碳纤维国内技术和生产现状简介
碳纤维行业深度研究报告

碳纤维行业深度研究报告一、新材料之王:碳纤维性能优异,复合材料应用广泛碳纤维在可量产纤维材料中性能最佳,是目前工程上可以大规模应用的比强度最高的材料,其具有优异的物理、化学性能,在军工及民用领域都有着广泛的应用,被称为21世纪的“黑色黄金”。
碳纤维复合材料即以碳纤维为增强体,以树脂、碳质、金属、陶瓷等为基体所形成的复合材料,在结合增强体与基体优异性能的同时,应用范围更加广泛。
1.1碳纤维性能优异,PAN基碳纤维占据主流地位碳纤维:“新材料之王”。
碳纤维(CarbonFiber)是由聚丙烯腈(PAN)等有机纤维在1000~3000℃高温的惰性气体氛围中经氧化碳化后制成的,含碳量在90%以上的无机高分子纤维,是目前可以获得的最轻的无机材料之一。
碳纤维的比强度和比模量等力学性能优异,且具有低密度、耐腐蚀、耐高温、耐摩擦、抗疲劳、高震动衰减性、高导电导热性、低热膨胀系数、高电磁屏蔽性等特点,其易加工、可设计的性能使其广泛应用于航空航天、军工、能源、体育用品、汽车工业、轨道交通和建筑补强等领域,是国防军工和国民经济不可或缺的战略新兴材料,被誉为“新材料之王”。
按照原料不同,碳纤维可分为PAN基、粘胶基、沥青基碳纤维。
按照原材料不同,碳纤维主要分为粘胶基(纤维素基、人造丝基)、沥青基(各向同性、中间相)和聚丙烯腈(PAN)基三大类。
目前以聚丙烯腈为原料制成的PAN基碳纤维占据主流地位,产量占碳纤维总量的90%以上,如无特殊说明,本文所指碳纤维皆为PAN基碳纤维。
按照丝束大小,碳纤维可分为大丝束和小丝束碳纤维。
一般按照碳纤维中单丝根数与1000的比值命名,如12K指单束碳纤维中含有12000根单丝的碳纤维。
通常将24K及以下的碳纤维称为小丝束碳纤维,初期以1K、3K、6K为主,后逐渐发展为12K和24K,主要应用于国防军工等高科技领域以及体育休闲用品。
通常将48K以上碳纤维称为大丝束碳纤维,包括48K、60K、80K等(部分领域25K也可称为大丝束),主要应用于能源、交运、建筑等工业领域。
碳纤维的发展现状

碳纤维的发展现状碳纤维(carbon fiber),它不仅具有碳材料的固有本征特性,乂兼具纺织纤维的柔软可加工性,是新一代增强纤维碳,是纤维状的碳素材料,含碳量在90% 以上,其中含碳量高于99%的称石墨纤维。
与传统的玻璃纤维(GF)相比,氏模量是其3倍多;它与凯芙拉纤维(KF-49)相比,不仅氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。
有学者在1981年将聚丙烯膳(PAN)基碳纤维浸泡在强碱洛液中,时间已过去20多年,它至今仍保持纤维形态。
图1碳纤维碳纤维最早山美国联合碳化物公司和美国空军材料实验室于1959年投产,原丝采用粘胶纤维。
1962年,日本碳公司进行了通用级聚丙烯睹基碳纤维的生产。
1971年,曰本东丽公司的高性能聚内•烯月青基碳纤维投产。
沥青基碳纤维是日本吴羽化学工业公司于1973年投产的。
联合碳化物公司生产了高模量沥青基碳纤维,1985年,美国、日本及西欧的聚丙烯月青基碳纤维年生产能力共约有7.25kt,沥青基碳纤维为1.28kto碳纤维一般以力学性能和制造原材料来进行分类。
按力学性能一般可分为两类:a)通用型(GP)碳纤维;b)高性能型(HP)碳纤维。
通用型碳纤维强度lOOOMPa、模量lOOGPa左右,高性能型碳纤维乂可分为高强型(强度2000MPa、模量250GPa)和高模型(模量在300GPa以上)。
强度大于4000MPa者称为超高强型;模量大于450GPa者称为超高模型。
按原材料可分为3类:a)聚丙烯膳基(PAN)碳纤维;b)沥青基碳纤维;c)粘胶基(纤维素)碳纤维。
3种原料碳纤维的主要性能见表1。
表1 3种原料碳纤维的主要性能种类抗拉强度/MPa 抗拉模量/GPa密度/g ■ cm_3断后延伸率,%PAN基碳纤维>3 500>230 1.76 ~ 1.940.6-L2沥青基碳纤维1 600379 1.7 1.0粘胶基碳纤维2 100 ~2 800414 ~552 2.00.7碳纤维按照一束纤维中根数的多少分为小丝束和大丝束碳纤维。
碳纤维新形势和聚丙烯腈原丝技术探索

圈
l
’CS F U O
日本 东丽 另一 种 制 备 不 同相 对 分 子质量PA N纺丝原液 的方法 , 是将 AN和I 在 第 一 聚 合 引 发 剂 2 2 A , ’一 得PAN原 丝 经 预 氧化 (6 ℃ ) , 2 0 后 可 制得 预氧 丝密度 为 1 3 g m 强 度 .7 /c 、 3 5 a 模量 2 6 .GP 、 2 GPa 的预氧化纤维 , 再 经碳化后可制得 更高强度和模量 的 碳 纤维 。
1 的PAN原液 , 丝时的喷 头拉伸可 0 纺
高达 2 0~2 倍 。 5
日本东丽所设计 的管状连续溶 液 聚 合反 应器 , 图 1 示 , 中的 管式 如 所 其 反应器 内部有静 态混合结构 , 所制得 的 P AN原丝 ( Mw= 0 ~4 万) 3 ̄ 2 经碳化后 强度 5 P 、 G a模量 30 P 、 0 G a 断丝极少。
日本 东 丽 为 提 高 纺 速 和 喷 头拉
偶 氮 (一 氧 基一 ,一 甲基 戊 腈 ) 4甲 24 二
( ADVA) 2 及 0~5 ℃下 聚合 , 加入 5 再 AN和共 聚 单 体 , 第 二 引聚 合 发 剂 在
2 纺丝与后加 工技术 .
日本东丽 所设 计 的喷丝 板如 图 2
产 ,0 5 2 1年开 始 生产 工业 用 途 的碳 纤
维制 品 , 并使 预浸料 的产能扩 大 2 %, 0
年 前 , 的产业 化成 果 会在 我 国不 断 新 涌现 , 这对 在 2 2 年前 后 改变全 球碳 00 纤维 现有格局将 作出历史性 的贡献 。
2 1年 生产 航 空航天 用碳 纤 维制 品 。 06
持垄 断 势头 , 日本 东 丽株 式 会社 ( 简 称“ 日本东 丽” 到 2 1年 产 能仍将 保 ) 05 持世界领先 ( 7 0 t a 。 国C tc 2 1 0/ )美 O y e 公司在P e mo t id n 将扩大PAN原丝和
2022年行业分析报告我国碳纤维产业进展情况分析

我国碳纤维产业进展情况分析碳纤维是一种新型高性能纤维,比强度高、耐高温、耐磨擦、耐腐蚀,广泛应用于航空航天、机械、建材交通、文体医疗等领域,在国民经济中有着重要的战略地位。
近年来随着生产技术进步和应用范围的不断扩大,碳纤维需求量逐年扩大。
2022年我国PAN基碳纤维消费量6900吨左右,猜测2022年将达到8700吨。
受供求关系和发达国家对我国实行碳纤维技术及产品双重封锁的影响,我国碳纤维市场始终处于受制于人的状态,甚至某些碳纤维复合材料高端用户面临没有原料可以进行加工的尴尬境地。
此外,由于大型航空飞机制造和清洁能源等产业的拉动,世界范围的碳纤维需求量将持续增加,国际碳纤维供需关系短期之内不会大幅回落。
因此,作为重大战略材料,我国需建设立足国内的碳纤维自主保障力量,以确保高端用户的需要。
我国碳纤维研发历史从上个世纪60年月初开头,但三十多年来关键技术未能突破,国内碳纤维产能和技术与国外存在相当大的差距,此现状阻碍着国家尖端武器的更新换代、对国家的平安构成威逼,对高附加值的国民经济支柱产业的进展也影响极大。
制约我国碳纤维进展的主要因素有两个方面,一是碳纤维原丝质量问题。
国产原丝在纯度、强度以及均质化方面与国外相比存在较大差距,大大制约了国产碳纤维的产品质量。
二是耐高温材料及大型高温炉。
国产碳化炉采纳仅能允许在1400℃以下温度使用的碳化硅作为发热体,高温环境下碳化硅抗负荷强度低,不能制作大尺寸工业规模碳化炉,无法实现1500℃的最佳工艺。
国外采纳高纯石墨材料1800℃以上的高温碳化炉严格限制对我国的出口,中等规模的高温碳化炉进口价格高,导致国产碳纤维装置的建设成本过高,无法与进口纤维竞争。
为了打破国外技术及产品垄断,满意国内市场需求,化纤行业一些企业进一步加大了高性能碳纤维投入,推动了我国碳纤维产业化进程。
如山西恒天纺织新纤维科技有限公司建设了年产1200吨PAN 基碳纤维原丝改扩建项目、连云港神鹰新材料有限公司建设了年产2500吨聚丙烯腈原丝1000吨碳纤维项目、山东威海光威集团公司3K(1K)高性能碳纤维及机织物生产线建设项目,目前这些生产线均已建成投产,共形成了年产4000万吨聚丙烯腈基碳纤维原丝、1300万吨碳纤维以及30万米碳纤维复合材料的生产力量,使我国碳纤维生产规模迈上了千吨级的新高度。
碳纤维铺丝机调研报告

碳纤维铺丝机调研报告碳纤维铺丝机调研报告一、引言碳纤维是一种具有轻质、高强度和高刚度等优异性能的先进材料,广泛应用于航空航天、汽车、体育器材等领域。
与传统材料相比,碳纤维具有重量轻、强度高、抗腐蚀性好等优势,因此在多个领域有着广泛的应用前景。
碳纤维铺丝机是碳纤维制造过程中的重要设备,它用于将碳纤维纱线在模具上进行连续铺丝,形成复合材料。
本报告通过对碳纤维铺丝机进行调研,旨在了解其技术发展情况、市场需求以及未来趋势。
二、技术发展现状目前,碳纤维铺丝机的技术发展主要表现在以下几个方面:1. 自动化水平提高:随着科技的发展,碳纤维铺丝机逐渐实现了自动化控制。
通过智能控制系统,能够精确控制铺丝速度、张力和厚度等参数,提高铺丝的质量和效率。
2. 连续铺丝技术改进:传统的碳纤维铺丝机在铺丝过程中容易出现断纱现象,影响铺丝质量。
目前,一些先进的铺丝机采用了连续铺丝技术,通过调节纱线的张力和速度,实现了无断纱的连续铺丝,提高了产品的质量。
3. 多头铺丝技术应用:为了提高铺丝效率,一些厂家开始推出多头铺丝机,可以同时进行多个模具的铺丝工作,大大缩短了生产周期,提高了产能。
三、市场需求分析碳纤维材料在航空航天、汽车、体育器材等领域有着广泛的应用需求。
随着技术的不断进步,碳纤维铺丝机的需求也在逐渐增长。
1. 航空航天领域:随着航空航天领域对轻质材料和高性能材料需求的增加,碳纤维材料在这个领域的应用越来越广泛。
碳纤维铺丝机可以实现高质量的连续铺丝,满足航空航天领域对于轻质、高强度部件的需求。
2. 汽车制造领域:汽车制造业是碳纤维铺丝机的另一个重要应用领域。
随着汽车制造业对重量减轻和燃油效能提高的需求增加,碳纤维材料在汽车制造中的应用也得到了广泛关注。
3. 体育器材领域:碳纤维材料的高强度和高刚度使其在体育器材制造中具有独特的优势。
碳纤维铺丝机可以为体育器材制造商提供高质量的碳纤维材料,满足市场需求。
四、未来趋势展望碳纤维铺丝机作为碳纤维制造过程的重要设备,将随着碳纤维材料在多个领域的广泛应用而迎来更加广阔的市场前景。
聚丙烯腈基碳纤维简介及其发展概况

聚丙烯腈基碳纤维简介及其发展概况摘要:聚丙烯腈基碳纤维为人造合成纤维,是一种力学性能优异的新材料,在航空航天、建筑、体育、汽车、医疗等领域得到广泛的应用。
生产碳纤维采用特殊组分且性能优异的专用PAN基纤维即PAN原丝。
本文简要介绍国内外PAN基碳纤维的发展概况和现状,PAN基碳纤维的应用,重点介绍了PAN基碳纤维的结构、性能、纺丝、制备等技术,以及分析我国碳纤维与世界先进国家之间的差距及存在的问题且提出一些建设性意见。
关键词:聚丙烯腈基碳纤维纺丝国内外发展比较差距碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。
碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。
碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。
PAN基生产工艺简单,产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的的品种。
一、碳纤维及其发展史1.1碳纤维的先驱——斯旺和爱迪生碳纤维的起源可追溯到19世纪60年代,1860年,英国人约瑟夫·斯旺用碳丝制作灯泡的灯丝早于美国人爱迪生。
十九世纪后期他俩各自设计出了白炽灯泡.他是研制碳丝的第一人,同时他的利用挤压纤维素成纤技术为后来合成纤维的问世起到了启迪作用。
爱迪生解决了碳丝应用与白炽灯的灯丝问题,他发明的电灯,这也是碳丝第一次得到了实际应用。
1910年库里奇发明了拉制钨丝取代了碳丝作为灯丝,从此碳丝的研制工作停止了下来。
指导了20世纪50年代碳丝的研制又重新出现在现在的材料科学的舞台上,但研究的目的是为了解决战略武器的耐高温和耐烧耐腐蚀材料,今天的碳纤维已经形成了一个举足轻重的新型材料体系,已广泛应用于航空、军事和民用工业领域,而且仍在强劲发展.1.2碳纤维的三大原料路线黏胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维,其中以聚丙烯腈基碳纤维应用最为广泛,也是本文将要为大家介绍的。
2023年碳纤维复合材料行业市场环境分析
2023年碳纤维复合材料行业市场环境分析随着全球经济的发展,在许多行业中,碳纤维复合材料(CFRP)已成为非常重要的材料。
CFRP由碳纤维和树脂基材料组合而成,具有轻量化、高强度、高耐腐蚀性、良好的疲劳性能和优异的刚度。
因此,它被广泛应用于航空、航天、汽车、建筑等领域。
市场环境分析:1. 消费者需求不断增长随着可持续发展的趋势,消费者对环保、节能、高品质的需求越来越高,这为CFRP 的广泛应用提供了机会。
例如,在汽车和航空领域,为了降低能耗、减少排放、提高性能,CFRP已经成为制造轻量化的重要解决方案。
2. 政策支持提高市场规模许多国家已经制定了政策鼓励以及对CFRP的发展进行了资金支持。
例如,美国能源部正在为汽车领域CFRP的研发提供3亿美元的资金支持,鼓励其广泛应用于汽车制造中。
这些政策和资金支持将进一步提高CFRP的市场规模。
3. 制造技术的发展加速了市场进程CFRP的制造技术越来越成熟,越来越多的公司在投入研发方面进行了重大投资。
例如,BMW、奥迪等汽车厂商已经投入数亿美元用于CFRP的生产,而NASA和空客等航天和航空公司也在持续大规模投入CFRP的研发和制造。
4. 市场竞争日趋激烈在CFRP的应用领域,竞争对手越来越多,市场竞争日趋激烈。
因此,企业必须通过提供高品质、低成本的产品来占领市场份额。
随着制造技术的不断进步,越来越多的企业将进入CFRP制造行业,从而进一步加剧市场竞争。
总之,CFRP在未来的市场环境中将继续保持强劲的增长态势,随着技术的不断进步和政策支持的增加,CFRP的应用领域将越来越广泛,并促进市场规模的持续扩大。
然而,企业必须不断提高产品品质、降低生产成本、强化市场竞争能力才能在市场中获得成功。
碳纤维织造的技术
碳纤维织造的技术织造技术的发展早在公元前5000 年,世界文明发源地就有了纺织品生产,例如非洲尼罗河流域的亚麻纺织、我国黄河、长江流域的葛纺织和丝绸纺织等。
公元前500 年我国就有了脚踏织机。
早在150年前,有梭织机开始逐步代替手工织布,其产量比手工织布的产量高出一倍,1844年开始出现无梭织机,剑杆织机发明于1870年,我国20世纪60年代中期开始研制剑杆织机,并成功地应用在有梭织机的技术改造上。
20世纪末,计算机被应用到织造机械,许多电子引纬和开口装置及系统应用到众多织机总,使剑杆织机的转速和入纬率大大提高。
挠性剑杆织机的速度和入纬分别到了700rpm和1500rpm。
进入21世纪后,剑杆织机的发展已不再单纯追求速度和入纬率,研究重点转向提高织机的产量及运转性能、提高织造效率及产品质量。
织机制造商所努力的方向为对应各种各样纬纱,织造高附加值织物。
新型剑杆织机已基本实现了电子技术、变频调速技术、传感技术与织机机械的完美结合,使得剑杆织造技术达到了一个崭新水平。
近年来,在航空航天工业发展的推动下,发达国家的高性能纤维纺织装备技术取得了突破性进展,电子化自动控制的剑杆织机、多轴向经编机等关键技术装备的研制获得成功,碳纤维织物的品质和性能得到大幅度提升。
我国高性能复合材料技术研究始于20世纪70年代,经过30多年的发展,工艺装备技术水平有了很大的发展,计算机控制的纤维剑杆织机、缝边机、编织机等现代化纺织预成型设备国内已有引进。
虽然我国碳纤维织物的研究在国家重大科技专项需求的牵引下得到了迅速的发展,取得了一定的成绩,但是与发达国家相比,目前我国碳纤维设备依旧落后很多。
织造工艺织造是一种基本的纺织工艺,能够使两条以上纱线在斜向或纵向互相交织形成整体结构的预成形体。
根据不同的织造手法,可分为以下四种织造工艺。
1、梭织(weaving):使用梭子(shuttle)的运动来配送纬纱而交织经纱。
2、编织(braiding):以携纱器(carrier)的运动来配送编织纱以交织轴向纱,在没有轴向纱的情况则编织纱互相交织。
高性能纤维(碳纤维、芳纶纤维和聚乙烯超高分子纤维)
高性能纤维一、中国高性能纤维复合材料需求将日渐强劲,尤其是航天航空、汽车、风电等领域。
根据 JEC 集团研报显示,最近几年全球复合材料需求增长一半都在亚洲,亚洲尤其中国市场增长较快,预计到2013 年中国将占据全球复合材料市场增长 43%的份额;目前国内复合材料用于交通运输的比例相对比较小,只占5%,低于全球 24%平均水平;在工业设备领域比例为10%,也低于全球26%的平均水平。
目前高性能纤维在飞机上的比例为50%-80%,波音公司预计到2025年中国运输飞机数量将是原有的3倍;国内风电和汽车领域需求旺盛,高性能纤维复合材料作为一种先进的轻质高强材料,符合风力发电机组大容量发展趋势,迎合汽车安全、轻型化发展方向。
二、世界三大高性能纤维:1)碳纤维:目前全球碳纤维产能已供过于求,虽然国内碳纤维进口依赖率高达 83.9%,进口替代空间大,但国内碳纤维技术仍待突破,目前进口碳纤维产品价格已逼近国内生产成本。
我们认为碳纤维价格若维持低位,将促进碳纤维在高端产业和工业领域中的普及应用,由于碳纤维每一级的深加工都有高幅度的增值,碳纤维下游复合材料企业将从中直接受益。
2)芳纶纤维:目前全球芳纶纤维整体已出现供过于求局面,但其中芳纶 1414 的供求形势依旧偏紧。
国内芳纶纤维消费旺盛,年复合增长率约为 30%。
我们认为,随着供给增加,国内高温滤料用芳纶 1313 或将出现产能过剩,芳纶 1313 在需有一定技术含量的防护领域、芳纶纸高端产品应用领域市场潜力大;国内芳纶1414 主要依靠进口,供给是关键。
3)超高分子聚乙烯纤维:目前全球超高分子聚乙烯纤维供不应求,供给缺口为 9万吨以上;国内供给缺口为8000吨左右,国内部分企业产品已达世界先进水平,供给是关键。
三、投资策略及重点公司。
由于高性能纤维及复合材料性能要求高、生产工艺复杂、技术壁垒高,是未来产业升级的关键要素,建议投资者关注其中具有技术、规模优势的公司,如生产航空航天复合材料产品,技术垄断优势明显的公司:博云新材(002297);具有生产芳纶纤维中间体技术优势的的供应商:浙江龙盛(600352);具备高端芳纶纤维产品生产技术和规模领先优势的龙头企业:烟台氨纶(002254);关注具有生产超高分子聚乙烯纤维技术与规模实力的上市公司:S 仪化(600871)。
高科技纤维碳纤维芳纶等高性能纤维的应用和发展前景
高科技纤维碳纤维芳纶等高性能纤维的应用和发展前景高科技纤维:碳纤维、芳纶等高性能纤维的应用和发展前景高科技纤维是指那些具有出色性能和广泛应用前景的纤维材料。
在众多高科技纤维中,碳纤维和芳纶被认为是最具潜力和前景的材料之一。
本文将探讨碳纤维、芳纶以及其他高性能纤维的应用领域和发展前景。
一、碳纤维碳纤维是一种由碳元素构成的纤维材料,具有轻质、高强度、高模量和抗腐蚀等特点。
由于其优异的性能,碳纤维已经广泛应用于航空航天、汽车、体育器材、建筑等领域。
1.航空航天领域碳纤维在航空航天领域有着广泛的应用。
它可以用于制造飞机的机身和飞机零部件,如机翼、垂直尾翼等。
由于碳纤维的轻质和高强度,可以降低飞机的重量,提高燃油效率和飞行性能。
2.汽车领域碳纤维在汽车领域的应用也日益增多。
由于其高强度和轻质特性,碳纤维可以用于制造车身结构,提高汽车的安全性和燃油经济性。
此外,碳纤维在制动系统、排气系统和悬挂系统等方面也有着广泛的应用。
3.体育器材领域碳纤维在体育器材领域的应用已成为一种趋势。
高尔夫球杆、网球拍、自行车等器材中采用碳纤维材料可以提高器材的强度和灵活性,使运动员可以更好地发挥自己的技术水平。
4.建筑领域碳纤维在建筑领域的应用也备受关注。
碳纤维增强聚合物(CFRP)可以用于加固和修复混凝土结构,提高建筑物的抗震性能和承载能力。
此外,碳纤维也可以用于制造轻质建筑材料,如碳纤维板、碳纤维砖等。
二、芳纶芳纶是一种由芳香族聚合物构成的纤维材料,具有耐热、耐化学腐蚀和优异的力学性能。
芳纶被广泛应用于航空航天、防护服、电子器件等领域。
1.航空航天领域芳纶是航空航天领域中一种重要的纤维材料。
由于其优异的耐高温性能和抗腐蚀性能,芳纶可以用于制作航天器的耐热保护系统、燃料储存和输送系统等关键部件。
2.防护服领域芳纶是制作防护服的理想材料之一。
由于其高强度和阻燃性能,芳纶可以用于制作防弹衣、防化服等防护装备,保护人员免受来自爆炸、火灾和化学品等危险物质的伤害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 国内碳纤维技术及生产现状 我国从20世纪60年代后期开始研制碳纤维,历经近40年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。20世纪70年代初突破连续化工艺,1976年在中科院山西煤炭化学研究所建成我国第一条PAN基碳纤维扩大试验生产线,当时生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院山西煤化所、上海合纤所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。 我国目前使用碳纤维量约占世界用量的1/5。巨大的市场潜力,供不应求的局面,必然促进我国碳纤维工业的发展。但是,要想进入竞争的市场,一是要保证产品的质量,二是要求价位相当。针对我国碳纤维工业的现状,需首先解决高性能PAN原丝的质量,在这基础上才有可能产业化,这是进市场的前提;同时,还需进行预氧化,碳化,石墨化设备及表面处理装置的工程化开发,使其形成规模化生产能力,才能在保证质量的基础上降低成本。目前,内内研究开发以 2
及生产碳纤维的呼声很高,发展趋势令人鼓舞。 但由于对我国碳纤维产业发展的建议目前我国高性能碳纤维无论在质量上还是数量上与国外相比还有一定差距,远远满足不了需求。为此,尽快研究和发展我国自己的高性能碳纤维材料已迫在眉睫。碳纤维是一门多学科交叉、多技术集成的系统工程,质量的提升涉及到方方面面。以下几个方面应优先考虑。 1、提高PAN原丝质量 PAN原丝不仅影响碳纤维的质量,而且影响其产量和生产成本。换言之,只有高质量的原丝才能生产出高性能碳纤维,才能稳定生产,提高产量,降低成本。对于现代碳纤维生产线,要求喂入丝束数在100以上,且高速运行;如果原丝质量低劣、彼此性能差异较大,易在生产过程中产生毛丝缠结,甚至发生断丝,很难稳定生产,这样必然加大原丝的损耗。对于质量好的PAN原丝。用2.0kg以下的原丝可生产出1kg碳纤维;而质量差的原丝,则需2.5kg,甚至更高,这必然加大生产成本,而原丝成本占碳纤维生产成本的50%~65%。所以,PAN原丝质量不仅可左右碳纤维的性能,而且也制约着碳纤维的生产成本和市场竞争力。 2、研制高纯度原丝 研制高纯度原丝可把先天性缺陷降低到最小程度,大量检测表明,国产原丝和碳纤维所含碱、碱土金属和铁的含量 3
比国外大得多。碱、碱土金属和铁的存在不仅影响聚合和纺丝的性能稳定性,而且在高温碳化过程中逸走而残留下孔隙,所以,聚合所用原料要纯,纺丝空间应洁净化,所用设备应耐腐蚀。 另外,原丝高强化经测试和有关资料表明,我国PAN原丝强度(力)比较低,而国外PAN原丝强度(力)一般在60g/d以上。在一定范围内,碳纤维的拉伸强度随着原丝强力的提高而提高,而提高原丝强力的技术措施之一是相应提高PAN树脂的分子量。细旦化高强度碳纤维的发展趋势之一是单丝直径较细。直径越细,包含大缺陷的几率越少,尺寸效应就越显著。均质化主要是纤维横截面由表及里结构均匀,性能一致。这就要求PAN原丝、预氧化纤维和碳纤维无明显的皮芯结构。纤维的皮芯结构易在凝固成纤过程或预氧化热处理过程产生,最佳工艺条件的选择则十分重要。细晶化对于脆性材料,缺陷大小与微晶尺寸视为同一数量级。细晶化有利于对缺陷的控制和碳纤维抗拉强度的提高,特别是压缩强度的提高。细晶化应从聚合开始,贯穿于生产碳纤维的全过程。扩大生产线规模除PAN原丝质量外,扩大生产规模也是降低成本的有效途径。 3、增强拉伸强度 碳纤维是由有机PAN纤维经过一系列热处理转化而来的。碳纤维属于脆性材料,拉伸强度等性能受控于各类缺陷。 4
因此,在一定意义上来讲,提高碳纤维的拉伸强度等性能就是采取技术措施减少缺陷数目、减小缺陷尺寸的过程。从碳纤维的缺陷产生可大致分为两类:一类是先天性缺陷,由PAN原丝“遗传”给碳纤维;第二类是后天性缺陷,在预氧化、碳化等一系列后处理过程中产生。 从缺陷在碳纤维中所处的位置又可分为表面缺陷和内部缺陷两大类,而表面缺陷占缺陷总数的90%左右。对拉伸强度的影响要比内部缺陷大得多。所以,在生产碳纤维全过程中(从聚合开始到碳纤维收丝)都要关注缺陷的产生和演变以及控制缺陷的技术措施,其中包括油剂质量和上油剂工艺。这也是提高碳纤维拉伸强度的主要途径。碳纤维的理论强度为180GPa,目前世界上强度最高的碳纤维T1000(日本东丽公司)的拉伸强度也仅是理论值的3.9%,而国产碳纤维的拉伸强度则更低,所以提高碳纤维的拉伸强度有很大的潜力和空间。 随着我国经济的快速发展,国内碳纤维的需求与日俱增,而加强技术创新是我国碳纤维加快发展实现产业化的关键。目前我国已开发的新技术如下: (1)高性能原丝制备技术:一种拥有自主知识产权的低成本、高效率,适用于制备高性能T700碳纤维原丝的高品质丙烯腈成纤聚合物原材料纯化技术,由长春应化所研究成功并通过了吉林省科技厅组织的鉴定。专家认为,该技术整 5
体居于国内领先水平。高性能原丝制备技术的开发成功可彻底改变我国碳纤维制备技术落后的不利局面,对提升我国碳纤维产业发展水平具有重要意义。 (2)航天级高纯粘胶基碳纤维:由东华大学研制成功的性能稳定、质量合格的航天级高纯粘胶基碳纤维,填补了国内空白,而且为国家战略武器用碳纤维材料的发展奠定了基础。研制的粘胶基碳纤维具有高纯度、低密度、高断裂应变、低热导率和耐烧蚀等优良特性,是特种防热层材料,其性能大大超过原碳布路线的产品。过去世界上只有美国和俄罗斯掌握这一技术,而东华大学潘鼎教授领衔的课题组先后攻克了原丝关、工艺关、强度关、排废关,在原丝质量指标确定、稀纬带炭化技术、有机和无机混合型催化体系、连续纯化工艺、空气介质低温热处理和两段排焦等工艺技术和装置方面取得了一系列原创性成果,解决了六大关键技术难题,使我国成为世界上第3个掌握这一技术的国家。 (3)碳纤维加固补强织物:由上海纺织科学院研制的碳纤维加固补强织物是一种高科技含量的产品,该纤维采用国外进口高性能碳纤维加工而成。具有高强高效、耐久耐腐、质量轻等特点。补强技术是用配套树脂将碳纤维织物粘贴于混凝土结构表面。起到结构补强及抗震加固作用。广泛用于梁、柱、板、墙等的补强,也可用于桥梁、隧道水坝等其他土木工程的加固。 6
国内各地区碳纤维有关的技术及产品开发情况: 下面分别对各区的开发情况作一简介。 1、上海地区。最近上海石化公司召开了碳纤维原丝发展研讨会,该公司准备投资过亿元,采用NaSCN一步法生产数千吨PAN基原丝,真正形成工业规模生产。上海星楼实业有限公司也制定了一套碳纤维产业化发展计划,拟建立400t/a大丝束碳纤维生产线,总投资也超亿元(包括下游产品)。此外,上海市合纤所采用亚砜两步法研制和小批量生产PAN基原丝以及碳纤维;上海碳素厂也有小型碳化线及碳纤维下游产品。 2、安徽地区。“十五”期间,国家已批准在安微蚌埠建立500t/aPAN原丝和 200t/a碳纤维生产线,总投资过亿元。PAN原丝采用亚砜一步法,技术由国外引进;产品以12K的T300级碳纤维为主,并准备引进成熟的预浸料生产线。华皖集团(原蚌埠灯芯集团公司)二期建设规模将使碳纤维产量翻一番,达到400t/a。下游产品的开发也列入发展规划。 3、浙江地区。中宝碳纤维责任有限公司在浙江嘉兴拟建400t/a大丝束碳纤维生产线,技术和设备引进,投资数亿元,并配套300万m2预浸料。该项目国家已批准,并积极开展了前期论证和考查工作。根据国内外市场动向及投资与回报等问题,暂缓建立碳纤维生产线,而集中力量开发预 7
浸料等下游产品。同时,还成立了浙江省碳纤维工程技术研究开发中心,全面推进碳纤维事业。 4、广西地区。桂林市化纤总厂拟建200t/a碳纤维生产线,产品为3-12 K的小丝束碳纤维,投资也过亿元。 5、山东地区。山东省已把碳纤维列入全省十大高技术产品开发工程首位项目。有以下几个单位从事碳纤维及其制品的研究与生产,或准备介入碳纤维事业。 1) 山东天泰碳纤维有限责任公司。作为国家计委示范工程将建立400t/a投产后,再翻一番到800t/a,投资超亿元。技术协作单位是山东工业大学等。同时该公司积极开发和生产多种下游产品。 2) 青岛将建立500t/a左右的碳纤维生产线,青岛化工学院高分子工程材料研究所(恒晨公司)的介入,引起国内同行们的极大关注。 3) 山东威海光威渔具集团有限公司主要从事钓鱼竿生产,碳纤维预浸布的规格有30余种。根据发展趋势,有可能向上游即PAN基原丝和碳纤维发展。此外,山东省东营生产力促进中心也在考虑招商引资建立碳纤维生产线,认为石油等工业是碳纤维的潜在市场。 6、北京化工大学与吉化公司树脂厂,将依靠自己的技术建立500t/a原丝和 200t/a碳纤维生产线。放弃硝酸法,采用亚砜一步法技术路线生产原丝。目前,正在进行中试实验。 7、兰化集团化纤厂已有100t/a原丝生产线和预氧化生 8
产装置,计划配套碳化装置生产碳纤维。原丝采用NaSCN一步法。该单位的睛纶生产线是我国从国外首次引进的,有丰富的生产经验和技术积累。 8、吉林碳素厂是我国小丝束碳纤维生产基地,已向用户提供50余吨小丝束碳纤维,为国家作出了积极贡献。目前,该厂正在建立新的小丝束碳纤维生产线,扩大产量,以满足市场需求。 9、中科院山西煤化所研制碳纤维已有30多年历史。在70年代中期,建成我国第一条纤维中试生产线;在90年代末期,又建成我国第一条纤维中试生产线;在 90年代末期,又建成我国第一条吨级粘胶基碳纤维生产线。 已形成规模并有一定生产能力的厂家如下: 碳纤维生产厂:中钢吉碳,威海拓展,大连兴科,甘肃郝氏,连云港神鹰等等。 碳纤维原丝生产厂:吉林化工,扬州惠通,连云港神鹰,山西恒天,威海拓展等等。 其中威海拓展,连云港神鹰整体规划规模较大,长远计划年生产量万吨以上。 1、威海拓展纤维有限公司 威海拓展纤维有限公司建设在威海工业园区内,总规划用地面积1000亩,总投资额为36亿元人民币,总建设时间2009年完工,项目主要分为两大区域开展建设,达产后