经典四边形习题50道
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典四边形习题50道
1.已知:在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。
2.已知:直角梯形ABCD中,BC=CD=a
且∠BCD=60︒,E、F分别为梯形的腰AB、DC的中点,求:EF的长。
3、已知:在等腰梯形ABCD中,AB∥DC,AD=BC,E、F分别为AD、BC的中点,BD 平分∠ABC交EF于G,EG=18,GF=10 求:等腰梯形ABCD的周长。
_D
_C
_B_C
_A_B
4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。
5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60︒,梯形的周长是 20cm, 求:AB 的长。
6、从平行四边形四边形ABCD 的各顶点作对角线的垂线
AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:
EF ∥GH 。
_ A _ B
_ E
_A
_ B
_ A
_ B
7、已知:梯形ABCD的对角线的交点为E 若在平行边的一边BC的延长线上取一点F,
使S
ABC
∆=S
EBF
∆
,求证:DF∥AC。
8、在正方形ABCD中,直线EF平行于
对角线AC,与边AB、BC的交点为E、F,
在DA的延长线上取一点G,使AG=AD,
若EG与DF的交点为H,
求证:AH与正方形的边长相等。
9、若以直角三角形ABC的边AB为边,
在三角形ABC的外部作正方形ABDE,
AF是BC边的高,延长FA使AG=BC,求证:BG=CD。
_B
_C
_B_F
_B_C
_F
10、正方形ABCD ,E 、F 分别是AB 、AD 延长线
上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。
11、在正方形ABCD 的对角线BD 上,取BE=AB ,
若过E 作BD 的垂线EF 交CD 于F ,
求证:CF=ED 。
12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。
_ C
_ D
_ B
_ F
_ F
_ G
_ B _A _ E
13、在正方形ABCD的边CD上任取一点E,
延长BC到F,使CF=CE,
求证:BE⊥DF
14、在四边形ABCD中,AB=CD,P、Q 分别是AD、BC中点,M、N分别是对角线AC、BD的中点,求证:PQ⊥MN。
15、平行四边形ABCD中,AD=2AB,
AE=AB=BF求证:CE⊥DF。
_B_C
_Q
_E_F
_A_B
16、在正方形ABCD中,P是BD上一点,过P引PE⊥BC交BC于E,过P引PF⊥CD 于F,求证:AP⊥EF。
17、过正方形ABCD的顶点B引
对角线AC的平行线BE,
在BE上取一点F,
使AF=AC,若作菱形CAFÉ,
求证:AE及AF三等分∠BAC。
18、以∆ABC的三边AB、BC、CA分别
为边,在BC的同侧作等边三角形ABD、BCE、CAF,求证:ADEF是平行四边形。
_C
_D_F
_E
_F
_B_C
19、M、N为∆ABC的边AB、AC的中点,
E、F为边AC的三等分点,延长ME、NF 交于D点,连结AD、DC,求证:
⑴BFDE是平行四边形,
⑵ABCD是平行四边形。
20、平行四边形ABCD的对角线交于O,作OE⊥BC,AB=37cm, BE=26cm, EC=14cm, 求:平行四边形ABCD的面积。
21、在梯形ABCD中,AD∥BC,高AE=DF =12cm,两对角线BD=20cm,AC=15cm,
求梯形ABCD的面积。
_B_C
_
N
_B_
E
_B_C
_E_F
22、在梯形ABCD中,二底AD、BC 的中点是E、F,在EF上任取一点O,
求证:S
OAB
∆=S
OCD
∆
23、平行四边形ABCD中,EF平行于
对角线AC,且与AB、BC分别交于E、F,
求证:S
ADE
∆=S
CDF
∆
24、梯形ABCD的底为AD、BC,若CD的中点为E
求证:S
ABE
∆=
2
1
S
ABCD
_B_C
_F
_B_C
_F
_B_C
25、梯形ABCD 的面积被对角线BD 分成 3:7两部分,求这个梯形被中位线EF 分成 的两部分的面积的比。
26、在梯形ABCD 中,AB ∥CD ,M 是BC 边 的中点,且MN ⊥AD 于N , 求证:S ABCD =MN ∙AD 。
27、求证:四边形ABCD 的两条对角线之和小于它的周长而大于它的周长之半。
_ A _ B
_ A _ B