2018四边形特殊四边形经典习题(附答案)
苏科版数学中考复习专题练习— 特殊四边形(含答案)

特殊四边形一、学习目标1.理解多边形的内角和、外角和公式,了解正多边形,四边形的不稳定性;2.掌握平行四边形、矩形、菱形、正方形的定义,判定和性质,会利用这些性质和判定进行计算与推理;3.理解矩形、菱形、正方形与一般平行四边形之间的共性、特性和从属关系.二、典型例题题型一、多边形及其内角和、外角和1.多边形的对角线例题1.(1)五边形共有对角线的条数为( )A .5B .6C .7D .8(2)从十二边形的一个顶点作对角线,把这个十二边形分成三角形的个数是 .【题小结】找到对角线与边数的关系借题发挥:一个n 边形共有n 条对角线,将这个n 边形截去一个角后它的边数为 .2. 多边形内角和、外角和例题2.已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为 .【题小结】运用多边形的内角和、外角和公式借题发挥:如图,P 为正五边形ABCDE 的边AE 上一点,过点P 作PQ ∥BC ,交DE 于点Q ,则∠EPQ 的度数为 .题型二、平行四边形及其判定和性质 1.平行四边形判定例题3.如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是()A . AB ∥DC ,AD ∥BC B .AB = DC ,AD = BC C . AB ∥DC ,AD =BC D .OA = OC ,OB =OD【题小结】灵活运用平行四边形判定借题发挥:如图,在四边形ABCD 中,AD ∥BC ,∠B =∠C .E 使边BC 上一点,且DE =DC . 求证:AD =BE .2.平行四边形性质例题4.(1)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC 是□ABCD 的对角线,点E 在AC 上,AD =AE =BE ,∠D =102°,则∠BAC 的大小是____________.(2)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交AD 于点E .若OA =1,△AOE 的周长等于5,则平行四边形ABCD 的周长等于.【题小结】灵活运用平行四边形性质A DB EC Q PD A B C OO E D C B A E D A B C F D A E C B D O A C B 借题发挥:如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BE EG的值为( ) A .12B .13C .23D .34(例题4(1)) (例题4(2))(借题发挥)题型三、矩形及其判定和性质1.矩形判定例题5.已知平行四边形ABCD 中,下列条件:①AB =BC ;②AC =BD ;③AC ⊥BD ;④AC 平分∠BAD ,其中能说明平行四边形ABCD 是矩形的是( )A .①B .②C .③D .④【题小结】灵活运用矩形判定借题发挥:如图,在□ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F ,连接BF ,A C .若AD =AF ,求证:四边形ABFC 是矩形.2.矩形性质例题6.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,已知∠BOC =120°,DC =3cm ,则AC 的长为______cm .【题小结】灵活运用矩形性质借题发挥:如图,矩形ABCD 的对角线AC 、BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( ).A .485B .325C .245D .125(例题6)(借题发挥)3.折叠问题 E D B C F G A F D E A B C O。
初中数学特殊的平行四边形50题(含答案)

特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。
特殊四边形练习题及答案

特殊四边形练习题及答案一、填空题1、已知正方形ABCD的对角线AC,BD相交于点O,以AB为边向外作等边三角形ABE,CE与BD相交于点F,则的值为1 2 32、如图,在△ABC中,点D是BC的中点,点E、F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是 (只填写序号).3、如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为 .4、我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形。
则矩形的中点四边形是 .5、如图,在正方形中,点,分别在边,上,若,,,则正方形的面积等于.5 6 7 86、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.7、如图,菱形ABCD中,E、F分别是BC、CD的中点,过点E作EG⊥AD于G,连接GF.若∠A=80°,则∠DGF的度数为.8、如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是.二、简答题9、如图,在四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E.求证:AE=CE.10、如图,正方形ABCD的边长为4,点E是正方形边上的点,AE=5,BF⊥AE,垂足为点F,求BF的长.11、如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为G,求证:AE=BF.12、如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.13、如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.14、如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(4分)(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(4分)(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.不要写理由。
特殊平行四边形练习题(含答案)

特殊平行四边形专题练习一、基础知识点复习:(一)矩形:1、矩形的定义:__________________________的平行四边形叫矩形.2、矩形的性质:①.矩形的四个角都是______;矩形的对角线__________________________.②.矩形既是对称图形,又是图形,它有条对称轴.3、矩形的判定:①.有_____个是直角的四边形是矩形.②.对角线____________________________的平行四边形是矩形.③.对角线________________________________的四边形是矩形.4、练习:①矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,则矩形对角线AC长为______cm.②.四边形ABCD的对角线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD③.四边形ABCD中,ADBC,则四边形ABCD是 ___________,又对角线AC,BD交于点O,若∠1=∠2,则四边形ABCD是_______________.(二)菱形:1、菱形的定义:有一组_________________________相等的平行四边形叫菱形.2、菱形的性质:①.菱形的四条边______;菱形的对角线_____________,且每条对角线______________.②.菱形既是对称图形,又是图形,它有条对称轴.3、菱形的判定:①.__________________边都相等的四边形菱形.②.对角线_____________________________的平行四边形是菱形.③.对角线_____________________________________________的四边形是菱形.4、菱形的面积与两对角线的关系是________________________5、练习:①.如图,BD是菱形ABCD的一条对角线,若∠ABD=65°,则∠A=_____.②.一个菱形的两条对角线分别是6cm,8cm,则这个菱形的周长等于cm,面积=cm2③.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为(三)正方形:1、正方形的定义:的平行四边形叫正方形。
中考数学 专题23《特殊四边形》练习题

《特殊四边形》练习题一.选择题1.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为( )A.45° B.55° C.60° D.75°2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分3.下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形4.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°5.(2016·四川泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.6.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF二.填空题7. (2016·内蒙古包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.8. 如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.9. 如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.10. 如图,矩形ABCD中,AD=5,AB=7. 点E为DC上一个动点,把△ADE沿AE折叠,当点D 的对应点D'落在∠ABC的角平分线上时,DE的长为 .11. 如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=13a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=13A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.三.解答题12.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.13.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.14.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= ;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.15.(2016·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.答案:1.C2.B3.C4.C5.B6.B7. 22.5°8. 2﹣2 9. (4,4)10. 52或53.11. 25()9n a12. 解:(1)∵正方形ABCD∴AD=B A,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ13. (1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,14. (1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴=,∵A D=2DM,∴DM:MA=1:3,∴DE=AB=×6=2.故答案为2.②当∠A=60°时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°,∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为60°.15. 解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF与△BGF中,,∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,连接EG,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,此时,四边形EFGH′是要想裁得符合要求的面积最大的,∴C在线段EG的垂直平分线设,∴点F,O,H′,C在一条直线上,∵EG=,。
2018年中考四边形综合题集[压轴题]
![2018年中考四边形综合题集[压轴题]](https://img.taocdn.com/s3/m/17a569295acfa1c7ab00cc44.png)
四边形综合题集一.选择题(共9小题)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.12.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个B.3个C.4个D.5个3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的个数为()A.2 B.3 C.4 D.54.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG =2S△BGE.A.4 B.3 C.2 D.15.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE 于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题:(1)∠AEB=∠AEH (2)DH=2EH(3)OH=AE (4)BC﹣BF=EH其中正确命题的序号()A.(1)(2)(3)B.(2)(3)(4)C.(2)(4)D.(1)(3)6.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C 两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个7.如图,正方形ABCD中,以AD为底边作等腰△ADE,将△ADE沿DE折叠,点A 落到点F处,连接EF刚好经过点C,再连接AF,分别交DE于G,交CD于H.在下列结论中:①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S △ADH,其中正确的结论有()A.2个B.3个C.4个D.5个8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF =S△AEF,其中正确的结论有()个.A.①②B.①②③C.①②④D.①②③④9.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共7小题)10.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE的距离为;④S△APD +S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.11.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是.(把你认为正确的说法的序号都填上)12.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).13.如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD =4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是.14.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有.15.如图所示,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F 到BC的距离为;③BE+EC=EF;④;⑤.其中正确的是.16.如图,Rt△ABC中,∠C=90°,BC=3cm,AB=5cm.点P从点A出发沿AC以1.5cm/s的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回;点Q 从点B出发沿BA以1cm/s的速度向点A匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线PC﹣CB﹣BQ于点E.点P、Q同时出发,当点Q到达点A时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0),则当t= 秒时,四边形BQDE为直角梯形.三.解答题(共34小题)17.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.18.如图,在△ABC中,∠C=90°,AC=BC=6.点P在边AC上运动,过点P作PD ⊥AB于点D,以AP、AD为邻边作▱PADE.设□PADE与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x≤6).(1)求线段PE的长(用含x的代数式表示).(2)当点E落在边BC上时,求x的值.(3)求y与x之间的函数关系式.(4)直接写出点E到△ABC任意两边所在直线距离相等时x的值.19.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N 分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM 和BN,交于点P.求△APB周长的最大值.20.如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N 分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.并求其面积最小值;(2)求点P到直线CD距离的最大值;(3)如图2,已知MB=NC=1,点E、F分别是边AM、边AN上的动点,连接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此时AE、AF的长;若不存在,请说明理由.21.如图①,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α度后得到正方形AB'C'D'(0°<α<90°),C'D'与直线CD相交于点E,C'B'与直线CD相交于点F.问题发现:(1)试猜想∠EAF= ;三角形EC'F的周长.问题探究:如图②,连接B'D'分别交AE,AF于P,Q两点.(2)在旋转过程中,若D'P=a,QB'=b,试用a,b来表示PQ,并说明理由.(3)在旋转过程中△APQ的面积是否存在最小值,若存在,请求出这个值;若不存在,请说明理由.22.如图,在矩形ABCD中,AB=CD=4cm,AD=BC=6cm,AE=DE=3cm,点P从点E 出发,沿EB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CD方向匀速运动,速度为2cm/s,连接PQ,设运动时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ⊥CD?(2)设四边形PBCQ的面积为y(cm2),求y与t的函数关系式;(3)是否存在某一时刻t,使S四边形PBCQ :S四边形PQDE=22:5?若存在,求出t的值;若不存在,说明理由.(4)是否存在某一时刻t,使A,P,Q三点在同一直线上?若存在,求出t的值;若不存在,说明理由.23.已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC 任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC于点N(点N在点M的左侧).(1)当BM的长为10时,求证:BD⊥DM;(2)如图(1),当点N在线段BC上时,设BN=x,BM=y,求y关于x的函数关系式,并写出它的定义域;(3)如果△DMN是等腰三角形,求BN的长.24.如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB、PQ,且∠PBC=∠BPQ.(1)当QD=QC时,求∠ABP的正切值;(2)设AP=x,CQ=y,求y关于x的函数解析式;(3)联结BQ,在△PBQ中是否存在度数不变的角?若存在,指出这个角,并求出它的度数;若不存在,请说明理由.25.已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.26.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.27.已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE :S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.28.如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q 从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t= 时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.29.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C 重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.30.已知:四边形ABCD中,对角线的交点为O,E是OC上的一点,过点A作AG⊥BE于点G,AG、BD交于点F.(1)如图1,若四边形ABCD是正方形,求证:OE=OF;(2)如图2,若四边形ABCD是菱形,∠ABC=120°.探究线段OE与OF的数量关系,并说明理由;(3)如图3,若四边形ABCD是等腰梯形,∠ABC=α,且AC⊥BD.结合上面的活动经验,探究线段OE与OF的数量关系为(直接写出答案).31.如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于点G.(1)若M为边AD中点,求证△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.32.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.33.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t (s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF :S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t 的值;若不存在,请说明理由.34.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.35.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.36.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D 出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM= ,AP= .(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC= .37.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC 于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.38.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B 点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?39.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.40.如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC 交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF,如图(2),求证:CF平分∠DCG;(3)当=时,求sin∠CFE的值.41.如图,已知在矩形ABCD中,AD=10,CD=5,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B、E、F三点共线时,两点同时停止运动,此时BF⊥CE.设点E移动的时间为t(秒).(1)求当t为何值时,两点同时停止运动;(2)求当t为何值时,EC是∠BED的平分线;(3)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;(4)求当t为何值时,△EFC是等腰三角形.(直接写出答案)42.如图1,将矩形ABCD绕点A顺时针旋转至矩形B点正好落在CD上的点E处,连结BE.(1)求证:∠BAE=2∠CBE;(2)如图2,连BG交AE于M,点N为BE的中点,连MN、AF,试探究AF与MN 的数量关系,并证明你的结论;(3)若AB=5,BC=3,直接写出BG的长.43.将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.(1)如图(1),在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;(2)如图(2),在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上D′点,过D′作D′G∥AO交E′F于T点,交OC于G点,求证:TG=AE′;(3)在(2)的条件下,设T(x,y).①探求:y与x之间的函数关系式.②指出变量x的取值范围.44.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形(不考虑QD=PD)?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.45.如图,在平面直角坐标系中,四边形OABC是矩形,其中点A在x轴的正半轴上,点B的坐标为(4,2),点D为对角线OB上一个动点(不包括端点),∠BCD的平分线交OB于点E.(1)求线段OB所在直线的函数表达式,并写出CD的取值范围.(2)当∠BCD的平分线经过点A时,求点D的坐标.(3)点P是线段BC上的一个动点,求CD十DP的最小值.46.如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.47.如图①,在长方形ABCD中,AB=DC=3cm,BC=5cm,点P从点B出发,以1cm/s 的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC= cm.(用含t的代数式表示);(2)当t为何值时,△ABP≌△DCP,请说明理由;(3)如图②,当点P从点B开始运动时,点Q从点C出发,以acm/s的速度沿CD向点D运动,是否存在这样a的值,使得△ABP与△PCQ全等?若存在,请求出a的值,若不存在,请说明理由.48.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB 的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S=,试判断△AOE与△AOD是否相似?并说△AOE明理由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.49.如图,已知四边形ABCD中,AB∥DC,AB=DC,且AB=6cm,BC=8cm,对角线AC=l0cm.(1)求证:四边形ABCD是矩形;(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t 秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.50.如图,点E为正方形ABCD的边BC所在直线上的一点,连接AE,过点C作CF⊥AE于F,连接BF.(1)如图1,当点E在CB的延长线上,且AC=EC时,求证:BF=;(2)如图2,当点E在线段BC上,且AE平分∠BAC时,求证:AB+BE=AC;(3)如图3,当点E继续往右运动到BC中点时,过点D作DH⊥AE于H,连接BH.求证:∠BHF=45°.四边形综合题集参考答案与试题解析一.选择题(共9小题)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.1【分析】①先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG =S四边形CMGN,易求后者的面积;③过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF;④因为点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,当点E,F分别是AB,AD中点时,CG⊥BD;⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°.【解答】解:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG =S四边形CMGN,S四边形CMGN =2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN =2S△CMG=2××CG×CG=CG2,故本选项错误;③过点F作FP∥AE交DE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:2AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选:B.【点评】此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.2.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个B.3个C.4个D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,得到CE=CF;由正方形的性质就可以得出∠AEB=75°;设EC=x,由勾股定理得到EF,表示出BE,利用三角形的面积公式分别表示出S△CEF 和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,故①正确;∵∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°,∴∠AEB=75°,故②正确;设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AG≠2GC,③错误;∵CG=x,AG=x,∴AC=x∴AB=AC•=x,∴BE=x﹣x=x,∴BE+DF=(﹣1)x,∴BE+DF≠EF,故④错误;∵S△CEF=x2,S△ABE=×BE×AB=x×x=x2,∴2S△ABE ═S△CEF,故⑤正确.综上所述,正确的有3个,故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的个数为()A.2 B.3 C.4 D.5【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;≠1,错误;③可以直接求出FC的长,计算S△ACF④根据正方形边长为2,分别计算CE和AF的长得结论正确;还可以利用图2证明△ADF≌△CDN得:CN=AF,由CE=CN=AF;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,所以⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,=CF•AD≠1,S△AFC所以选项③不正确;④AF===2,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;本题正确的结论有4个,故选:C.【点评】本题是四边形的综合题,综合考查了正方形、相似三角形、全等三角形的性质和判定;求边时可以利用三角形相似列比例式,也可以直接利用同角三角函数列式计算;同时运用了勾股定理求线段的长,勾股定理在正方形中运用得比较多.4.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG =2S△BGE.A.4 B.3 C.2 D.1【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG =4S△BGE,故④错误.故选:B.【点评】本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.5.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题:(1)∠AEB=∠AEH (2)DH=2EH(3)OH=AE (4)BC﹣BF=EH其中正确命题的序号()A.(1)(2)(3)B.(2)(3)(4)C.(2)(4)D.(1)(3)【分析】(1)根据矩形的性质得到AD=BC=AB=CD,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到DE=CD,得到等腰三角形求出∠AED=67.5°,∠AEB=67.5°,得到(1)正确;(2)设DH=1,则AH=DH=1,AD=DE=,求出HE=﹣1,得到2HE≠1,所以(2)不正确;(3)通过角的度数求出△AOH和△OEH是等腰三角形,从而得到(3)正确;(4)由△AFH≌△CHE,到AF=EH,由△ABE≌△AHE,得到BE=EH,于是得到BC ﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,从而得到(4)不正确.【解答】解:(1)在矩形ABCD中,AD=BC=AB=CD,∠ADC=∠BCD=90°,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AH,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AEH=∠AEB,所以(1)结论正确;(2)设DH=1,则AH=DH=1,AD=DE=,∴HE=DE﹣DH=﹣1,∴2HE=2(﹣1)=4﹣2≠1,所以(2)结论不正确;(3)∵∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=180°﹣90°﹣67.5°=22.5°,∴∠OAH=∠OHA=22.5°,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE=OA,∴OH=AE,所以(3)正确;(4)∵AH=DH,CD=CE,在△AFH与△CHE中,,∴△AFH≌△CHE,∴AF=EH,在Rt△ABE与Rt△AHE中,,∴△ABE≌△AHE,∴BE=EH,∴BC﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,所以(2)不正确,故选:D.【点评】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.6.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C 两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC 于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE 可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.【解答】解:如图,。
特殊四边形培优及答案

特殊四边形练习题及答案1.如图所示,将一张边长为8的正方形纸片A3CQ折叠,使点。
落在8C的中点E处,点A落在点尸处,折痕为奶,则线段的长为()A.10B.4a/5C.789D.2^212.如图2,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC±,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,下列结论:①四边形CFHE是菱形;②EC平分ZDCH;③线段BF的取值范围为3WBFW4;④当点H与点A重合时,EF=2、低.其中结论正确的个数是().(A)l个(B)2个(C)3个(D)4个3.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将ZkADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABGM/kAFG;②BG=CG;③AG〃CF;④S aegc=S aaf E;⑤ZAGB+ZAED=145°.其中正确的个数是()4.如图,正方形ABCD的面积为4,AABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()』------DB-----------CC.2右A.2B.3 D.y/35.如图,ABCD为正方形,0为AC、BD的交点,ADCE^RtA,ZCED=90°-ZDCE=30°,若0E=£戒,则正方形的面积为()6.如图,ZM0N=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边0M上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点0的最大距离为A.^2+1B.加C.近运D.-527.如图,正方形ABCD的边长是4cm,点G在边AB上,以BG为边向外作正方形GBFE,连接AE、AC、CE,则的面积是cm2…8.顺次连接矩形四边中点所形成的四边形是.学校的一块菱形花园两对角线的长分别是6m和8m,则这个花园的面积为.9.如图,将矩形纸片ABCD折叠,使边AB、CD均落在对角线BD上,得折痕BE、BF,则ZEBF=.10.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF±AC于点F,连接EC, AF=3,AEFC的周长为12,则EC的长为.A D11.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,ABPC是以PB为腰的等腰三角形,则PB的长为.12.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是.13.在ABCD中,S ABCD=24,AE平分ZBAC,交BC于E.沿AE将AABE折叠,点B的对应点为F,连结EF并延长交AD于G,EG将ABCD分为面积相等的两部分.则S aabe=-------14.如图,矩形ABCD中,AD=10,AB=8,点P在边CD±,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且PM=CN,连接MN交BP于点F,过点M作ME±CP于E,15.如图,已知菱形AMNP内接于ZkABC,M、N、P分别在AB、BC、AC±,如果AB=21cm, CA=15cm,求菱形AMNP的周长.(6分)A16.(本题8分)如图,四边形ABCD是正方形,BE±BF,BE=BF,EF与BC交于点G.FC l)求证:△ABE丝△CBF;(2)若ZABE=50°,求/EGO的大小.17.如图,菱形ABCD中,E、F分别是边AD,CD上的两个动点(不与菱形的顶点重合),且满足CF=DE,ZA=60°.(1)写出图中一对全等三角形:____________________.(2)求证:ABEF是等边三角形;(3)若菱形ABCD的边长为2,设ADEF的周长为m,则m的取值范围为(直接写出答案);(4)连接AC分别与边BE、BF交于点M、N,且ZCBF=15°,试说明:MN2+CN2=AM2 18.如图所示,点0是菱形ABCD对角线的交点,CE〃BD,EB〃AC,连接0E,交BC于F.(1)求证:OE=CB;B19.已知:如图,在OABCD中,。
北师大版2018九年级数学上册第一章 特殊的平行四边形单元练习题十四(附答案)

北师大版2018九年级数学上册第一章特殊的平行四边形单元练习题十四(附答案)1.如图,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC 的长是( )A.3B.4C.5D.62.已知平行四边形ABCD的对角线交于点O,则下列命题是假命题的是()A.若AC⊥BD,则平行四边形ABCD是菱形B.若BO=2AO,则平行四边形ABCD是菱形C.若AB=AD,则平行四边形ABCD是菱形D.若∠ABD=∠CBD,则平行四边形ABCD是菱形3.如图,在中,为边BC上一动点,于于为EF中点,则AM的最小值为A.B.C.D.4.顺次连结对角线相等的四边形的四边中点所得图形是()A.正方形B.矩形C.菱形D.以上都不对5.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°6.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为()A.3B.C.D.7.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,有下列结论:①∠DEF是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生改变;④点C到线段EF的最大距离为.其中正确结论的个数是()A.1B.2C.3D.48.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.30°B.45°C.55°D.60°9.如图,菱形ABCD的对角线相交于点O,若AC=12,AB=7,则菱形ABCD的面积是()A.1213 B.36 C.2413 D.6010.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD 的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()11.已知正方形ABCD的对角线AC=,则正方形ABCD的周长为.12.如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是.13.如图,点P在正方形ABCD内,△PBC是正三角形,AC与PB相交于点E.有以下结论:①∠ACP=15°;②△APE是等腰三角形;③AE2=PE·AB;④△APC的面积为S1,正方形ABCD的面积为S 2,则S 1:S 2=1:4.其中正确的是 (把正确的序号填在横线上).14.将矩形ABCD 按如图所示的方式折叠,得到菱形AECF ,若AB=3,则菱形AECF 的周长为_______.15.如图,AC 是四边形ABCD 的对角线,∠B=90°,∠ADC=∠ACB+45°,若AC=CD ,则边AD 的长为 .16.如图,四边形ABCD 是正方形,△ADF 按顺时针方向旋转一定角度后得到△ABE ,若AF=4.AB=7.(1)旋转中心为 ;旋转角度为 ;(2)求DE 的长度;(3)指出BE 与DF 的关系如何?并说明理由.17.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为.18.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为_______cm.19.如图,把一张长方形纸条按如图的方式折叠后量得∠AOB'=110°,则∠B'OC=______.20.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.21.(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求的值;(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.22.如图,D是线段AB的中点,C是线段AB的垂直平分线上的一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:DE=DF;(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.23.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB 的延长线于点G.(1)求证:D E∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.24.如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF(2)连接AC交EF于点D,延长OC至点M,使OM=OA,连结EM、FM,试证明四边形AEMF是菱形.25.如图所示,AF是∠MAC角平分线,AE是∠NAC的角平分线,OB=OD,且OA=OC,求证:四边形ABCD为矩形.26.如图,在矩形ABCD中,点E.点F在BC边上,且BE=CF,AF,DE交于点M.求证:①△ABF≌△DCE②AM=DM.27.如图,在ABC 中,点D 在边AC 上, DB BC =, E 是 CD 的中点, F 是AB 的中点,求证: 12EF AB =.28.D 、E 分别是△ABC 的边AB 、AC 的中点.O 是平面上的一动点,连接OB 、OC ,G 、F 分别是OB 、OC 的中点,顺次连接点D 、E 、F 、G .(1)如图1,当点O 在△ABC 内时,求证:四边形DEFG 是平行四边形;(2)若点O 在△ABC 外,其余条件不变,点O 的位置应满足什么条件,能使四边形DEFG 是菱形?请在画2中补全图形,并说明理由.AB C O DE F G(图1) A B C (图2)答案1.B【解析】【分析】连结AF.由AB=AD,F是BD的中点,根据等腰三角形三线合一的性质得出AF⊥BD.再根据直角三角形斜边上的中线等于斜边的一半求得AC=2EF=4.【详解】解:如图,连结AF.∵AB=AD,F是BD的中点,∴AF⊥BD.∵在Rt△ACF中,∠AFC=90°,E是AC的中点,EF=2,∴AC=2EF=4.故选:B.【点睛】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.利用等腰三角形三线合一的性质得出AF⊥BD是解题的关键.2.B.【解析】试题分析:选项A,根据对角线互相垂直的平行四边形是菱形可得选项A正确;选项B,根据这个条件,不能判定这个平行四边形为菱形,选项B错误;选项C,根据一组邻边相等的平行四边形是菱形可得选项C正确;选项D,如图,根据平行四边形的性质可得AD∥BC,再由平行线的性质可得∠ADB=∠CBD,又因∠ABD=∠CBD,可得AB=AD,根据一组邻边相等的平行四边形是菱形即可判定平行四边形ABCD是菱形,选项D正确,故答案选B.考点:菱形的判定.3.D【解析】分析:根据勾股定理的逆定理可以证明;根据直角三角形斜边上的中线等于斜边的一半,则要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形是矩形,根据矩形的对角线相等,得,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于斜边上的高.详解:∵在中,∴即.又∵于E,于F,∴四边形是矩形,∴∵M是EF的中点,∴因为AP的最小值即为斜边上的高,即等于,∴AM的最小值是.故选D.点睛:考查勾股定理以及矩形的判定与性质,矩形的对角线相等这一性质是解题的关键. 4.C【解析】试题解析:如图,E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,根据三角形的中位线定理,EF=12AC,GH=12AC,HE=12BD,FG=12BD,连接AC、BD,∵四边形ABCD的对角线相等,∴AC=BD,所以,EF=FG=GH=HE,所以,四边形EFGH是菱形.故选C.考点:中点四边形.5.C.【解析】试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.考点:1矩形;2平行线的性质.6.C【解析】分析:连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可.详解:连接BM,如图,由旋转的性质得:AM=AF.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠BAD=∠C=90°,∵ΔAEM与ΔADM关于AM所在的直线对称,∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°,∴∠BAM=∠EAF,∴△AFE≌△AMB∴FE=BM.在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,∴BM=∴FE=.故选C.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.7.B【解析】①连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;∵在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,∠CDF=∠EDA,∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形.故①正确;②当E、F分别为AC、BC中点时,四边形CDFE是正方形,故②不正确;③∵△ADE≌△CDF,∴S△ADE=S△CDF.∵S四边形CEDF=S△CED+S△CFD,∴S四边形CEDF=S△CED+S△AED,∴S四边形CEDF=S△ADC.∵S△ADC=S△ABC=4.∴四边形CEDF 的面积是定值4,故③不正确;④△DEF是等腰直角三角形,DE=EF,当EF∥AB时,∵AE=CF,∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,,∴EF取最小值==2,∵CE=CF=2,∴此时点C到线段EF 的最大距离为EF=,故④正确.故选B.点睛:本题主要考查了全等三角形的判定与性质以及正方形、等腰三角形、直角三角形性质等知识,能熟练应用相关知识解决问题是关键.8.B【解析】试题解析:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=12(180°-∠BAE)=90°-12x°,∠DAE=90°-x°,∠AED=∠ADE=12(180°-∠DAE)=12[180°-(90°-x°)]=45°+12x°,∴∠BEF=180°-∠AEB-∠AED=180°-(90°-12x °)-(45°+12x °) =45°.故选B . 【点睛】本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.9.A【解析】试题分析:由菱形的性质得出AC ⊥BD ,OA=OC=21AC=6,OB=OD=21BD ,由勾股定理求出OB ,得出BD 的长,菱形ABCD 的面积=21AC ×BD ,即可得出结果. ∵四边形ABCD 是平行四边形,∴AC ⊥BD ,OA=OC=21AC=6,OB=OD=21BD , ∴OB=22OA AB -=2267-=13,∴BD=213, ∴菱形ABCD 的面积=21AC ×BD=21×12×213=1213; 考点:菱形的性质.10.B【解析】如右图,过点E 作EM ⊥BC 于点M ,EN ⊥AB 于点N ,∵点E 是正方形的对称中心,∴EN =EM ,由旋转的性质可得∠NEK =∠MEL ,在Rt △ENK 和Rt △EML 中, ∵∠NEK =∠EML ,EN =EM ,∠ENK =∠EML ,∴△ENK ≌△EML ,即阴影部分的面积始终等于正方形面积的 .即重叠部分的面积为S 不随θ的变化而变化,故选B.11.4【解析】试题分析:根据正方形的对角线等于边长的倍求出边长,再根据正方形的周长公式列式计算即可得解.解:∵正方形ABCD 的对角线AC=, ∴边长AB=÷=1, ∴正方形ABCD 的周长=4×1=4.故答案为:4.12.(1)2;(2)(6,13).【解析】试题分析::(1)∵两个人的速度之和是85米每分钟,8510分钟后两人第一次相遇.如果要两人在顶点相遇,则:每个人所走的路程均为10的整数倍,且两个人所走路程之和为10+40n (n 是指边得条数).S=10+40n ,n 为0、1、2、3…n ①,S 甲=55t 可以被10整除t 为2、4、6…②,S乙=30t 也可以被10整除t 为甲方取值即可,∵S=S 甲+S 乙,整理得:55t+30t=10+40n ,即:85t=10+40n ,∴n=401085 t ③,由①②③得:当t=2时,两人第一次在顶点相遇.此时甲走了110米,乙走了60米,相遇在点D .(2)点甲、乙相遇则两者走时间相同,设甲走x 米,则乙走5530x=116x 米,∵要相遇在正方形顶点,∴x 和116x 都要为10的整数倍且x+116x-10=1117x-10为40的整数倍(除第一次走10米相遇,以后每次相遇都要再走40米),∴(a-8510)×85=40(b-1)+20,由(1)可知:当a=6时,甲走了330米,甲走到点B ,乙走了180米,走到点D ,解得:b=13,故答案为:(6,13)考点:一元一次方程的应用.13.①②③【解析】试题分析:∵△PBC 是等边三角形,∴∠PCB=60°,PC=BC ,∠PCB=60°,∵四边形ABCD 是正方形,∴BC=AB ,∠ABC=90°, ∴∠ACB=45°, ∴∠ACP=60°﹣45°=15°,∴①正确;∵∠ABC=90°,∠PBC=60°, ∴∠ABP=90°﹣60°=30°, ∵BC=PB ,BC=AB , ∴PB=AB , ∴∠BPA=∠PAB=21(180°﹣30°)=75°, ∵∠ABP=30°,∠BAC=45°, ∴∠AEP=45°+30°=75°=∠BPA ,∴AP=AE , ∴△APE 为等腰三角形,∴②正确;∵∠APB=∠APB ,∠AEP=∠PAB=75°, ∴△PAE ∽△ABP , ∴AP PE AB AP , ∴2AP =PE ·AB , ∴2AE =PEAB ;∴③正确;连接PD ,过D 作DG ⊥PC 于G ,过P 作PF ⊥AD 于F ,设正方形的边长为2a ,则S2=42a ,等边三角形PBC 的边长为2a ,高为3a , ∴PF=2a ﹣3a=(2﹣3)a , ∴S △APD=21SADPF=(2﹣3)2a , ∴∠PCD=90°﹣60°=30°, ∴GD=21CD=21a ,∴S △PCD=21PCDG=2a ,S △ACD=22a , ∴S1=S △ACD ﹣S △ADP ﹣S △PCD=22a ﹣2a ﹣(2﹣3)2a =(3﹣1)2a <2a , ∴S1:S2≠1:4. ∴④错误;考点:(1)、正方形的性质;(2)、三角形相似的应用;(3)、等腰三角形的判定. 14.8【解析】试题分析:根据折叠图形可得∠BCE=∠OCE ,根据菱形的性质可得∠FCO=∠ECO ,则∠FCO=∠ECO=∠BCE ,根据矩形的性质可得∠FCO=∠ECO=∠BCE=30°,则CE=2BE ,根据菱形性质可得AE=CE=2BE ,∵AB=3,∴AE+BE=2BE+BE=3,则BE=1,则AE=2.考点:(1)、菱形的性质;(2)、折叠图形15【解析】试题解析:作∠DCM=∠ACB,并过D 作DH⊥CM 于H ,延长HD 交BA 延长线于K ,如图所示:设∠DCM=∠ACB=x,∵AC=AD,∴∠DAC=∠ADC=x+45°,∴∠ACD=180°-2(x+45°)=90°-2x ,∴∠BCH=90°,在△ABC 和△DHC 中,ACB DCH B DHCAC DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DHC(AAS ),∴BC=HC,AB=DH ,∴四边形BCKH 是正方形,∴∠K=90°,BK=HK ,∴AK=DK=BC∴△ADK 是等腰直角三角形,考点:1.正方形的判定与性质;2.勾股定理.16.(1)旋转中心为点A ,旋转角为∠BAD=90°;(2)3;(3)BE=DF ,BE ⊥DF .【解析】试题分析:(1)由旋转的性质,点A 为旋转中心,对应边AB 、AD 的夹角为旋转角;(2)由旋转的性质可得AE=AF ,AD=AB ,然后由DE=AD ﹣AE 计算即可得解;(3)由旋转可得△ABE 和△ADF 全等,由全等三角形对应边相等可得BE=DF ,全等三角形对应角相等可得∠ABE=∠ADF ,然后求出∠ABE+∠F=90°,判断出BE ⊥DF .试题解析:解:(1)旋转中心为点A ,旋转角为∠BAD=90°;(2)∵△ADF 按顺时针方向旋转一定角度后得到△ABE ,∴AE=AF=4,AD=AB=7,∴DE=AD ﹣AE=7﹣4=3;(3)BE 、DF 的关系为:BE=DF ,BE ⊥DF .理由如下:∵△ADF 按顺时针方向旋转一定角度后得到△ABE ,∴△ABE ≌△ADF ,∴BE=DF ,∠ABE=∠ADF ,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE ⊥DF ,∴BE 、DF 的关系为:BE=DF ,BE ⊥DF .考点:1.旋转的性质;2.正方形的性质.17.16【解析】试题分析:∵四边形ABCD 是矩形,AB=x ,AD=y ,∴CD=AB=x ,BC=AD=y ,∠BCD=90°.又∵BD ⊥DE ,点F 是BE 的中点,DF=4,∴BF=DF=EF=4.∴CF=4﹣BC=4﹣y .∴在直角△DCF 中,DC 2+CF 2=DF 2,即x 2+(4﹣y )2=42=16,∴x 2+(y ﹣4)2=x 2+(4﹣y )2=16.故答案是:16. 考点:①勾股定理;②直角三角形斜边上的中线;③矩形的性质.18.【解析】试题分析:根据菱形的面积公式可求正方形的面积为4×6÷2=12cm 2,然后根据二=cm.19.35°.【解析】试题分析:由折叠可知:'B OC BOC ∠=∠,因为A O B ∠=180°,所以180110'2B OC ︒-︒∠==35°. 故答案为:35°.考点:角的和差.20.2【解析】【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE 的长.【详解】由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案为2.【点睛】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【解析】试题分析:(1)首先过点E分别作BC、CD的垂线,垂足分别为H、P,然后利用ASA证得Rt△FEP≌Rt△GEH,则问题得证;(2)首先过点E分别作BC、CD的垂线,垂足分别为M、N,易证得EM∥AB,EN∥AD,则可证得△CEN∽△CAD,△CEM∽△CAB,又由有两角对应相等的三角形相似,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案;(3)过点E作EM⊥BC于M,过点E作EN⊥CD于N,垂足分别为M、N,过点C作CP⊥EG交EG的延长线于点P,过点C作CQ⊥EF垂足为Q,可得四边形EPCQ是矩形,四边形EMCN是矩形,可得EC平分∠FEG,可得矩形EPCQ是正方形,然后易证△PCG≌△QCF(AAS),进而可得:CG=CF,由(2)知:==2,进而可得:EF=2EG,然后易证EM和EN分别是△ABC和△BCD的中位线,进而可得:EM=1,EN=2,MC=2,CN=1,然后易证△EMG∽△ENF,进而可得,即NF=2MG,然后设MG=x,根据CG=CF,列出方程即可解出x的值,即MG的值,然后在Rt△EMG中,由勾股定理即可求出EG的值,进而可得EF的值.(1)证明:如图1,过点E作EH⊥BC于H,过点E作EP⊥CD于P,∵四边形ABCD为正方形,∴CE平分∠BCD,又∵EH⊥BC,EP⊥CD,∴EH=EP,∴四边形EHCP是正方形,∴∠HEP=90°,∵∠GEH+∠HEF=90°,∠PEF+∠HEF=90°,∴∠PEF=∠GEH,∴Rt△FEP≌Rt△GEH,∴EF=EG;(2)解:如图2,过点E作EM⊥BC于M,过点E作EN⊥CD于N,垂足分别为M、N,则∠MEN=90°,∴EM∥AB,EN∥AD.∴△CEN∽△CAD,△CEM∽△CAB,∴,,∴,即.∴,∴;(3)解:如图3,过点E作EM⊥BC于M,过点E作EN⊥CD于N,垂足分别为M、N,过点C作CP⊥EG交EG的延长线于点P,过点C作CQ⊥EF垂足为Q,则四边形EPCQ是矩形,四边形EMCN是矩形,∵EC平分∠FEG,∴CQ=CP,∴矩形EPCQ是正方形,∴∠QCP=90°,∴∠QCG+∠PCG=90°,∵∠QCG+∠QCF=90°,∴∠PCG=∠QCF,在△PCG和△QCF中,,∴△PCG≌△QCF(AAS),∴CG=CF,由(2)知:=,∵BC=4,AB=2,∴==2,∴EF=2EG,∵点E放在矩形ABCD的对角线交点,∴EM和EN分别是△ABC和△BCD的中位线,∴EM=AB=1,EN=AD==2,MC=,CN=,∵四边形EMCN是矩形,∴∠NEM=90°,∴∠MEG+∠GEN=90°,∵∠GEF=90°,∴∠FEN+∠GEN=90°,∴∠MEG=∠FEN,∵∠EMG=∠FNE=90°,∴△EMG∽△ENF,∴,即NF=2MG,设MG=x,则NF=2x,CG=2﹣x,CF=1+2x,∵CG=CF,∴2﹣x=1+2x,解得:x=,∴MG=,在Rt△EMG中,由勾股定理得:EG==,∵EF=2EG,∴EF=.22.(1)证明见解析;(2)四边形CEDF为正方形.理由见解析.【解析】(1)证明:∵CD垂直平分线AB,∴AC=CB,∴△ABC是等腰三角形.∵CD⊥AB,∴∠ACD=∠BCD.∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∴∠EDC=∠FDC.在△DEC与△DFC中,∵∠ACD=∠BCD,CD=CD,∠EDC=∠FDC,∴△DEC≌△DFC(ASA),∴DE=DF;(2)解:当AB=2CD时,四边形CEDF为正方形.理由如下:∵AD=BD,AB=2CD,∴AD=BD=CD,∴∠ACD=45°,∠DCB=45°,∴∠ACB=∠ACD+∠BCD=90°,∴四边形DECF是矩形.又∵DE=DF,∴四边形CEDF是正方形.23.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)根据已知条件证明BE=DF,BE∥DF,从而得出四边形DFBE是平行四边形,即可证明DE∥BF,(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.试题解析:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=12AB,DF=12CD.∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∴DE∥BF;(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴AE=BE=DE,∵四边形DFBE是平行四边形,∴四边形DEBF是菱形.考点:1.平行四边形的性质;2.菱形的判定;3.直角三角形的性质;4.在直角三角形中斜边中线等于斜边一半24.(1)证明见解析;(2)证明见解析.【解析】分析:根据正方形的性质可得然后利用“HL”证明Rt△ABE 和Rt△ADF全等,根据全等三角形对应边相等可得;求出CE=CF,然后利用“边边边”证明△AEC和△AFC全等,根据全等三角形对应角相等可得∠EAC=∠F AC,再根据等腰三角形三线合一的性质可得AC垂直平分EF,根据线段垂直平分线上的点到两端点的距离相等可得EM=FM,再判断出EF垂直平分AM,根据线段垂直平分线上的点到两端点的距离相等可得AE=EM,然后根据四条边都相等的四边形是菱形证明.解析:(1)在正方形ABCD中,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF;(2)∵∴,即CE=CF,在△AEC和△AFC中,∴△AEC≌△AFC(SSS),∴,又∵AE=AF,∴AC垂直平分EF,∴,∵,∴EF垂直平分AM,∴AE=EM,∴∴四边形AEMF是菱形.点睛:考查菱形的判定,全等三角形的判定与性质, 正方形的性质,题目比较典型,综合性比较强,难度适中.25.见解析【解析】整体分析:先证明∠DAB=90°,再用对角线互相平分证明四边形ABCD是平行四边形即可求证.证明:∵AF是∠MAC角平分线,AE是∠NAC的角平分线,∴∠CAF=12∠CAM,∠CAB=12∠CAN,∴∠CAF+∠CAB=12(∠CAM+∠CAN)=90°,即∠DAB=90°∵OD=OB,OA=OC,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形.26.见解析【解析】整体分析:①用SAS证明△ABF≌△DCE;(2)由△ABF≌△DCE得∠AFB=∠DEC,再结合AD∥BC,得∠MAD=∠MDA,用等角对等边证明MA=MD.证明:①∵四边形ABCD为矩形,∴AB=DC,∠B=∠C,∵BE=CF,∴BE+EF=EF+CF,即BF=CE,在△ABF和△DCE中{AB CD B C BF CE=∠=∠=∴△ABF≌△DCE(SAS);②∵△ABF≌△DCE,∴∠AFB=∠DEC,∵AD∥BC,∴∠AFB=∠MAD,∠DEC=∠MDA,∴∠MAD=∠MDA,∴MA=MD.27.证明见解析.【解析】试题分析:连接BE,根据等腰三角形三线合一的性质可得BE⊥AC,再根据直角三角形斜边上的中线等于斜边的一半证明.试题解析:证明:如图,连接BE,∵在△BCD中,DB=BC,E是CD的中点,∴BE⊥CD,∵F是AB的中点,∴在Rt△ABE中,EF是斜边AB上的中线,∴EF=12 AB.点睛:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出直角三角形是解题的关键.28.(1)证明见解析;(2)OA=BC.【解析】试题分析:(1)根据平行四边形的判定性质求证.(2)把结论当做已知条件,由结论推出已知.试题解析:(1)∵AB、OB、OC、AC中点分别为D、E、F、G∴DG、EF分别为△ABC和△OBC的中位线∴DG∥BC EF∥BC DG=12BC EF=12BC∴DG∥EF且DG=EF∴四边形DEFG是平行四边形;(2)当点O满足OA=BC,四边形DEFG是菱形.由三角形中位线性质得DE=EF,所以平行四边形DEFG是菱形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年暑假作业精编《四边形》 第一部分 基础题1.如图,在平行四边形ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边 于点E ,且AE =3,则AB 的长为( )A .4 B .3 C .25 D .22.如图所示,如果 ABCD 的对角线AC ,BD 相交于点O ,•那么图中的全等三角形共有( ) A .1对 B .2对 C .3对 D .4对3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A . ∠3=∠4 B . ∠1=∠2 C . ∠D =∠DCE D . ∠D +∠ACD =180°4.如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE , 则△CDE 的周长为( )A.20B.12C.14D.135.如果三角形的两条边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是( )A.6B.8C.10D.126.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,已知BC =10,则DE 的长为( )A .3B .4C .5D .6 7.矩形各内角的平分线围成一个( )A .平行四边形B .正方形C .矩形D .菱形 8.下列命题中正确的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是矩形C .对角线相等的平行四边形是矩形D .对角线互相垂直的平行四边形是矩形 9.下列命题中错误的是( )A .对角线相等的平行四边形是矩形B .对角线互相垂直的矩形是正方形C .对角线互相平分的菱形是正方形D .对角线平分一组对角的矩形是正方形 10.下列命题中,错误的是( )A .矩形的对角线互相平分且相等B .对角线互相垂直的四边形是菱形C .三角形的三条角平分线相交于一点,并且这点到三条边的距离相等D .到一条线段两个端点距离相等的点在这条线段的垂直平分线上 11.在菱形ABCD 中,∠ABC =60º,AC =4,则BD 的长为 .12.若点O 为□ABCD 的对角线AC 与BD 交点,且AO +BO =11cm ,则AC +BD = cm . 13.在平行四边形ABCD 中, ∠A =40º,则∠B = º.14.如图,四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是_______________.(只需写出一个)15.如图,口ABCD 中,AE ⊥BD 于E .∠EAC =30°,AE =3 则AC 的长等于 16.如图, ABCD 中,DB =DC ,∠C =70°,AE ⊥BD 于E ,则∠DAE =_____度. 17.如图,在□ABCD 中,∠A =120°,则∠D =_ _°.18. 顺次连接菱形四边中点所得四边形是_________.19. 已知菱形的一个内角为60°,一条较短的对角线长为32,则另一条对角线的长为______________.20. 已知菱形的两对角线长分别为6和8,则菱形的面积为第14题图 第15题图第17题图第16题图选择填空题答案: BDBCB CDCCD11. 34 12. 22 13.140 14.AC ꓕBD 15.34 16.20 17.60 18.矩形 19.6 20.2421.如图,平行四边形ABCD 中,E 、F 是对角线BD 上的点,且BE =DF . (1)请你写出图中所有的全等三角形(2)试在上述各对全等三角形中找出一对加以证明.(2)(以证明△≌△为例,证明其它结论参照给分)证明四边形ABCD 是平行四边形AD ∥BC ,AD=BC ∠ABD=∠CDB , 又BD=BD∴△ABD ≌△CDB.22.如图,在 ABCD 中,BE =DF .求证:AE =CF .23.在 ABCD 中,点E ,F 分别在AB ,CD 上,且AE =CF . 求证:∠AED =∠BFC .24. 已知:□ABCD 中,AE 平分∠DAB 交DC 于E ,BF 平分∠ABC 交DC 于F ,DC =8cm ,AD =3cm ,求EF 的长.EF=DC ﹣DE ﹣CF=8cm ﹣3cm ﹣3cm=2cm .25.已知,如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.证明:(1)∵AC ∥BD , ∴∠C =∠D.∴△AOC ≌△BOD(AAS). (2)∵△AOC ≌△BOD , ∴CO =DO.∵E 、F 分别是OC 、OD 的中点, ∴OF =21OD ,OE =21OC. ∴EO =FO.又 ∵AO =BO ,∴四边形AFBE 是平行四边形.xP ABy 二、提高题 1.在ABCD 中,E 、F 分别在DC 、AB 上,且DE =BF .求证:四边形AFCE 是平行四边形.2.如图所示,四边形ABCD 是平行四边形,且∠EAD =∠BAF . ① 求证:ΔCEF 是等腰三角形; ∠观察图形,ΔCEF 的哪两边之和恰好等于ABCD 的周长?并说明理由.3.如图所示,在ΔABC 中,AD 平分∠BAC 交BC 于D ,DE ∠AC 交AB 于E ,过D 作DF ∠BC 交AC 于F .求证:AE =FC .4.如图,已知ABCD 中, (1,0)A -,点B 在x 轴正半轴上且(,0)B m ,(0,2)D -.(1)用含m 的代数式表示点C 的坐标; (2)若有一条经过直线12y mx =-+能把ABCD 的面积分成相等的两部分,求m 的值.DCBEAF第1题图EABCFD 第2题图FD BACE第3题图5.在□ABCD 中,点E 、F 分别在AB 、CD 上,且AE =CF .(1)求证:∠ADE ∠∠CBF ;(2)若DF =BF ,求证:四边形DEBF 为菱形.6.如图,在ABDE 中,C 为边B D 延长线上一点,连结AC 、CE ,使AB =AC . ∠求证:∠BAD ∠∠AEC ;∠若∠B =30°,∠ADC =45°,BD =10,求ABDE 的面积.7.已知:在□ABCD 中,AE ∠BC ,垂足为E ,CE =CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF ,EG ,AG ,∠1=∠2.(1)若CF =2,AE =3,求BE 的长;(2)求证:∠CEG =∠AGE .8.如图,已知□ABCD 中,F 是BC 边的中点,连接DF 并延长,交AB 的延长线于点E .求证:AB =BE .21第19题图EF C D B A 第5题图9.如图1,在ꓕOAB 中,ꓕOAB =90°,ꓕAOB =30°,OB =8.以OB 为边,在ꓕOAB 外作等边ꓕOBC ,D 是OB 的中点,连接AD 并延长交OC 于E . (1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.10.如图,在□ABCD 中,M ,N 分别是AD ,BC 的中点,∠AND =90°,连接CM 交DN 于点O .(1)求证:⊿ABN ≌⊿CDM ;(2)过点C 作CE ⊥MN 于点E ,交DN 于点P ,若PE =1,∠1=∠2,求AN 的长.11.如图,已知BE ꓕDF ,ꓕADF =ꓕCBE ,AF =CE ,求证:四边形DEBF 是平行四边形.P N MEO D21CBA(第10题)第10题图12.如图,□ABCD 中,点O 是AC 与BD 的交点,过点O 的直线与BA 、DC 的延长线分别交于点E 、F .(1)求证:∠AOE ∠∠COF ;(2)请连接EC 、AF ,则EF 与AC 满足什么条件时,四边形AECF 是矩形,并说明理由.13.如图,在平行四边形ABCD 中,过点A 作AE ∠BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:∠ADF ∠∠DEC ;(2)若AB =8,AD =6,AF =4,求AE 的长.14.在正方形ABCD 中,M 是BC 的中点, DM ∠MN 交∠CBA 的外角平分线于点N .求证:MN =MD .15.ABCD 中,AE BC ⊥于点E ,AF DC ⊥于点F ,AE = 6,AF = 8,ABCD 的周长为98,求ABCD 的面积.第12题图 第13题图 N A BD C ME 第14题图16. 在长方形ABCD 中,AB = 6cm ,BC = 12cm ,点E 从点A 出发沿AB 方向向点B 匀速移动,速度为1cm/s ,点F 从点B 出发沿BC 方向向点C 匀速移动,速度为2cm/s ,如果E 、F 同时从点A 、B 出发,连接EF ,设运动的时间为t 秒,回答下列问题: (1)当t 为何值时,BEF 为等腰直角三角形?(2)设运动的时间为t,∠DEF 的面积为S,求S 关于t 的函数解析式,试求S 的最大值.17. 四边形ABCD 中,AB//CD ,2ADC ABC ∠=∠. 求证:AB =AD +CD .18. 任意四边形ABCD ,AC ∠BD ,AC 交BD 于点O .求证:12ABCD AC BD S =⋅四边形DABC第17题图A BCDEF第16题图BDOAC第18题图19. 如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB (1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.20. 如图,∠ACD、∠ABE、∠BCF均为直线BC同侧的等边三角形.(1) 当AB≠AC时,证明四边形ADFE为平行四边形;(2) 当AB = AC时,顺次连结A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.FEDAB C21. 已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:∠BCG∠∠DCE;(2)将∠DCE绕点D顺时针旋转90°得到∠DA E′,判断四边形E′BGD是什么特殊四边形?并说明理由.第21题图22. 如图,在平行四边形ABCD 中,∠ABC 的平分线交CD 于点E ,∠ADC 的平分线交AB 于点F .试判断AF 与CE 是否相等,并说明理由.23. 如图,已知:ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG交CE 于F ,交AD 于G .求证:AE DG =.24. 如图,在梯形ABCD 中,AD BC ∥,AB DC AD ==,60C ∠=°,AE BD ⊥ 于点E ,F 是CD 的中点,DG 是梯形ABCD 的高.(1)求证:四边形AEFD 是平行四边形;(2)设AE x =,四边形DEGF 的面积为y ,求y 关于x 的函数关系式.第22题图 第23题图 第24题图25. 已知:在四边形ABCD 中,AD ∠BC ,∠BAC =∠D ,点E 、F 分别在BC 、CD 上,且∠AEF =∠ACD ,试探究AE 与EF 之间的数量关系。