(16)有向无环图及其应用讲解
1、图的定义和术语2、图的存储结构3、图的遍历4、图的

}
3 67
adj
8
01 12 23 34 45 56 67 78
2
3
dfs(adj,1)
1
4
5
1
6
7
dfs(adj,2)
2
8
2
8
3
8
3
8
4
5
6
7
1
void dfs(adj,v)
1
{ visited[v-1]=1;
cout<<v;
2
for(p=adj[v-1].firstarc;p!=NULL;p=p->next) if(visited[p->adjvex-1]==0) dfs(adj,p->adjvex); 4 5
2
3
dfs(adj,1)
1
4
5
1
6
7
2
8
2
8
3
8
3
8
4
5
6
7
void dfs(adj,v)
1
{ visited[v-1]=1;
cout<<v;
2
for(p=adj[v-1].firstarc;p!=NULL;p=p->next) if(visited[p->adjvex-1]==0) dfs(adj,p->adjvex); 4 5
图的二种常见的遍历形式: •深度优先搜索 •广度优先搜索
1、深度优先(DFS)搜索
访问方式:从图中某顶点v出发:
1)访问顶点v; 2)从v的未被访问的邻接点出发,继续对图进行深度优先遍历, 若从某点出发所有邻接点都已访问过,退回前一个点继续上述过 程,若退回开始点,结束。
拓扑排序算法与有向无环图

拓扑排序算法与有向无环图拓扑排序算法是一种对有向无环图(DAG)进行排序的算法,它可以将图中的顶点按照一定的顺序进行排序,使得图中的任意一条有向边从排在前面的顶点指向排在后面的顶点。
在实际应用中,拓扑排序算法可以用来解决诸如任务调度、依赖关系分析等问题。
一、拓扑排序算法的定义
拓扑排序算法的基本思想是通过不断地选择入度为0的顶点,并且将该顶点从图中删除,最终得到的顶点序列就是图的拓扑排序。
在实际应用中,可以采用深度优先搜索(DFS)或广度优先搜索(BFS)等方法来实现拓扑排序算法。
二、拓扑排序算法的步骤
1. 初始化:将所有顶点的入度计数初始化为0,并将入度为0的顶点加入一个队列中。
2. 遍历:循环遍历队列中的顶点,每次取出一个顶点并将其加入拓扑排序的结果序列中。
3. 更新:将该顶点指向的顶点的入度减1,并将入度减为0的顶点加入队列中。
4. 结束条件:直到队列为空时,所有顶点都已经被处理,得到的顺序即为拓扑排序的结果。
三、拓扑排序算法的应用
1. 任务调度:在任务调度中,拓扑排序算法可以用来确定任务执行
的顺序,保证任务之间的依赖关系得到满足。
2. 依赖关系分析:在软件工程中,拓扑排序算法可以用来分析软件
中各个模块之间的依赖关系,有助于代码的组织与管理。
3. 课程安排:在学校教学中,拓扑排序算法可以用来安排课程的上
课顺序,确保学生按照一定的顺序学习各门课程。
综上所述,拓扑排序算法是一种重要的图算法,可以用来处理有向
无环图中顶点的排序问题,具有广泛的应用价值。
通过深入理解和掌
握拓扑排序算法,可以更好地解决实际生活和工作中遇到的各种问题。
图着色问题

ac b ed c g e bgd b ed f b ec f df
故G的极小覆盖为 { a , c , e , g } { b , c , , d , e , g } { b , d , , e ,f } { b , c , , d ,f } 取• 其S补te集p2,:得求到出G一的切所若有干极极大大独独立立集集:和所{ 有b ,顶d ,点f} 的{ a 子,,f 集} { a ,, c ,g } { a ,, e ,g }
回溯法
14
回溯法
step two:以颜色1为顶点B着色生成结点3时,产生 (1,1,0,0,0),是个无效着色,结点3为d_结点。
Step three:以颜色2为顶点B着色生成结点4,产 生(1,2,0,0,0),是个有效着色。
Step four:分别以颜色1和2为顶点C着色生成结点 5和6,产生(1,2,1,0,0)和(1,2,2,0,0),都是无效着 色,因此结点5和6都是d_结点。
9
穷举法-Welch Powell着色法
• 给定图G,用Welch Powell法对图G着
色1
A2 3
2
A3
1
A4
A5
A6 3
10
穷举法-Welch Powell着色法
• 第一步:将图G中的结点按度数的递减顺序排
列: A 5,A 3,A 7,A 1,A 2,A 4,A 6,A 8
• 第二步:用第一种颜色对A5着第一种颜色, 并对与A5不邻接的结点A1也着第一种颜色。
//搜索下一个颜色
•
if (color[k]<=m && k= =n)
//求解完毕,输出解
•
{ for (i=1; i<=n; i++)
离散数学_无向图和有向图

例2 (续)
(2)
(3)
不同构 入(出)度列不同
度数列相同 但不同构 为什么?
22
完全图
n阶无向完全图Kn: 每个顶点都与其余顶点相邻的n 阶无向简单图.
简单性质: 边数m=n(n-1)/2, ==n-1
n阶有向完全图: 每对顶点之间均有两条方向相反的 有向边的n阶有向简单图.
简单性质: 边数m=n(n-1), ==2(n-1), +=+=-=-=n-1
例 对上一页K4的所有非同构子图, 指出互为补图的 每一对子图, 并指出哪些是自补图.
27
5
无向图与有向图(续)
定义 有向图D=<V,E>, 其中 (1) V同无向图的顶点集, 元素也称为顶点 (2) 边集E为VV的多重子集,其
元素称为有向边,简称边. 用无向边代替D的所有有向边 所得到的无向图称作D的基图
右图是有向图,试写出它的V和E 注意:图的数学定义与图形表示,在 同构(待叙)的意义下是一一对应的
V 中的所有边为边集的G的子图称作V 的导 出子图,记作 G[V ] (5) 设E E且E , 以E 为边集, 以E 中边关联的 所有顶点为顶点集的G的子图称作E 的导出子 图, 记作 G[E ]
25
子图(续)
例 画出K4的所有非同构的生成子图
26
补图
定义 设G=<V,E>为n阶无向简单图,以V为顶点集, 所有使G成为完全图Kn的添加边组成的集合为边集 的图,称为G的补图,记作 G . 若G G , 则称G是自补图.
12
握手定理(续)
推论 在任何无向图和有向图中,奇度顶点的个数必
为偶数.
证 设G=<V,E>为任意图,令
第8章_有向图

图论及其应用
5
8.1 有向图——习题
10.1.1. 一个简单图有多少个定向图? 10.1.2. 证明: = = 。 10.1.3. 设有向图D中无有向圈,则 d (v ) d (v ) v V v (a) = 0V; (b) 存在一个顶点排序v1,……,v ,使对1 i ,每条 以vi为 头的弧其尾都在{v1,……,vi-1} 中。 10.1.4. 证明:D是双向连通的 D是连通的,且D的每个块 是双向连通的。 10.1.5. D的逆图 是把D中每弧的方向都改为其反向所得的 有向图。试用逆图慨念及习题10.1.3.(a) 来证明: 若有向图D中 无有向圈,则+ = D 。 0 10.1.6. 证明:严格有向图包含长 max{ ,+}的有向路。 10.1.7. 证明:严格有向图中若max{ ,+} = k 1,则 D包含长 k+1 的有向圈。
图论及其应用
第8章 有向图
8.1 有向图
有向图(directed graph;digraph) D =(V,A) V(D) —— 顶点集。 a u v A(D) —— 弧集。 弧a = (u,v):其头为v,其尾为u; 弧a从u连到(join to)v。 有向子图(subdigraph) 有向图D的基础图(underlying graph) 对应于D的无向图G(称D为G的一个定向 (orientation)图)
8.1 有向图
易见,有向图D = (V, A)中顶点间的双向连通性是V上 的一个等价关系,它的等价类确定了V的一个划分 (V1,……,Vm), 使顶点u与v双向连通 u与v 同属某等价类Vi 。 称每个导出子图D[V1],……,D[Vm]为有向图D的一 个双向分支(dicomponent;strong component)。 当D只有一个双向分支时,称D为双向连通的。 易见,D的任二双向分支之间的弧都是同一个方向的。 例
第七章 第一讲 无向图及有向图

完全图举例
K5
3阶有向完全图
4阶竞赛图
子图(subgraph)
定义8 设G=<V,E>,G=<V ,E>为两个图(同为无 向图或同为有向图),若V V且E E,则称G 是G的子图,G为G 的母图,记作G G。 若V V或E E,则称G 为G的真子图。
若et∈E,使得et=<vi,vj>,则称vi为et的始点,vj为 et的终点,并称vi邻接到vj,vj邻接于vi。
若ek的终点为el的始点,则称ek与el相邻(adjacent)。 el ek vi vj
定义3 在无向图中,关联一对顶点的无向边如果多于1条 ,则称这些边为平行边,平行边的条数称为重数。
3
欧拉:传奇的一生
年少时,听从父亲的安排,巴塞尔大学,学习神学和希伯来语 ,结果被约翰· 伯努利欣赏,17岁获得硕士学位之后,才开始 专供数学。
为获得圣彼得堡科学院的医学部的职位空缺,欧拉在巴塞尔便 全力投入生理学的研究,并出席医学报告会。1727年,等他到 达俄罗斯时,叶卡捷琳娜一世女皇去世,他进入数学部。 1733年,欧拉回到瑞士,并结婚,一生共生育13个孩子,5个 存活。 为了赢得巴黎奖金而投身于一个天文学问题,那是几个有影响 的大数学家搞了几个月时间的,欧拉在三天之后把它解决了。 可是过分的劳累使他得了一场病,病中右眼失明了。 欧拉到底出了多少著作,直至1936年人们也没有确切的了解。 但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60 4 至80卷。彼得堡学院为了整理他的著作整整花了 47年。
解: (3,3,2,1),(3,2,2,1,1) 不可以图化
(3,3,2,2)可以图化
(3,2,2,2,1)可以图化
图的基本概念 无向图及有向图

d (v4)=4
d (v5)=2
31
最大(出/入)度,最小(出/入)度
在无向图G中, 最大度: Δ(G) = max{ dG(v) | v∈V(G) } 最小度: δ(G) = min{ dG(v) | v∈V(G) } 在有向图D中, 最大出度: Δ+(D) = max{ dD+(v) | v∈V(D) } 最小出度: δ+(D) = min{ dD+(v) | v∈V(D) } 最大入度: Δ-(D) = max{ dD-(v) | v∈V(D) } 最小入度: δ-(D) = min{ dD-(v) | v∈V(D) } + + - 简记为Δ, δ, Δ , δ , Δ , δ
i 1
i
证明 必要性。由握手定理显然得证。 充分性。由已知条件可知,d中有偶数个奇数 度点。 奇数度点两两之间连一边,剩余度用环来实现。
5 3
3
1
例7.1: 1. (3, 3, 2, 3), (5, 2, 3, 1, 4)能成为图的度 数序列吗?为什么? 2. 已知图G中有10条边,4个3度顶点,其余顶点的 度数均小于等于2,问G中至少有多少个顶点?为 什么? 解: 1.由于这两个序列中,奇数度顶点个数均为奇数, 由握手定理的推论可知,它们都不能成为图的度 数序列。 2.显然,图G中的其余顶点度数均为2时G图的顶点 数最少. 设G图至少有x个顶点. 由握手定理可知, 3×4+2×(x-4)=2 ×10 解得: x=8 所以G至少有8个顶点。
度数列举例
按顶点的标定顺序,度数列为 4,4,2,1,3。
度数列举例
按字母顺序, 度数列:5,3,3,3 出度列:4,0,2,1
结构因果模型 auc

结构因果模型 auc【原创版】目录一、结构因果模型的概念与定义二、结构因果模型的基本元素:有向无环图与变量节点三、结构因果模型的乘积法则四、结构因果模型的应用场景与优势五、结构因果模型与潜在结果模型的比较正文一、结构因果模型的概念与定义结构因果模型(Structural Causal Model,SCM)是一种描述系统因果机制的概念模型,它是由图灵奖获得者 Judea Pearl 教授在 1995 年提出的。
结构因果模型通过有向无环图(Directed Acyclic Graph,DAG)来描述变量之间的因果关系,将变量作为节点,如果一个变量 x 是另一个变量 y 的子节点,那么 y 是 x 的直接原因;如果 x 是 y 的后代,那么 y 是 x 的一个潜在原因。
二、结构因果模型的基本元素:有向无环图与变量节点结构因果模型的核心元素是有向无环图,它是一种用于表示因果关系的有向图结构,其中节点表示变量,边表示因果关系。
有向无环图具有以下特点:1.节点:图中的每个节点代表一个变量,可以是连续型或离散型变量。
2.边:节点之间的边表示因果关系,边有方向,从因变量指向果变量。
3.无环:图中不存在循环的因果关系。
三、结构因果模型的乘积法则结构因果模型中,变量的联合分布可以通过对图中所有分布计算条件分布的乘积得到。
具体来说,假设图中有 n 个变量,它们的联合分布可以表示为:p(x1, x2,..., xn) = ∏[p(xi|pa) * p(pa|xa) *...* p(xn|x1,x2,..., xn-1)]其中,p(xi|pa) 表示在给定 pa 的条件下 xi 的概率分布,p(pa|xa) 表示在给定 xa 的条件下 pa 的概率分布,以此类推。
四、结构因果模型的应用场景与优势结构因果模型在许多领域具有广泛的应用,包括社会科学、计算机科学、生物学等。
它可以帮助研究者更好地理解变量之间的因果关系,从而提高研究设计的质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
一、定义
一个无环的有向图称为有向无环图,简写为 DAG(directed acycline graph)。 与有向二叉树相比,有向无环图是更一般的特 殊有向图。 实例:
有向树
有向无环图
有向图
有向无环图的一个简单应用: 用有向无环图描述 2 算术表达式。
二、拓扑排序
1.引例:现有计算机课程12门,如下表所示:
vertex
adjvexnextadj firstedge
0
v1
v2
13v4源自v3254
v5
v6
另外增设一个存放各顶点的入度值的一维数组indegree:
indegree[0..5] 0 0 2 1 1 2 2 3 3 4 0 5
10
二、拓扑排序
indegree一维数组初值的程序: 4.求 算法说明:为了使说明过程简单起见,我们以下 FindInDegree(ALGraph G,indegree[0..G.vexnum-1]){ 图为例:
拓扑序列:C1 C2 C3 C4 C5 C7 C9 C10 C11 C6 C12 C8
8
二、拓扑排序
3.方法: 注意1 :从某种意义下来说,拓扑排序的结果是不 唯一的。 注意2 :这种以顶点表示活动的有向无环图称为活动 在顶点的网,简称AOV(Activity On Vertex Network) 网。 注意3 :当有向图中包含有向环路时,拓扑排序算法 结束时图中还有若干顶点没有被输出(即有向环路 中的所有顶点没有参加排序)。
C6 C11
6
二、拓扑排序
3.方法:
C4 C5 C2 C1 C3 C7
C12 C9 C10 C8
C6 C11
拓扑序列:C1 C2 C3 C4 C5 C7 C9 C10 C11 C6 C12 C8
7
二、拓扑排序
3.方法: 注意1 :从某种意义下来说,拓扑排序的结果是不 唯一的。 注意2 :这种以顶点表示活动的有向无环图称为活动 在顶点的网,简称AOV(Activity On Vertex Network) 网。
C12 C9 C10 C8
C6 C11
拓扑排序是指将一个偏序关系转化为全序关系的过程 的特殊操作。 5
二、拓扑排序
3.方法: ①在有向图中选择一个没有前驱(即 入度为0)的顶点并输出之。
C2 C1 C4 C5
②在有向图中删除刚刚输出的顶点及 C3 所有以该顶点为尾的弧。
C12
C7
C9
③图中若不再有入度为 0的顶点,则 C8 C10 结束;否则转①。
课程编号
C4
课程名称
C2
C5
先修课程
C1
C1
程序设计基础
离散数学 数据结构 C3
无
C1 C1,C2
C7
C2 C3
C4
C5
C9
汇编语言
语言的设计和分析 C12 计算机组成原理
C10
C1
C3,C4 C11 C5,C3
C6 C8
C6 C7 C8 C9 C10
C11
编译原理 操作系统原理 高等数学 线性代数
9
二、拓扑排序
4.算法说明:为了使说明过程简单起见,我们以下 图为例:
G.adjlist[0] G.adjlist[1] G.adjlist[2] G.adjlist[3] G.adjlist[4] G. adjlist[5] v1 v2 ^ v3 v4 v5 ^ v6 4 3 ^ 4 4 ^ 1 ^ 3 2 1 ^
for(i=0;i<G.vexnum;++i) indegree[0..G.vexnum-1]=0; 0 1 G. adjlist[0] v1 3 2 1 ^ v1 v2 for(i=0;i<G.vexnum;++i){ G. adjlist[1] v2 ^ p=G. adjlist[i].firstedge; 2 3 G. adjlist [2] v3 4 1 ^ while (p){ v3 v4 G. adjlist[3]k=p->adjvex; v4 4 ^ 4 G. adjlist[4]++indegree[k]; v5 ^ 5 v6 v5 p=p->nextadj; G. adjlist[5] v6 4 3 ^ } 另外增设一个存放各顶点的入度值的一维数组 indegree: }
0 indegree[0..5] }//FindInDegree 0 2 1 1 2 2 3 3 4 0 5
11
二、拓扑排序
拓扑排序算法思想: 4.算法说明:为了使说明过程简单起见,我们以下 ①设一个栈S,所有入度为0的顶点 图为例: 的序号进栈。如0,5 进栈。 0 1 G. adjlist[0] v1 3 2 1 ^ v1 v2 count=0(打印顶点个数计数器)。 Gadjlist [1] v2 ^ ②当栈S不空时,出栈一个元素并打 2 3 印相应顶点的值; count 加 1。 G. adjlist[2] v3 4 1 ^ v3 v4 该顶点的所有邻接点的入度减 1, G. adjlist [3] v4 4 ^ 减1后所有入度为0的顶点的序号进栈。 4 Gadjlist [4] v5 ^ 5 ③重复第二步,直至栈空时转④。 v6 v5 G. adjlist[5] v6 4 3 ^ ④若count=G.vexnum,则拓扑排序成 功;否则图中必有环路,拓扑排序失 另外增设一个存放各顶点的入度值的一维数组indegree: 败。 indegree[0..5] 0 2 1 2 3 0
C3,C6 无 C9
C11
C12
普通物理
数值分析
C9
C9,C10,C1
3
二、拓扑排序
2.拓扑排序:
C4 C5 C2 C1 C3 C7
C12 C9 C10 C8
C6 C11
偏序是指集合中仅有部分元素可比较大小(或先后);
4 全序是指集合中所有元素均可比较大小(或先后)。
二、拓扑排序
2.拓扑排序:
C4 C5 C2 C1 C3 C7
0
v1
v2
1
s
3
v4 v3
0 1 2 3 4 5
12
二、拓扑排序
4.算法说明:为了使说明过程简单起见,我们以下 图为例:
G. adjlist[0] G. adjlist[1] G. adjlist[2] G. adjlist[3] G. adjlist[4] Gadjlist [5] v1 v2 ^ v3 v4 v5 ^ v6 4 3 ^ 4 4 ^ 1 ^ 3 2 1 ^