG BF ∥. GA AP FA AB ∴ =,即610 GA t =. 35GA t ∴=. 3 105OG t ∴=-. 4OQ t =+Q , ()113410225S OQ OG t t ? ?∴= ??=+- ?? ?.

初二数学动点问题练习(含答案)

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点 ,它们在线段、射线或弧线上运动的一类 6 c N t4 o o AD 的长为 度时 AD 的长为 ②当 .度时 o C B C B A (备用图) E N E A B B B A A E 时 时 M C ” 图1 l E EDBC 是否为菱形,并说明理由 C ,且 (1)① 当 四边形EDBC 是直角梯形,此时 开放性题目 关键: 数学思想 1、如图1 C 开始沿向点 秒 当 当 CE // AB 交直线I 于点E ,设直线I 的旋转角为 2、如图2,正方形的边长为 4,点M 为 5 90 ° ,直线经过点 3、如图,在只也ABC 中,ACB 四边形是平行四边形; 四边形是等腰梯形?8 90° B 60°, BC 2 .点O 是AC 的中点,过 四边形EDBC 是等腰梯形,此时 (2 )当 90「时,判断四边形 解:(1 [① 30, 1 :② 60, 1.5 ; (2)当/% =900时,四边形是菱形? ???/a =Z 90°,.?..???,???四边形是平行四边形 在△中,/ 900,/ 6002, ???/ 30°. 在边上,且1 , N 为对角线上任意一点,则的最小值 .解决这类问题的关键是动中求静 ,灵活运用有关数学知识解决问题 . 动中求静? 分类思想 数形结合思想转化思想 梯形中,// ,/ 90°, 141821,点P 从A 开始沿边以1秒的速度移动,点 Q 从 B 以2秒的速度移动,如果 P , Q 分别从A , C 同时出发,设移动时间为 t D ,丄于 E M C 点o 的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D ?过点C 作 ? 2. ???. 又??四边形是平行四边形 ?四边形是菱形 4、在△中 M D C A D 1 42 . 3. ? 2AC 3 .在△中,/ 3。0, (2) 图2 N

初二动点问题(含答案)

动点问题 灵活运用有关数学知识解决问题 转化思想 6 c 1 8 4 0 0 II ②当 0 C B C AB=4,AC=2 B A (备用图) D C E N D E A B B B A A E (1)①当 点M 在边 5 图1 l E - 2 .点°是AC 的中点,过 BE 丄MN 于E 60° BC 且AD 丄MN 于 度时,四边形EDBC 是直角梯形,此时 AD 的长为 DC 上,且 CE // AB 交直线l 于点E ,设直线I 的旋转角为 交AB 边于点D .过点C 作 度时,四边形EDBC 是等腰梯形,此时AD 的长为 放性题目?解决这类问题的关键是动中求静 关键:动中求静. 数学思想:分类思想 数形结合思想 1、如图 1,梯形 ABCD 中,AD // BC , A 开始沿AD 边以1cm/秒的速度移动,点 如果P , Q 分别从A , C 同时出发,设移动时间为 当t= 时,四 边形是平行四边形 当t= 时,四边形是等腰梯形 2、如图2,正方形 ABCD 的边长为 意一点,贝U DN+MN 的最小值为 / B=90 ° , AB=14cm,AD=18cm,BC=21cm,点 P 从 -Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动, t 秒。 3、如图,在 Rt △ ABC 中,ACB 90° B 解:(1)① 30, 1;② 60, 1.5; (2)当/a =900 时,四边形EDBC 是菱形. ???/a = / ACB=90°,「. BC//ED. ?/ CE//AB,二四边形 EDBC 是平行四边形 在 Rt △ ABC 中,/ ACB=900,/ B=600,BC=2, /./ A=30°. (2)当 90°时,判断四边形 EDBC 是否为菱形,并说明理由 点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转 M D C ??? BD=2. ??? BD=BC. 又??四边形 EDBC 是平行四边形, ???四边形EDBC 是菱形 4、在厶ABC 中,/ ACB=90° , AC=BC ,直线 MN 经过点C M C 1 AC AO= 2 = ■ 3 .在 Rt △ AOD 中,/ A=30°,二 AD=2 A D 所谓“动点型问题”是指题设图形中存在一个或多个动点 ,它们在线段、射线或弧线上运动的一类开 N 图2 A ____________ …n 1 DM=1 , N 为对角线AC 上任

(完整版)初二动点问题(含答案)2

L F E H F G E C G 图2 F H 动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 数形结合思想 转化思想 一、单动点问题 小菜一碟:如图 2,正方形 ABCD 的边长为 4,点 M 在边 DC 上,且 DM=1,N 为对角线 AC 上任意一点,则 DN+MN 的最小值为 例 (10 年房ft 二模压轴)25. (1)如图 1,已知矩形 ABCD 中,点 E 是 BC 上的一动点,过点 E D A D A D B C B B C 图1 图3 作 EF ⊥BD 于点 F ,EG ⊥AC 于点 G ,CH ⊥BD 于点 H ,试证明 CH=EF+EG; (2) 若点 E 在BC的延长线上,如图 2,过点 E 作 EF ⊥BD 于点 F ,EG ⊥AC 的延长线于点 G ,CH ⊥BD 于点 H , 则 EF 、EG 、CH 三者之间具有怎样的数量关系,直接写出你的猜想; (3) 如图 3,BD 是正方形 ABCD 的对角线,L 在 BD 上,且 BL=BC, 连结 CL ,点 E 是 CL 上任一点, EF ⊥BD 于点 F ,EG ⊥BC 于点 G ,猜想 EF 、EG 、BD 之间具有怎样的数量关系,直接写出你的猜想; (4) 观察图 1、图 2、图 3 的特性,请你根据这一特性构造一个图形, 使它仍然具有 EF 、EG 、CH 这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.

初二数学动点问题归类复习(含例题、练习及答案)

初二数学动点问题归类复习(含例题、练习及答案) 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。 一、等腰三角形类:因动点产生的等腰三角形问题 例1:(2013年上海市虹口区中考模拟第25题)如图1,在Rt△ABC中,∠A=90°,AB=6,AC =8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC 上的一动点,且∠PDQ=90°. (1)求ED、EC的长; (2)若BP=2,求CQ的长; (3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长. 图1 备用图 思路点拨 1.第(2)题BP=2分两种情况. 2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系. 3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.解答:(1)在Rt△ABC中,AB=6,AC=8,所以BC=10. 在Rt△CDE中,CD=5,所以 315 tan5 44 ED CD C =?∠=?=, 25 4 EC=. (2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3. 由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN. 因此△PDM∽△QDN. 所以 4 3 PM DM QN DN ==.所以 3 4 QN PM =, 4 3 PM QN =. 图2 图3 图4 ①如图3,当BP=2,P在BM上时,PM=1. 此时 33 44 QN PM ==.所以 319 4 44 CQ CN QN =+=+=. ②如图4,当BP=2,P在MB的延长线上时,PM=5.

初二上动点问题

初二上动点问题 1.如图,已知△ABC中,∠B=90 o,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒. (1)出发2秒后,求线段PQ的长? (2)当点Q在边BC上运动时,出发几秒钟后,△PQB是等腰三角形? (3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间? 2.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=10cm,直线CM⊥BC,动点D从点C开始沿射线 ....CB..方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM..上以每秒2厘米的速度运动,连接AD、AE,设运动时间为t秒. (1)求AB的长;(2)当t为多少时,△ABD的面积为15cm2? (3)当t为多少时,△ABD≌△ACE,并简要说明理由.(请在备用图中画出具体图形)

3.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系. 小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是; (2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的 点,且∠EAF=∠BAD上述结论是否仍然成立,并说明理由; (3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进 1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离. 4.(12分)在等腰△ABC中,AB=AC=2, ∠BAC=120°,AD⊥BC于D,点O、点P分别在射线AD、BA上的运动,且保证∠OCP=60°,连接OP. (1)当点O运动到D点时,如图一,此时AP=______,△OPC是什么三角形。 (2)当点O在射线AD其它地方运动时,△OPC还满足(1)的结论吗?请用利用图二说明理由。 (3)令AO=x,AP=y,请直接写出y关于x的函数表达式,以及x的取值范围。 图一图二

人教版_人教版八年级数学关于动点问题的分析

动点问题专项练习 1、如图,在直角坐标系中,O是原点,A,B,C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P,Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC,CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动. (1)求直线OC的解析式. (2)设从出发起,运动了t秒.如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.(3)设从出发起,运动了t秒.当P,Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由. 2、如图1所示,在△ABC中,点O在AC边上运动,过O作直线MN∥BC交∠BCA内角平分线于E点,外角平分线于F点.试探究:当点O运动到何处时,四边形AECF是矩形?

3、如图2所示,在直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14cm,A点坐标为(16,0),C 点坐标为(0,2).点P、Q分别从C、A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q停止运动时,点P也停止运动,设运动时间为ts(0≤t≤4). (1)求当t为多少时,四边形PQAB为平行四边形. (2)求当t为多少时,PQ所在直线将梯形OABC分成左右两部分的面积比为1:2,求出此时直线PQ的函数关系式.

巩固提高: 1. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向 D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 2. 如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点 F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 3. 如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点 C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒. (1)求NC,MC的长(用t的代数式表示); (2)当t为何值时,四边形PCDQ构成平行四边形; (3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由; (4)探究:t为何值时,△PMC为等腰三角形.

初二动点问题(非常经典)

初二动点问题1姓名时间 1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P 从A 开始沿AD边向D以1cm/s 的速度运动;动点Q 从点C 开始沿CB边向B 以3cm/s 的速度运动.P、Q 分别从点A、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t 为何值时,四边形PQCD 为平行四边形? (2)当t 为何值时,四边形PQCD 为等腰梯形? (3)当t 为何值时,四边形PQCD 为直角梯形? 2、如图,直角梯形ABCD 中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P 从B 点出发,沿线段BC向点C 作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q 点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1 个单位长度.当Q 点运动到A点,P、Q两点同时停止运动.设点Q 运动的 时间为t 秒. (1)求NC,MC的长(用t 的代数式表示); (2)当t 为何值时,四边形PCDQ 构成平行四边形; (3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t 的值;若不存在,请说明理由; (4)探究:t为何值时,△PMC 为等腰三角形.

3、如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P 从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线 段CB 上以每秒 1 个单位长的速度向点 B 运动,P、Q 分别从点 D 、C 同时出发,当点Q 运动到点B时,点P随之停止运动,设运动时间为t(s). (1)设△BPQ 的面积为S,求S与t之间的函数关系; 4、直线y=- 3/4x+6 与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达 A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1 个单位长度,点P 沿路线O ?B?A 运动. (1)直接写出A、B 两点的坐标; (2)设点Q 的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 48/5时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M 的坐标. 5、如图,△ABC中,点O 为AC边上的一个动点,过点O 作直线MN∥BC,设MN交∠ BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O 运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC 的形状并证明你的结论.

最新初二上学期初二数学动点问题练习含答案

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想分类思想数形结合思想转化思想 1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从 A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动, 如果P,Q分别从A,C同时出发,设移动时间为t秒 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任 意一点,则DN+MN的最小值为 5 3、如图,在Rt ABC △中,9060 ACB B ∠=∠= °,°,2 BC=.点O是AC的中点,过 点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作 CE AB ∥交直线l于点E,设直线l的旋转角为α. (1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为; ②当α=度时,四边形EDBC是直角梯形,此时AD的长为; (2)当90 α=°时,判断四边形EDBC是否为菱形,并说明理由. 解(1)①30,1;②60,1.5; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形 在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. ∴AB=4,AC=2 3. ∴AO= 1 2 AC =3.在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形 4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E. O E C D A α l O C A (备用图) C E D N M C D M C E M

初二数学动点问题

动点问题训练 姓名________ 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 数形结合思想 转化思想 1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动 ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵ P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间 4 33BP t = =秒, ∴ 515 443Q CQ v t = ==厘米/秒。 (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15 3210 4x x =+?,解得 803x =秒. ∴点P 共运动了80 380 3?=厘米. ∵8022824=?+,∴点P 、点Q 在 AB 边上相遇, ∴经过80 3秒点P 与点Q 第一次在边AB 上相遇. 3、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平分线CF 于点F ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. A D F C G B 图1

初二动点问题(含答案)

动态问题 一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 类型: 1.利用图形想到三角形全等,相似及三角函数 2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动) 3.结合图形和题目,得出已知或能间接求出的数据 4.分情况讨论,把每种可能情况列出来,不要漏 5.动点一般在中考都是压轴题,步骤不重要,重要的是思路 6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 二、例题: 1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从 A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动, 如果P,Q分别从A,C同时出发,设移动时间为t秒。 当t= 时,四边形是平行四边形; 当t= 时,四边形是等腰梯形. 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任 意一点,则DN+MN的最小值为

3、如图,在Rt ABC △中,9060ACB B ∠=∠=° ,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α. (1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ; ②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E. (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. C B A E D 图1 N M A B C D E M N 图2 A C B E D N M 图3

初二平行四边形的动点问题学案 (含答案经典)

第十一讲平行四边形中的动点问题时间:年月日刘满江老师学生姓名:一、兴趣导入 二、学前测试 1.如图,在平行四边形ABCD中,下列结论中错误的是() 2.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件: ①AD∥BC;②AD=BC;③OA=OC;④OB=OD

交AC于点H,则的值为() ∴= 三、方法培养: 知识要点: 平行四边形的概念:两组对边分别平行的四边形叫平行四边形 平行四边形的性质:边:对边平行且相等 角:内角和为______,外角和___________,邻角______,对角__________ 对角线:互相平分 平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离叫 性质:平行线之间的距离处处相等。 推广:夹在两条平行线之间平行线段相等 平行四边形的判定: 定义:两组对边分别平行的四边形是平行四边形 定理1:两组对角分别相等的四边形是平行四边形 定理2:两组对边分别相等的四边形是平行四边形 定理3:对角线互相平分的四边形是平行四边形

定理4:一组对边平行且相等的四边形是平行四边形 例11.如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16. 动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时 从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒). (1)当t 为何值时,四边形PQCD 的面积是梯形ABCD 的面积的一半; (2)四边形PQCD 能为平行四边形吗?如果能,求出t 的值;如果不能,请说明理由. (3)四边形PQCD 能为等腰梯形吗?如果能,求出t 的值;如果不能,请说明理由. 考点:等腰梯形的判定;平行四边形的判定;直角梯形。 专题:动点型。 分析:(1)根据:路程=速度×时间,表示线段的长度,再利用:S 梯形ABPQ =S 梯形PQDC ,列方程求解; (2)只要能满足DQ=PC 即可,由此建立等量关系,列方程求解; (3)当四边形PQCD 为等腰梯形时,作PE ⊥BC ,DF ⊥BC ,垂足为E 、F ,需要满足QE=CF , 由此建立等量关系,列方程求解. 解答:解:(1)由已知得:AQ=t ,QD=16﹣t ,BP=2t ,PC=21﹣2t , 依题意,得 12)22116(21 12)2(2 1?-+-=?+t t t t 解得 ; (2)能;当四边形PQDC 为平行四边形时, DQ=PC ,即16﹣t=21﹣2t 解得t=5; (3)不能 作QE ⊥BC ,DF ⊥BC ,垂足为E 、F , 当四边形PQCD 为等腰梯形时,PE=CF , 即t ﹣2t=21﹣16 解得t=﹣5,不合实际. 点评:本题考查了梯形计算面积的方法,根据平行四边形、等腰梯形的性质列方程求解的问题. 变式练习:如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16.动点P 从点 B 出发,沿射线B C 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段A D 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒). (1)设△DPQ 的面积为S ,求S 与t 之间的函数关系式; (2)当t 为何值时,四边形PCDQ 是平行四边形? (3)分别求出当t 为何值时,①PD=PQ ,②DQ=PQ . 考点:直角梯形;勾股定理;平行四边形的判定与性质。 解答:(1)解:直角梯形ABCD 中,AD ∥BC ,∠A=90°,BC=21,AB=12,AD=16, 依题意AQ=t ,BP=2t ,则DQ=16﹣t ,PC=21﹣2t , 过点P 作PE ⊥AD 于E , 则四边形ADPE 是矩形,PE=AB=12, ∴S △DPQ =DQ ?AB=(16﹣t )×12=﹣6t+96. (2)当四边形PCDQ 是平行四边形时,PC=DQ ,

初二几何动点问题专题

初二几何动点问题专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

几何动点问题专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 例题1.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D 始,沿CB边,以3厘米/秒的速度向B点运动。已知 t秒,问: (1)t为何值时,四边形PQCD是平行四边形? (2)t为何值时,四边形PQCD是直角梯形? (3)在某个时刻,四边形PQCD可能是菱形吗为什么 (4)t为何值时,四边形PQCD是等腰梯形

练习1. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C—D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t为何值时,四边形APQD也为矩形? 例2:如图,在等腰直角三角形ABC中,斜边BC=4,OA⊥BC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。 (1)判断?OEF的形状,并加以证明。 (2)判断四边形AEOF的面积是否随点E、F的变化 而变化,若变化,求其变化范围,若不变化,求它 的值. (3)设AE=x,?AEF的面积为y,求的y与x的关系式。 F E O C B A

初二动点问题(含答案) 2

图3 G C D 动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 数形结合思想 转化思想 一、单动点问题 小菜一碟:如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 例 (10年房山二模压轴)25. (1)如图1,已知矩形ABCD 中,点E 是BC 上的一动点,过点E 作EF ⊥BD 于点F ,EG ⊥AC 于点G ,CH ⊥BD 于点H ,试证明CH=EF+EG; (2) 若点E 在BC的延长线上,如图2,过点E 作EF ⊥BD 于点F ,EG ⊥AC 的延长线于点G ,CH ⊥BD 于点H , 则EF 、EG 、CH 三者之间具有怎样的数量关系,直接写出你的猜想; (3) 如图3,BD 是正方形ABCD 的对角线,L 在BD 上,且BL=BC, 连结CL ,点E 是CL 上任一点, EF ⊥BD 于点F ,EG ⊥BC 于点G ,猜想EF 、EG 、BD 之间具有怎样的数量关系,直接写出你的猜想; (4) 观察图1、图2、图3的特性,请你根据这一特性构造一个图形, 使它仍然具有EF 、EG 、CH 这 样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论. 图1 D

1.(2009临沂25)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE=EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证AME ECF △≌△,所以AE EF =. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. A M E B C F ∴△≌△(ASA ) . A E E F ∴=. (2)正确. 证明:在BA 的延长线上取一点N .使AN CE =,连接NE . BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. N A E C E F ∴∠=∠. ANE ECF ∴△≌△(ASA ) . AE EF ∴=. 2.(2009年江西中考题25)如图1,在等腰梯形ABCD 中,AD //BC ,E 是AB 的中点,过点E 作EF //BC 交CD 于点F ,AB =4,BC =6,∠B =60°. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过点P 作PM ⊥EF 交BC 于M ,过M 作MN //AB 交折线ADC 于N ,连结PN ,设EP =x . ①当点N 在线段AD 上时(如图2),△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足条件的x 的值;若不存在,请说明理由. 图1 图2 图3 A D F G B 图1 A D F G E B 图3 A D F G B 图2 A D F C G B M A D F G B N

(完整版)八年级数学一次函数动点问题.doc

八年级数学 一次函数动点问题 1、如图 , 以等边△ OAB 的边 OB 所在直线为 x 轴, 点 O 为坐标原点 , 使点 A 在第一象限建立平面直角坐标系,其中△ OAB 边长为 6 个单位,点 P 从 O 点出发沿折线 OAB 向 B 点以 3 单位 / 秒的速度向 B 点运 动 , 点 Q 从 O 点出发以 2 单位 / 秒的速度沿折线 OBA 向 A 点运动,两点同时出发, 运动时间为 t (单位:秒),当两点相遇时运动停止 . ① 点 A 坐标为 ________, P 、 Q 两点相遇时交点的坐标为 ________; ② 当 t =2 时, S ;当 t =3 时, △ ____________; △OPQ ____________ S OPQ ③ 设△ OPQ 的面积为 S ,试求 S 关于 t 的函数关系式 ; ④ 当△ OPQ 的面积最大时,试求在 y 轴上能否找一点 M ,使得以 M 、 P 、 Q 为顶点的三角形是 Rt △, 若能找到请求出 M 点的坐标,若不能找到请简单说明理由。 y y y A A A O B x O B x O B x 2、如图,在平面直角坐标系内,已知点 A ( 0, 6)、点 B (8,0),动点 P 从点 A 开始在线段 AO 上以每秒 1 个单位长度的速度向点 O 移动,同时动点 Q 从点 B 开始在线段 BA 上以每秒 2 个单位长度的速度向点 A 移动 , 设点 P 、Q 移动的时间为 t 秒. (1) 求直线 AB 的解析式; 24 (2) 当 t 为何值时,△ APQ 的面积为 5 个平方单位?

八年级下册四边形动点问题和答案

八年级数学下册四边形动点问题专题 1、如图,E 是正方形ABCD 对角线AC 上一点,EF ⊥AB ,EG ⊥BC ,F 、G 是垂足,若正方形ABCD 周长为a ,则EF +EG 等于 。 2、如图,P 是正方形ABCD 一点,将△ABP 绕点B 顺时针方向旋转能与△CBP′重合,若PB=3,则PP′= 3、在Rt △ABC 中 ∠C=90° AC=3 BC=4 P 为AB 上任意一点 过点P 分别作PE ⊥AC 于E PE ⊥BC 于点F 线段EF 的最小值是 4、如图,菱形ABCD 中,AB=4,∠BAD =60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是 。 5、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD ,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为 6、如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm .如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm . C A B P F E E D C B A P A D E P B C

7、如图,在菱形ABCD中,对角线AC、BD相交于点O,且AC=12,BD=16,E为AD的中点,点P在BD 上移动,若△POE为等腰三角形,则所有符合条件的点P共有个. 8、已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为。 9、如图,在边长为10的菱形ABCD中,对角线BD=16.点E是AB的中点,P、Q是BD上的动点,且始终保持PQ=2.则四边形AEPQ周长的最小值为_________.(结果保留根号) 10、如图所示,在△ABC中,分别以AB.AC.BC为边在BC的同侧作等边△ABD,等边△ACE.等边△BCF. (1)求证:四边形DAEF是平行四边形; (2)探究下列问题:(只填满足的条件图所示,在△ABC中,分别以AB.AC.BC为边在BC的同侧作等边△ABD,等边△ACE.等边△BCF.,不需证明)

相关文档
最新文档