方差1PPT课件

合集下载

八年级数学《方差(第一课时)》课件

八年级数学《方差(第一课时)》课件

来衡量这组数据的波动大小,并把它叫做这组数据的方差
(variance),记作s2
方差越大,数据的波动越大;方差越小,数据的波动就越小
布置作业:
正式作业本: 习题 20.2 A.B.层第2 题 C.D层第1题
课后作业题课本P141页1、2题
课后兴趣研讨:
已知一组数据x1、x2、x3、x4、x5都是互不 相等的正整数,且平均数3,中位数是3,求 这组数据的方差。
(xn
20)2
数字10 表示 样本容量,数字20表示
.
样本平均. 数
小明的烦恼
在学校,小明本学期五次测验的数学成绩和英语 成绩分别如下(单位:分)
数学 70 95 75 95 90
英语 80 85 90 85 85
通过对小明的两科成绩进行分析,你有何看法? 对小明的学习你有什么建议?
各科平均成绩:85 方差:①数学 100; ②英语 10 建议:英语较稳定但要提高; 数学不够稳定有待努力 进步!
解:甲、乙两团演员的平均身高分别是

x甲
163 164
2
165 3 8
166
167
165

x乙
163
164
2
165
166
167
2
168
166
8
s2 甲
(163165)2( 164
165)2
8
( 167
165)2
1.36
s2 乙
(163166)2
(164166)2
8
(168166)2
2.75
老师的烦恼
甲,乙两名同学的测试成绩统计如下:
甲 85 90 90 90 95

【精品】概率论与数理统计PPT课件第四章 数学期望和方差

【精品】概率论与数理统计PPT课件第四章 数学期望和方差

8
9
10
P
0.1 0.3 0.6
Y
8
9
10
P
0.2 0.5 0.3
试问哪一个人的射击水平较高? 9
例1(续)
甲、乙的平均环数可写为
EX 80.1 90.3 100.6 9.5 EY 80.2 90.5 100.3 9.1
10
例2.对产品进行抽样,只要发现废品就认为这批产 品不合格,并结束抽样。若抽样到第 n件仍未发现 废品则认为这批产品合格。假设产品数量很大,抽 查到废品的概率是 p,试求平均需抽查的件数。
6
(3)泊松分布 X的所有可能取值为0,1,2,…,且
7
(4)几何分布 X的可能取值为1,2,…, 且 P(X=k)= (1-p)k-1 p, k= 1,2,….
由于
这可以由等式
两边同时对x求导数得到。
8
例1:
甲、乙两人射击,他们的射击水平由下表给出: X:甲击中的环数; Y:乙击中的环数;
X
p)nm
29
注意到二项分布B(n , p)的数学期望,就有 于是
注: 最后一步用了泊松分布数学期望的结果.
30
例8: 设X ~ U[0,], Y =sinX,求E(Y)。
解: X 的概率密度为 所以
31
例9 设二维随机变量(X ,Y)的密度函数为 求E(X), E(Y), E( X + Y ), E(XY), E(Y / X) 解:
36
37
最终, 显然,y = 3500 时,E (Y )最大,
E(Y)max =8250万元.
38
例11.假设由自动线加工的某种零件的内径 X (mm)~
N ( ,1). 已知销售每个零件的利润T (元)与销售零件

F检验1ppt课件

F检验1ppt课件

第一节

方差分析的基本思想

Analysis of Variance ) 方差分析(A 简写为ANOVA 又称变异数(variance)分析。 也称为F检验。 它是英国统计学家 R. A. Fisher 首先提出 的一种统计方法。
Sir Ronald Aylmer Fisher
Born: 17 Feb 1890 in London, England Died: 29 July 1962 in Adelaide, Australia
MS 组间 MS 组内
查表 F( 0.05 ,, 组间 , 组内 ) 若 F F( 0.05 ,, 组间 , 组内 ) , 则 P 0.05; 若 F F( 0.05 ,, 组间 , 组内 ) , 则 P 0.05 .
查表 F( 0.05 , 组间 , 组内 )
若 F F( 0.05 , 组间 , 组内 ) , 则 P 0.05; 若 F F( 0.05 , 组间 , 组内 ) , 则 P 0.05 .
自由度
SS的大小与样本个数和每个样本 的含量有关系。为了消除这种影响,需 要引入均方(mean square)的概念,即 SS除以自由度
均方差,均方(mean square,MS)
变异程度除与离均差平方和的大小有关外, 还与其自由度有关,由于各部分自由度不相等, 因此各部分离均差平方和不能直接比较,须将 各部分离均差平方和除以相应自由度,其比值 称为均方差,简称均方 (mean square , MS)。组 间均方和组内均方的计算公式为 :
1.总变异(total sum of square)
SS总 Yij Y Yij2 C
a 2 a i 1 j 1 i 1 j 1 ni ni

八年级数学 10.3方差与标准差(1)课件(改) 青岛版

八年级数学 10.3方差与标准差(1)课件(改) 青岛版
= 26(分) (
2
名同学测试成绩的标准差是多少(精确到0 这10 名同学测试成绩的标准差是多少(精确到 . 1 分)?
1、关于两组数据波动大小的比较,正确的 关于两组数据波动大小的比较, 是(B ) A.极差较小的数据波动较小 A.极差较小的数据波动较小 B.方差较小的数据波动较小 B.方差较小的数据波动较小 C.平均数较小的数据波动较小 C.平均数较小的数据波动较小 D.中位数较小的数据波动较小 D.中位数较小的数据波动较小
(5 − 4) 2 + (4 − 4) 2 + (5 − 4) 2 + L + (5 − 4) 2 2 s = 10
=1.2
也可以采用列表的方法求大刚进球个数的方差: 也可以采用列表的方法求大刚进球个数的方差
数据x 数据 i 5 4 5 3 3 5 2 5 3 5 平均数 4 4 4 4 4 4 4 4 4 4
(85-90)+(90-90)+(90-90)+(90-90) ) ( ) ( ) ( ) +(95-90)= 0 ( )
乙同学成绩与平均成绩的偏差的和: 乙同学成绩与平均成绩的偏差的和:
(95-90)+(85-90)+(95-90)+(85-90) ) ( ) ( ) ( ) +(90-90)= 0 ( )
x
1 ( + +x +L +x ) x2 n 3 n) -n· n x1
甲同学成绩与平均成绩的偏差的平方和: 甲同学成绩与平均成绩的偏差的平方和:
(85-90)2+(90-90)2+(90-90)2 ) ( ) ( ) +(90-90)2+(95-90)2 = 50 ( ) ( )

高中数学第2章概率5离散型随机变量的均值与方差第1课时离散型随机变量的均值课件北师大版选修2_3

高中数学第2章概率5离散型随机变量的均值与方差第1课时离散型随机变量的均值课件北师大版选修2_3

x(0≤x≤0.29).
依题意,EX≥4.73,即 4.76-x≥4.73,
解得 x≤0.03,所以三等品率最多为 3%.
1.实际问题中的均值问题 均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测, 消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等 方面,都可以通过随机变量的均值来进行估计.
0.2
Eη=200×0.4+250×0.4+300×0.2=240(元).
1.求随机变量的数学期望的方法步骤: (1)写出随机变量所有可能的取值. (2)计算随机变量取每一个值对应的概率. (3)写出分布列,求出数学期望.
2.离散型随机变量均值的性质 (1)Ec=c(c 为常数); (2)E(aX+b)=aEX+b(a,b 为常数); (3)E(aX1+bX2)=aEX1+bEX2(a,b 为常数).
4.已知 X~B100,12,则 E(2X+3)=________. 103 [EX=100×12=50,E(2X+3)=2EX+3=103.]
5.某运动员投篮投中的概率 P=0.6.
(1)求一次投篮时投中次数 ξ 的均值;
(2)求重复 5 次投篮时投中次数 η 的均值.
[解] (1)ξ 的分布列为:
2.均值的性质 (1)若 X 为常数 C,则 EX=_C_. (2)若 Y=aX+b,其中 a,b 为常数,则 Y 也是随机变量,且 EY =E(aX+b)=__a_E_X_+__b___.
(3)常见的离散型随机变量的均值
分布名称
参数
超几何分布
N,M,n
二项分布
n,p
均值 M nN
_n_p__
思考:两点分布与二项分布有什么关系?
[母题探究 1] 本例条件不变,若 Y=2X-3, 求 EY.

北师版八年级上册数学 第六章 数据的分析 6.4.1 极差、方差和标准差 课件

北师版八年级上册数学 第六章 数据的分析 6.4.1 极差、方差和标准差 课件

数学上,数据的离散程度还可以用方差或标准差刻画.
方差是各个数据与平均数差的平方的平均数,即
s2
1 n
[(
x1
x)2
(
x2
x)2

( xn
x )2 ]
其中,x是x1,x2,…,xn的平均数,s2是方差. 而标
准差就是方差的算术平方根.
一般而言,一组数据的极差、方差或标准差越小,
这组数据就越稳定.
例:计算从甲厂抽取的20只鸡腿质量的方差.
甲、乙两支仪仗队队员的身高(单位:cm)如下: 甲队:178,177,179,179,178,178,177,178,177,179 乙队:178,177,179,176,178,180,180,178,176,178 哪支仪仗队队员的身高更为整齐?你是怎么判断的?
1、(2012·山东济宁)数学课上,小明拿出了连续 五天日最低气温的统计表.
那么,这组数据的平均数和极差分别是 24,4 .
2. 甲、乙两个样本,甲的样本方差是2.15,乙的样本方
差是2.21,那么样本甲和样本乙的波动大小是( C )
A.甲、乙的波动大小一样 B.甲的波动比乙的波动大 C.乙的波动比甲的波动大 D.无法比较
3. 新星公司到某大学招聘公司职员,对应聘者的专业知识、 英语水平、参加社会实践与社团活动等三项进行测试,三 项的得分满分都为100分,三项的分数分别按5:3:2的比 例记入每人的最后总分,有4位应聘者的得分如下表所示.
解:甲厂20只鸡腿的平均质量:
x甲 72 73 3 74 4 75 4 76 4 77 3 78 20
7(5 g)
甲厂20只鸡腿质量的方差:
s
2 甲
(72
75)2

极差方差标准差[1]

极差方差标准差[1]
极差=最大值-最小值
注意:
(1)要求出一组数据的极差,首先要找出这组数据的最大值与最小 值,再将两个数值相减. (2)极差要带单位. (3)极差可以用来表示一组数据中两个极端值之间的差异.
PPT文档演模板
极差方差标准差[1]
你知道吗?
谚语:“早穿皮袄午穿纱,抱着火炉吃 西瓜”说明了什么?
PPT文档演模板
它是反映一组数据的整体波动大小的指标, 它反映的是一组数据偏离平均值的情况.
公式
PPT文档演模板
极差方差标准差[1]
注意:方差的单位是原数据的平方.
标准差
标准差的单位和原数据单位一样
PPT文档演模板
极差方差标准差[1]
例1:某校从甲乙两名优秀选手中选1名选手参加全市中 学生田径百米比赛,该校预先对这两名选手测试了8次, 测试成绩如下表:
极差方差标准差[1]
地处我国北部边疆,蒙古高原的东南部, 大部分地区在海拔1000米以上,地势高而 平坦。高原东部多宽浅的大盆地,气候比 较湿润的地方草原宽广,有呼伦贝尔、鄂 尔多斯等,西部戈壁沙漠面积较大,气候 属温带大陆性气候,夏季很少见酷热天气, 日夜温差很大,故有“早穿皮袄午穿纱, 抱着火炉吃西瓜”。
缺席 12
小明Hale Waihona Puke 小兵每次测试 平均成绩
10
10
13
14
12
16
16
小兵
PPT文档演模板
极差方差标准差[1]
到底用什么样的方法判断谁的成绩稳定呢?
“先平均, 再求差, 然后平方, 最后再平均”
PPT文档演模板
极差方差标准差[1]
方差 一组数据中各数据与这组数据的平
均数 的差的平方的平均数叫方差.

方差和标准差(一)课件

方差和标准差(一)课件
3 标准差的计算实例
通过实际案例演示如何计算标准差。
2 总体标准差的计算公式
总体标准差是总体方差的正平方根。
方差和标准差的比较
1 异同点
方差和标准差都可以衡量数据的离散程度,但计算方式稍有不同。
2 选取
根据具体需求选择使用方差或标准差来描述数据集。
3 应用范围
方差和标准差广泛应用于统计学、金融学和自然科学等领域。
方差和标准差(一) ppt课件
在这个课件中,我们将深入探讨方差和标准差的概念、计算方法、应用范围 以及它们在统计学中的重要性。
概述
定义
方差和标准差是衡量数据集中变异程度的统计 量。
计算公式
方差和标准差的计算公式是基于数据的离均差 的平方和。
意义
方差和标准差可以帮助我们了解数据的分散程 度和可靠性。
总结
1 重要性
方差和标准差是统计学中重要的衡量数据分散程度的指标。
2 应用意义
方差和标准差可以帮助我们分析数据、做出决策和解读统计结果。
3 进一步学习建议
了解更多关于方差和标准差的计算方法和应用领域,可以参考相关书籍和论文。
参考资料
1 相关书籍和论文
推荐阅读一些关于方差和标准差的经典著作和学术论文。
2 相关网站和资源
提供一些在线网站和学习资源,以便深入学习方差非负性、零差性、线性变换 性等基本性质。
方差的计算
1 样本方差的计算公式
样本方差是用来估计总体方差的统计量。
2 总体方差的计算公式
总体方差可以准确地描述整体数据集的离散程度。
3 方差的计算实例
通过实际案例演示如何计算方差。
标准差的计算
1 样本标准差的计算公式
样本标准差是样本方差的正平方根。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创设问题情景,引入新课
1.何为一组数据的极差? 极差反映了这组数据哪方面的特征?
答: 一组数据中的最大值减去最小值所得的差 叫做这组数据的极差,极差反映的是这组数据 的变化范围或变化幅度.它受极端值的影响很 大.
2020年10月2日
1
在一次女子排球比赛中,甲,乙两队参赛选 手的年龄如下:
甲队 26 25 28 28 24 28 26 28 27 29
汇报人:XXX 汇报日期:20XX年10月10日
14
2020年10月2日
5
甲队年龄与平均年龄的偏差的和: 乙队年龄与平均年龄的偏差的和:
2020年10月2日
6
甲队年龄与平均年龄的偏差的平方和: (26-26.9)2+(25-26.9)2+... +(29-26.9)2=22.9
乙队年龄与平均年龄的偏差的平方和: (28-26.9)2+(27-26.9)2+... +(26-26.9)2=8.9
乙: 11 16 17 14 13 19 6 8 10 16
问哪种小麦长得比较整齐?
思考:求数据方差的一般步骤是什么?
1、求数据的平均数;
2、利用方差公式求方差。
S2=
1
n
[(x1-x)2+ (x2-x)2 +…+
(xn-x)2 ]
2020年10月2日
12
作业 P159 T1 . T4
2020年10月2日
乙队 28 27 25 28 27 26 28 27 27 26 (1)两队参赛选手的平均年龄分别是多少?
(2)你能说说两队参赛选项手年龄波动的情况吗?
上面两组数据的平均数分别是
X甲=26.9
X乙=26.9
2020年10月2日
2
年 龄
30 28 26 24 22 20
0 1 2 3 4 5 6 7 8 9 10
(2)如果你是他们的辅导 成绩
老师,应该选派哪位学生
(分)

参加这次竞赛,请你结合 90
图形简要说明理由。

80
70
60
2020年10月2日
Байду номын сангаас
一 二 三四 五 月 月 月月 月
11
为了考察甲、乙两种小麦的长势,分别从中抽出10
株苗,测得苗高如下(单位:cm):
甲: 12 13 14 15 10 16 13 11 15 11
别为:65,80,80,85,80
90; 乙的5次成绩分别 70
为:75,90,80,75, 60
80;
一 二 三四 五 月 月 月月 月
2020年10月2日
10
例题1、为了从甲乙两人中选拔一人参加初中物理 实验操作能力竞赛,每个月对他们的实验水平进行 一次测验,如图给出了两个人赛前的5次测验成绩。
找到啦!有区别了!
2020年10月2日
7
上述各偏差的平方和的大小还与什么有关? ——与人数有关!
所以要进一步用各偏差平方的平均数来衡量数据的稳定性
设一组数据x1、x2、…、xn中,各数据与它们的平均数 的差的平方分别是(x1-x)2、(x2-x)2 、… (xn-x)2 , 那么我们用它们的平均数,即用
方差越大,说明数据的波动越大,越不稳定.
2020年10月2日
9
例题1、为了从甲乙两人中选拔一人参加初中物理 实验操作能力竞赛,每个月对他们的实验水平进行 一次测验,如图给出了两个人赛前的5次测验成绩。
(1)分别求出甲乙两名学
成绩
生5次测验成绩的 平均数和 (分)

方差。
90
解(1)甲的5次成绩分

S2=
1
n
[(x1-x)2+
(x2-x)2
+…+
(xn-x)2 ]
2020年10月2日
8
概括
方差:各数据与它们的平均数的差的平方的平均数.
S2=
1
n
[(x1-x)2+ (x2-x)2 +…+
(xn-x)2 ]
❖计算方差的步骤可概括为“先平 均,后求差,平方后,再平均”.
方差用来衡量一批数据的波动大小.(即这批数据 偏离平均数的大小).
甲队选项手的年龄分布
2020年10月2日
数据序号
3
年 龄
30 28 26 24 22 20
0 1 2 3 4 5 6 7 8 9 10 数据序号
乙队选项手的年龄分布
2020年10月2日
4
比较上面两幅图可以看出,甲队选手的年龄 分布与其平均年龄差别较大,乙队选手的年 龄较集中地分布平均年龄左右,那么我们从 图中看出的结果能否用一个量来刻画呢?
13
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
相关文档
最新文档