2018年广东省茂名市化州市高考数学二模试卷(文科)
2018年广东省茂名市化州市高考数学二模试卷(理科)

2018年广东省茂名市化州市高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)若集合A={0,1},B={y|y=2x,x∈A},则(∁R A)∩B=()A.{0}B.{2}C.{2,4}D.{0,1,2}2.(5分)已知=b+i(a,b∈R),其中i为虚数单位,则a﹣b=()A.﹣1 B.1 C.2 D.﹣33.(5分)如图,正方形ABCD内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.4.(5分)已知=(2sin13°,2sin77°),|﹣|=1,与﹣的夹角为,则•=()A.2 B.3 C.4 D.55.(5分)已知双曲线﹣=1的一个焦点在直线x+y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)一个几何体的三视图如图所示,则该几何体的体积的是()A.7 B.C.D.7.(5分)公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.16 B.20 C.24 D.488.(5分)在平面直角坐标系xoy中,已知点A(2,3),B(3,2),C(1,1),点P(x,y)在△ABC三边围成的区域(含边界)内,设=m﹣n(m,n ∈R),则2m+n的最大值为()A.﹣1 B.1 C.2 D.39.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0,),则cos(2)=()A.B.C.﹣D.10.(5分)已知有穷数列{a n}中,n=1,2,3,…,729.且a n=(2n﹣1)•(﹣1)n+1.从数列{a}中依次取出a2,a5,a14,….构成新数列{b n},容易发现数列{b n}n是以﹣3为首项,﹣3为公比的等比数列.记数列{a n}的所有项的和为S,数列{b n}的所有项的和为T,则()A.S>T B.S=TC.S<T D.S与T的大小关系不确定11.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,中心为O,=,=,则四面体OEBF的体积为()A.B.C.D.12.(5分)已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有,且方程|f(x)﹣3|=a在区间(0,3]上有两解,则实数a的取值范围是()A.0<a≤1 B.a<1 C.0<a<1 D.a≥1二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知S n为数列{a n}的前n项和,且log2(S n+1)=n+1,则数列{a n}的通项公式为.14.(5分)在(1+2x)7的展开式中,是第项的二项式系数,第3项的系数是.15.(5分)已知函数f(x)=e x﹣mx+1的图象为曲线C,若曲线C存在与直线y=ex 垂直的切线,则实数m的取值范围为.16.(5分)已知椭圆与直线,,过椭圆上一点P作l1,l2的平行线,分别交l1,l2于M,N两点.若|MN|为定值,则的值是.三、解答题(共5小题,满分60分)17.(12分)设△ABC三个内角A,B,C的对边分别为a,b,c,△ABC的面积S满足4S=a2+b2﹣c2.(1)求角C的值;(2)求sinB﹣cosA的取值范围.18.(12分)如图,在矩形ABCD中,CD=2,BC=1,E,F是平面ABCD同一侧两点,EA∥FC,AE⊥AB,EA=2,DE=,FC=1.(1)证明:平面CDF⊥平面ADE;(2)求二面角E﹣BD﹣F的正弦值.19.(12分)中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的,的值(,精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:=,=﹣,=94,=945)(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.20.(12分)已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且•=.(1)求弦AB的长;(2)当直线l 的斜率k=,且直线l′∥l 时,l′交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.21.(12分)已知α,β是方程4x2﹣4tx﹣1=0(t∈R)的两个不等实根,函数f (x)=的定义域为[α,β](1)当t=0时,求函数f(x)的最值(2)试判断函数f(x)在区间[α,β]的单调性(3)设g(t)=f(x)max﹣f(x)min,试证明:对于α,β,γ∈(0,),若sinα+sinβ+sinγ=1,则++<(参考公式:≥(a,b,c>0),当且仅当a=b=c时等号成立)请考生在22,23两题中任选一题作答,如果多做,则按所做第一题计分[选修4—4:坐标系与参数方程]22.(10分)在平面直角坐标系中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ(a≠0).(Ⅰ)求圆C的直角坐标系方程与直线l的普通方程;(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的倍,求a的值.[选修4-5:不等式证明]23.已知函数f(x)=|x+1|,g(x)=2|x|+a(1)当a=0时,求不等式f(x)≥g(x)的解集(2)若存在实数x,使得g(x)≤f(x)成立,求实数a的取值范围.2018年广东省茂名市化州市高考数学二模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)若集合A={0,1},B={y|y=2x,x∈A},则(∁R A)∩B=()A.{0}B.{2}C.{2,4}D.{0,1,2}【解答】解:根据题意,集合A={0,1},则B={y|y=2x,x∈A}={0,2},则(∁R A)∩B={2};故选:B.2.(5分)已知=b+i(a,b∈R),其中i为虚数单位,则a﹣b=()A.﹣1 B.1 C.2 D.﹣3【解答】解:由=,得a=﹣1,b=2,∴a﹣b=﹣1﹣2=﹣3.故选:D.3.(5分)如图,正方形ABCD内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:设正方形边长为2,则正方形面积为4,正方形内切圆中的黑色部分的面积S=.∴在正方形内随机取一点,则此点取自黑色部分的概率是P=.故选:C.4.(5分)已知=(2sin13°,2sin77°),|﹣|=1,与﹣的夹角为,则•=()A.2 B.3 C.4 D.5【解答】解:=(2sin13°,2sin77°)=(2sin13°,2cos13°),||=2,|﹣|=1,与﹣的夹角为,所以==﹣,1=4﹣,∴•=3,故选:B.5.(5分)已知双曲线﹣=1的一个焦点在直线x+y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:根据题意,双曲线的方程为﹣=1,则其焦点在x轴上,直线x+y=5与x轴交点的坐标为(5,0),则双曲线的焦点坐标为(5,0),则有9+m=25,解可得,m=16,则双曲线的方程为:﹣=1,其渐近线方程为:y=±x,故选:B.6.(5分)一个几何体的三视图如图所示,则该几何体的体积的是()A.7 B.C.D.【解答】解:由三视图可知该几何体的直观图是正方体去掉一个三棱锥,正方体的边长为2,三棱锥的三个侧棱长为1,则该几何体的体积V==8﹣=,故选:D7.(5分)公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.16 B.20 C.24 D.48【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:C.8.(5分)在平面直角坐标系xoy中,已知点A(2,3),B(3,2),C(1,1),点P(x,y)在△ABC三边围成的区域(含边界)内,设=m﹣n(m,n ∈R),则2m+n的最大值为()A.﹣1 B.1 C.2 D.3【解答】解:=(1,﹣1),=(1,2),=(x,y),∵=m﹣n,∴,∴2m+n=x﹣y,作出平面区域如图所示:令z=x﹣y,则y=x﹣z,由图象可知当直线y=x﹣z经过点B(3,2)时,截距最小,即z最大.∴z的最大值为3﹣2=1.即2m+n的最大值为1.故选:B.9.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0,),则cos(2)=()A.B.C.﹣D.【解答】解:由图象可得A=3,=4(﹣),解得ω=2,故f(x)=3sin(2x+φ),代入点(,﹣3)可得3sin(+φ)=﹣3,故sin(+φ)=﹣1,+φ=2kπ﹣,∴φ=2kπ﹣,k∈Z结合0<φ<π可得当k=1时,φ=,故f(x)=3sin(2x+),∵f(α)=3sin(2α+)=1,∴sin(2α+)=,∵α∈(0,),∴2α+∈(,),∴cos(2)=﹣=﹣,故选:C.10.(5分)已知有穷数列{a n}中,n=1,2,3,…,729.且a n=(2n﹣1)•(﹣1)n+1.从数列{a}中依次取出a2,a5,a14,….构成新数列{b n},容易发现数列{b n}n是以﹣3为首项,﹣3为公比的等比数列.记数列{a n}的所有项的和为S,数列{b n}的所有项的和为T,则()A.S>T B.S=TC.S<T D.S与T的大小关系不确定【解答】解:S=1﹣3+5﹣…﹣(2×728﹣1)+(2×729﹣1)=﹣728+2×729﹣1=729.由|﹣3×(﹣3)n﹣1|≤2k﹣1,k≤729,解得:n≤6,可取n=6,﹣3×(﹣3)5=729=(2×365﹣1)×(﹣1)366,∴T==546.∴S>T.故选:A.11.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,中心为O,=,=,则四面体OEBF的体积为()A.B.C.D.【解答】解:如图,以D为坐标原点,分别以DA、DC、DD1所在直线为x、y、z轴建立空间直角坐标系,则O(),B(1,1,0),E(1,0,),F(,1,0),则||=,||=,,∴cos∠BOE=.∴sin∠BOE=.∴S=.△OEB设平面OEB的一个法向量为,由,取z=1,得.又,∴F到平面OEB的距离h==.∴四面体OEBF的体积V==.故选:D.12.(5分)已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有,且方程|f(x)﹣3|=a在区间(0,3]上有两解,则实数a的取值范围是()A.0<a≤1 B.a<1 C.0<a<1 D.a≥1【解答】解:∵f(x)是定义域为(0,+∞)的单调函数,对任意的x∈(0,+∞),都有f[f(x)+x]=4,∴必存在唯一的正实数a,满足f(x)+x=a,f(a)=4 ①,∴f(a)+a=a②,由①②得:4+a=a,即a=a﹣4,∴a=()a﹣4,解得a=3.故f(x)+x=a=3,∴f(x)=3﹣x,由方程|f(x)﹣3|=a在区间(0,3]上有两解,即有|x|=a在区间(0,3]上有两解,作出y=|x|的图象,如图所示:,结合题意,0<a≤1,故选:A.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知S n为数列{a n}的前n项和,且log2(S n+1)=n+1,则数列{a n}的通项公式为.【解答】解:由log2(S n+1)=n+1,得S n+1=2n+1,当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=2n,所以数列{a n}的通项公式为a n=.故答案为:.14.(5分)在(1+2x)7的展开式中,是第3项的二项式系数,第3项的系数是84.【解答】解:(1+2x)7的展开式的通项为,当r=2时,可得.∴是第3项的二项式系数,第3项的系数是84.故答案为:3,84.15.(5分)已知函数f(x)=e x﹣mx+1的图象为曲线C,若曲线C存在与直线y=ex 垂直的切线,则实数m的取值范围为(,+∞).【解答】解:函数f(x)=e x﹣mx+1的导数为f′(x)=e x﹣m,若曲线C存在与直线y=ex垂直的切线,即有e x﹣m=﹣有解,即m=e x+,由e x>0,则m>,则实数m的范围为(,+∞),故答案为:(,+∞).16.(5分)已知椭圆与直线,,过椭圆上一点P作l1,l2的平行线,分别交l1,l2于M,N两点.若|MN|为定值,则的值是2.【解答】解:当点P为(0,b)时,过椭圆上一点P作l1,l2的平行线分别为+b,+b,联立可得M(b,),同理可得N(﹣b,),|MN|=2b.当点P为(a,0)时,过椭圆上一点P作l1,l2的平行线分别为﹣,+,联立可得M(,),同理可得N(,﹣),),|MN|=.若|MN|为定值,则2b=,⇒,∴则的值是2.故答案为:2.三、解答题(共5小题,满分60分)17.(12分)设△ABC三个内角A,B,C的对边分别为a,b,c,△ABC的面积S满足4S=a2+b2﹣c2.(1)求角C的值;(2)求sinB﹣cosA的取值范围.【解答】解:(1)△ABC的面积S满足4S=a2+b2﹣c2,可得4×absinC=a2+b2﹣c2,即有cosC===sinC,则tanC==,由0<C<π,可得C=;(2)由A+B=π﹣C=,即B=﹣A,sinB﹣cosA=sin(﹣A)﹣cosA=cosA+sinA﹣cosA=sinA﹣cosA=sin(A﹣),由0<A<,可得﹣<A﹣<,则﹣<sin(A﹣)≤1,即有sinB﹣cosA的取值范围是(﹣,1].18.(12分)如图,在矩形ABCD中,CD=2,BC=1,E,F是平面ABCD同一侧两点,EA∥FC,AE⊥AB,EA=2,DE=,FC=1.(1)证明:平面CDF⊥平面ADE;(2)求二面角E﹣BD﹣F的正弦值.【解答】证明:(1)∵四边形ABCD是矩形,∴CD⊥AD.∵AE⊥AB,CD∥AB,∴CD⊥AE.又AD∩AE=A,∴CD⊥平面ADE.∵CD⊂平面CDF,∴平面CDF⊥平面ADE.…(4分)解:(1)∵BC=1,EA=2,DE=,∴DE2=AD2+AE2,∴AE⊥AD,又AE⊥AB,AB∩AD=A,∴AE⊥平面ABCD.…(6分)以D为坐标原点,建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(1,2,0),F(0,2,1),E(1,0,2).∴=(1,2,0),=(0,2,1),设平面BDF的一个法向量=(x,y,z),由,令x=2,得=(2,﹣1,2).同理可求得平面BDE的一个法向量=(2,﹣1,﹣1),∴cos<>===,…(10分)∴sin<>=.故二面角E﹣BD﹣F的正弦值为.…(12分)19.(12分)中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的,的值(,精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:=,=﹣,=94,=945)(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.【解答】解:(Ⅰ)利用前5组数据得到=(2+4+5+6+8)=5,=(30+40+60+50+70)=50,∵y=6.5x+a,∴a=50﹣6.5×5=17.5,∴回归直线方程为y=6.5x+17.5,当x=1时,y=6.5+17.5=24,∴y的预报值为24.(Ⅱ)∵=4,=46.25,=84,=945,∴==≈6.83,∴=46.25﹣6.83×4=18.93,即=6.83,=18.93,b=6.5,a=17.5,≈5%,≈8%,均不超过10%,∴可使用位置最接近的已有旧井6(1,24).(Ⅲ)由题意,1、3、5、7这4口井是优质井,2,4这两口井是非优质井,∴勘察优质井数X的可能取值为2,3,4,P(X=k)=,可得P(X=2)=,P(X=3)=,P(X=4)=.∴X的分布列为:EX=2×+3×+4×=.20.(12分)已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且•=.(1)求弦AB的长;(2)当直线l 的斜率k=,且直线l′∥l 时,l′交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.【解答】解:(1)由题意可知:2c=2,c=,设F(,0),A(x0,y0),B (﹣x0,﹣y0),则M(,),N(,﹣),由•==,则x02+y02=5,则丨AB丨=2=2,(2)由直线l的斜率k=时,且l′∥l,则l:y=x,设l′:y=x+m,y0=x0,由x02+y02=5,则A(2,1),由c=,代入椭圆方程解得:a=2,c=,∴椭圆的方程:,联立,整理得x2+2mx+2m2﹣4=0,设直线AP,AQ的斜率分别为k1,k2,设P(x1,y1),Q(x2,y2),则k1=,k2=.由x2+2mx+2m2﹣4=0,可得x1+x2=﹣2m,x1x2=2m2﹣4,k1+k2=•=====0.即k1+k2=0.直线AP,AQ与x轴围成一个等腰三角形.21.(12分)已知α,β是方程4x2﹣4tx﹣1=0(t∈R)的两个不等实根,函数f (x)=的定义域为[α,β](1)当t=0时,求函数f(x)的最值(2)试判断函数f(x)在区间[α,β]的单调性(3)设g(t)=f(x)max﹣f(x)min,试证明:对于α,β,γ∈(0,),若sinα+sinβ+sinγ=1,则++<(参考公式:≥(a,b,c>0),当且仅当a=b=c时等号成立)【解答】解:(1)当t=0时,方程4x2﹣1=0的两实根为,f(x)=.,当时,f′(x)>0,f(x)在为单调递增函数,∴f(x)的最小值为,f(x)的最大值为;(2)由题知:x∈[α,β]时,4x2﹣4tx﹣1<0,所以f′(x)>0,f(x)在区间[α,β]为单调递增函数.(3)证明:由(2)知,又由题得:,∴,,=,(,∴,由于等号不能同时成立,故得证++<.请考生在22,23两题中任选一题作答,如果多做,则按所做第一题计分[选修4—4:坐标系与参数方程]22.(10分)在平面直角坐标系中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ(a≠0).(Ⅰ)求圆C的直角坐标系方程与直线l的普通方程;(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的倍,求a的值.【解答】解:(Ⅰ)直线l的参数方程为(t为参数),消去参数t,可得:4x+3y﹣8=0;由圆C的极坐标方程为ρ=asinθ(a≠0),可得ρ2=ρasinθ,根据ρsinθ=y,ρ2=x2+y2可得圆C的直角坐标系方程为:x2+y2﹣ay=0,即.(Ⅱ)由(Ⅰ)可知圆C的圆心为(0,)半径r=,直线方程为4x+3y﹣8=0;那么:圆心到直线的距离d==直线l截圆C的弦长为=2解得:a=32或a=故得直线l截圆C的弦长等于圆C的半径长的倍时a的值为32或.[选修4-5:不等式证明]23.已知函数f(x)=|x+1|,g(x)=2|x|+a(1)当a=0时,求不等式f(x)≥g(x)的解集(2)若存在实数x,使得g(x)≤f(x)成立,求实数a的取值范围.【解答】解:(1)当a=0时,由f(x)≥g(x)得|x+1|≥2|x|,两边平方整理得3x2﹣2x﹣1≤0,解得所以原不等式的解集为…(4分)(2)由g(x)≤f(x)得a≤|x+1|﹣2|x|,令h(x)=|x+1|﹣2|x|,则,作出函数的图象,得h(x)max=h(0)=1从而实数a的取值范围为(﹣∞,1]…(10分)。
2018年广东省省际名校(茂名市)高考数学二模试卷(理科)(解析版)

2018年广东省省际名校(茂名市)高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,B={x|a<x<a+1},若A∩B=∅,则a 的取值范围是()A.(﹣∞,3]B.(﹣∞,4]C.(3,4)D.[3,4]2.(5分)若,则=()A.B.C.D.3.(5分)设函数f(x)在R上为增函数,则下列结论一定正确的是()A.y=在R上为减函数B.y=|f(x)|在R上为增函数C.y=2﹣f(x)在R上为减函数D.y=﹣[f(x)]3在R上为增函数4.(5分)投掷两枚质地均匀的正方体骰子,将两枚骰子向上点数之和记作S.在一次投掷中,已知S是奇数,则S=9的概率是()A.B.C.D.5.(5分)如图,正六边形ABCDEF的边长为2,则=()A.2B.3C.6D.126.(5分)以(0,b)为圆心,a为半径的圆与双曲线C:﹣=1(a>0,b>0)的渐近线相离,则C的离心率的取值范围是()A.(1,)B.(,+∞)C.(1,)D.(,+∞)7.(5分)S n是数列{a n}的前n项和,且对∀n∈N*都有2S n=3a n+4,则S n=()A.2﹣2×3n B.4×3n C.﹣4×3n﹣1D.﹣2﹣2×3n﹣1 8.(5分)某几何体的三视图如图所示,若图中小正方形的边长为1,则该几何体的体积是()A.B.C.D.9.(5分)执行如图所示的程序框图,与输出的值最接近的是()A.B.C.D.10.(5分)《九章算术》中记载了我国古代数学家祖暅在计算球的体积中使用的一个原理:“幂势既同,则积不异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积恒相等,则它们的体积相等.如图,设满足不等式组的点(x,y)组成的图形(图(1)中的阴影部分)绕y轴旋转180°,所得几何体的体积为V1;满足不等式组,的点(x,y)组成的图形(图(2)中的阴影部分)绕y轴旋转180°,所得几何体的体积为V2.利用祖暅原理,可得V1=()A.B.C.32πD.64π11.(5分)不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数X的数学期望是()A.B.C.D.12.(5分)记函数f(x)=sin2nx﹣cos nx在区间[0,π]内的零点个数为,则数列{a n}的前20项的和是()A.430B.840C.1250D.1660二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)i是虚数单位,复数z满足(1+i)z=1+3i,则|z2|=.14.(5分)若实数x,y满足约束条件,则z=x﹣2y的所有取值的集合是.15.(5分)以坐标原点O为圆心的圆与抛物线及其准线y2=4x分别交于点A,B和C,D,若|AB|=|CD|,则圆O的方程是.16.(5分)若对任意的x>0,不等式x2﹣2(m2+m+1)lnx≥1恒成立,则m=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,sin A=2sin C,2b=3c.(1)cos C;(2)若∠B的平分线交AC于点D,且△ABC的面积为,求BD的长.18.(12分)某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩x与物理成绩y如下表:数据表明y与x之间有较强的线性关系.(1)求y关于x的线性回归方程;(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为50%和60%,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?参考数据:回归直线的系数,.,P(K2≥6.635)=0.01,P(K2≥10.828)=0.01.19.(12分)如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD为菱形,且∠A1AB=∠A1AD.(1)证明:四边形BB1D1D为矩形;(2)若AB=A1A,∠BAD=60°,A1A与平面ABCD所成的角为30°,求二面角A1﹣BB1﹣D的余弦值.20.(12分)设椭圆的离心率为,以椭圆四个顶点为顶点的四边形的面积为.(1)求E的方程;(2)过E的左焦点F1作直线l1与E交于A,B两点,过右焦点F2作直线l2与E交于C,D两点,且l1∥l2,以A,B,C,D为顶点的四边形的面积,求l1与l2的方程.21.(12分)已知f(x)=lnx﹣ax+a,a∈R.(1)讨论f(x)的单调性;(2)若有三个不同的零点,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为,直线l的参数方程为(t 为参数).(1)若,求l的普通方程和C的直角坐标方程;(2)若l与C有两个不同的交点A,B,且P(2,1)为AB的中点,求|AB|.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+|x﹣1|.(1)求函数f(x)的最小值a;(2)根据(1)中的结论,若m3+n3=a,且m>0,n>0,求证:m+n≤2.2018年广东省省际名校(茂名市)高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,B={x|a<x<a+1},若A∩B=∅,则a 的取值范围是()A.(﹣∞,3]B.(﹣∞,4]C.(3,4)D.[3,4]【解答】解:集合={x|x2﹣8x+15>0}={x|x<3或x>5},B={x|a<x<a+1};若A∩B=∅,则3≤a且a+1≤5,解得3≤a≤4,∴a的取值范围为[3,4].故选:D.2.(5分)若,则=()A.B.C.D.【解答】解:若,则=﹣cos()=﹣.故选:D.3.(5分)设函数f(x)在R上为增函数,则下列结论一定正确的是()A.y=在R上为减函数B.y=|f(x)|在R上为增函数C.y=2﹣f(x)在R上为减函数D.y=﹣[f(x)]3在R上为增函数【解答】解:根据题意,依次分析选项:对于A,对于函数f(x)=x,y==,在R上不是减函数,A错误;对于B,对于函数f(x)=x,y=|f(x)|=|x|,在R上不是减函数,B错误;对于C,令t=f(x),则y=2﹣f(x)=()f(x)=()t,t=f(x)在R上为增函数,y=()t在R上为减函数,则y=2﹣f(x)在R上为减函数,C正确;对于D,对于函数f(x)=x,y=﹣[f(x)]3=﹣x3,在R上是减函数,D错误;故选:C.4.(5分)投掷两枚质地均匀的正方体骰子,将两枚骰子向上点数之和记作S.在一次投掷中,已知S是奇数,则S=9的概率是()A.B.C.D.【解答】投掷两枚质地均匀的正方体骰子,将两枚骰子向上点数之和记作S.在一次投掷中,S是奇数,基本事件有18个,分别为:(1,2),(2,1),(1,4),(4,1),(1,6),(6,1),(2,3),(3,2),(2,5),(5,2),(3,4),(4,3),(3,5),(5,3),(6,3),(3,6),(4,5),(5,4),S=9包含的基本事件有4个,分别为:(4,5),(5,4),(3,6),(6,3),∴S=9的概率是p==.故选:B.5.(5分)如图,正六边形ABCDEF的边长为2,则=()A.2B.3C.6D.12【解答】解:∵正六边形ABCDEF的边长为2,∴AC=AE=CE=2,,∠CAE=60°,∴==2×2×cos60°=6.故选:C.6.(5分)以(0,b)为圆心,a为半径的圆与双曲线C:﹣=1(a>0,b>0)的渐近线相离,则C的离心率的取值范围是()A.(1,)B.(,+∞)C.(1,)D.(,+∞)【解答】解:双曲线C:﹣=1(a>0,b>0)的渐近线:by=±ax,以(0,b)为圆心,a为半径的圆与双曲线C:﹣=1(a>0,b>0)的渐近线相离,可得:,可得:c2﹣a2>ac,可得e2﹣e﹣1>0,e>1,解得:e.故选:B.7.(5分)S n是数列{a n}的前n项和,且对∀n∈N*都有2S n=3a n+4,则S n=()A.2﹣2×3n B.4×3n C.﹣4×3n﹣1D.﹣2﹣2×3n﹣1【解答】解:∵2S n=3a n+4,则2S n=3(S n﹣S n﹣1)+4,变形为:S n﹣2=3(S n﹣1﹣2),n=1时,2S1=3S1+4,解得S1=﹣4,S1﹣2=﹣6.∴数列{S n﹣2}是等比数列,首项为﹣6,公比为3.∴S n﹣2=﹣6×3n﹣1,可得:S n=2﹣2×3n.故选:A.8.(5分)某几何体的三视图如图所示,若图中小正方形的边长为1,则该几何体的体积是()A.B.C.D.【解答】解:由题意可知几何体的直观图如图:S﹣ABC,是正方体的一部分,是三棱锥,正方体的棱长为:4,几何体是体积为:V==.故选:A.9.(5分)执行如图所示的程序框图,与输出的值最接近的是()A.B.C.D.【解答】解:由已知可得:i用来统计随机产生的n个点(x,y)中满足x2+y2<1的点的个数,其中x,y∈(0,1),故≈,故选:C.10.(5分)《九章算术》中记载了我国古代数学家祖暅在计算球的体积中使用的一个原理:“幂势既同,则积不异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积恒相等,则它们的体积相等.如图,设满足不等式组的点(x,y)组成的图形(图(1)中的阴影部分)绕y轴旋转180°,所得几何体的体积为V1;满足不等式组,的点(x,y)组成的图形(图(2)中的阴影部分)绕y轴旋转180°,所得几何体的体积为V2.利用祖暅原理,可得V1=()A.B.C.32πD.64π【解答】解:用任意一个与y轴垂直的平面去截这两个旋转体,设截面与原点的距离为h,所得截面面积分别为S1,S2,把y=h代入x2﹣4y=0可得x=±2.∴S1=16π﹣4hπ,把y=h代入x2+y2=16可得x=±,把y=h代入x2+(y﹣2)2=4可得x=±=,∴S2=π(16﹣h2)﹣π(4h﹣h2)=16π﹣4πh,∴S1=S2,由祖暅原理可知V1=V2=﹣=32π.故选:C.11.(5分)不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数X的数学期望是()A.B.C.D.【解答】解:不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数X的可能取值为2,3,4,5,6,7,P(X=2)==,P(X=3)=+=,P(X=4)=++=,P(X=5)=+++=,P(X=6)=++++=,P(X=7)=×1+×1+×1+×1+×1+=,∴摸取次数X的数学期望:E(X)=+6×=.故选:D.12.(5分)记函数f(x)=sin2nx﹣cos nx在区间[0,π]内的零点个数为,则数列{a n}的前20项的和是()A.430B.840C.1250D.1660【解答】解:设f(x)=0,可得:sin2nx=cos nx,即2sin nx cos nx=cos nx,即cos nx=0或sin nx=,可得nx=kπ+,k∈Z;nx=2lπ+或nx=2lπ+,l∈Z,由于x∈[0,π],当n=1时,a1=1+2=3;当n=2时,a2=2+2=4;当n=3时,a3=3+4=7;当n=4时,a4=4+4=8;当n=5时,a5=5+6=11;当n=6时,a6=6+6=12;…,可得数列{a n}的前20项的和为(1+2+3+4+...+20)+(2+4+6+8+...+20)+(2+4+6+8+ (20)=×20×21+×10×22×2=210+220=430.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)i是虚数单位,复数z满足(1+i)z=1+3i,则|z2|=5.【解答】解:由(1+i)z=1+3i,得z=,∴|z2|=.故答案为:5.14.(5分)若实数x,y满足约束条件,则z=x﹣2y的所有取值的集合是{﹣2,﹣1,1,2}.【解答】解:由约束条件作出可行域如图,可行域为点(0,1),(1,1),(1,0),(2,0),当直线z=x﹣2y分别过上述四个点时,z对应的值分别为﹣2,﹣1,1,2,∴z=x﹣2y的所有取值的集合是:{﹣2,﹣1,1,2}.故答案为:{﹣2,﹣1,1,2}.15.(5分)以坐标原点O为圆心的圆与抛物线及其准线y2=4x分别交于点A,B和C,D,若|AB|=|CD|,则圆O的方程是x2+y2=5.【解答】解:设圆O的方程为x2+y2=r2,(r>0),y2=4x的准线方程为x=﹣1,代入圆O方程可得y2=r2﹣1,则弦长为|CD|=2,由抛物线和圆的对称性可得设AB:x=t(t>0),代入圆的方程可得y2=r2﹣t2,可得|AB|=2,由|AB|=|CD|,解得t=1,将x=1代入抛物线方程可得y2=4,解得y=±2,则弦长为4,解得r=,则圆O的方程为x2+y2=5,故答案为:x2+y2=5.16.(5分)若对任意的x>0,不等式x2﹣2(m2+m+1)lnx≥1恒成立,则m=0或﹣1.【解答】解:设m2+m+1=t,令f(x)=x2﹣2tlnx﹣1,则f′(x)=2x﹣.当t<0时,f′(x)>0,则f(x)在定义域内单调递增,不存在最值,对任意的x>0,不等式不恒成立.当t>0时,f′(x)=0,可得x=,当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0,可得当x=取得最小值为t﹣tlnt,即t﹣tlnt≥1.令g(t)=t﹣tlnt﹣1.(t>0)则g′(t)=﹣lnt,令g′(t)=﹣lnt=0,可得t=1.当0<t<1时,f′(t)>0,则f(t)在(0,1)单调递增;当t>1时,f′(t)<0,则f(t)在(1,+∞)单调递减;当t=1取得最大值为1.要使即t﹣tlnt≥1成立,则t=1,即m2+m+1=1,解得m=0或m=﹣1,故答案为:0或﹣1三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,sin A=2sin C,2b=3c.(1)cos C;(2)若∠B的平分线交AC于点D,且△ABC的面积为,求BD的长.【解答】解:(1)∵sin A=2sin C,∴a=2c.又∵2b=3c.∴.(2)由,可得:.设△ABC的面积为S,∴,∴c2=4,c=2.则a=4,b=3.∵BD为∠B的平分线,∴,∴CD=2AD.又CD+AD=3.∴CD=2,AD=1.在△BCD中,由余弦定理可得:,∴.18.(12分)某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩x与物理成绩y如下表:数据表明y与x之间有较强的线性关系.(1)求y关于x的线性回归方程;(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为50%和60%,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?参考数据:回归直线的系数,.,P(K2≥6.635)=0.01,P(K2≥10.828)=0.01.【解答】解:(1)由题意可知,故=.,故回归方程为.(2)将x=110代入上述方程,得.(3)由题意可知,该班数学优秀人数及物理优秀人数分别为30,36.抽出的5人中,数学优秀但物理不优秀的共1人,故全班数学优秀但物理不优秀的人共6人.于是可以得到2×2列联表为:于是,因此在犯错误概率不超过0.01的前提下,可以认为数学优秀与物理优秀有关.19.(12分)如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD为菱形,且∠A1AB=∠A1AD.(1)证明:四边形BB1D1D为矩形;(2)若AB=A1A,∠BAD=60°,A1A与平面ABCD所成的角为30°,求二面角A1﹣BB1﹣D的余弦值.【解答】(1)证明:连接AC,设AC∩BD=O,连接A1B,A1D,A1O.∵∠A1AB=∠A1AD,AB=AD,∴A1B=A1D.又O为BD的中点,∴AO⊥BD,A1O⊥BD.∴BD⊥平面A1ACC1,∴BD⊥AA1.∵BB1∥AA1,∴BD⊥BB1.又四边形BB1D1D是平行四边形,则四边形BB1D1D为矩形.(2)解:过点A1作A1E⊥平面ABCD,垂足为E,由已知可得点E在AC上,∴∠A1AC=30°.设AB=A1A=1,则.在菱形ABCD中,AB=AD=1,∠BAD=60°,∴.∴点E与点O重合,则A1O⊥平面ABCD.以O为坐标原点,建立空间直角坐标系O﹣xyz.则.∴.设平面A1BB1的法向量为,则,∴即取x=1,可得为平面A1BB1的一个法向量.同理可得平面BB1D的一个法向量为.∵.所以二面角A1﹣BB1﹣D的余弦值为.20.(12分)设椭圆的离心率为,以椭圆四个顶点为顶点的四边形的面积为.(1)求E的方程;(2)过E的左焦点F1作直线l1与E交于A,B两点,过右焦点F2作直线l2与E交于C,D两点,且l1∥l2,以A,B,C,D为顶点的四边形的面积,求l1与l2的方程.【解答】解:(1)由已知得,解得,∴椭圆E的方程为.(2)设l2:x=my+1,代入得(m2+2)y2+2my﹣1=0,设C(x1,y1),D(x2,y2),则..设l1的方程为x=my﹣1,则AB与CD之间的距离为.由对称性可知,四边形为平行四边形,∴.令,则m2+2=t2+1,∴,即,解得或(舍),∴m=±1.故所求方程为l1:x﹣y+1=0,l2:x﹣y﹣1=0或l1:x+y+1=0,l2:x+y﹣1=0.21.(12分)已知f(x)=lnx﹣ax+a,a∈R.(1)讨论f(x)的单调性;(2)若有三个不同的零点,求a的取值范围.【解答】解:(1)由已知f(x)的定乂域为(0,+∞),又,当a≤0时,f'(x)>0恒成立;当a>0时,令f'(x)>0得;令f'(x)<0得.综上所述,当a≤0时,f(x)在(0,+∞)上为增函数;当a>0时,f(x)在上为增函数,在上为减函数.(2)由题意,则,当a≤1时,∵,∴g(x)在(0,+∞)上为增函数,不符合题意.当a>1时,,令φ(x)=x2﹣(1+a)x+1,则△=(1+a)2﹣4=(a+3)(a﹣1)>0.令φ(x)=0的两根分别为x1,x2且x1<x2,则∵x1+x2=1+a>0,x1•x2=1>0,∴0<x1<1<x2,当x∈(0,x1)时,φ(x)>0,∴g'(x)>0,∴g(x)在(0,x1)上为增函数;当x∈(x1,x2)时,φ(x)<0,∴g'(x)<0,∴g(x)在(x1,x2)上为减函数;当x∈(x2,+∞)时,φ(x)>0,∴g'(x)>0,∴g(x)在(x2,+∞)上为增函数.∵g(1)=0,∴g(x)在(x1,x2)上只有一个零点1,且g(x1)>0,g(x2)<0.∴==.∵,又当x∈[x1,1)时,g(x)>0.∴∴g(x)在(0,x1)上必有一个零点.∴.∵2a+2>1,又当x∈(1,x2]时,g(x)<0,∴2a+2>x2.∴g(x)在(x2,+∞)上必有一个零点.综上所述,故a的取值范围为(1,+∞).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为,直线l的参数方程为(t 为参数).(1)若,求l的普通方程和C的直角坐标方程;(2)若l与C有两个不同的交点A,B,且P(2,1)为AB的中点,求|AB|.【解答】解:(1)直线l的参数方程为(t为参数).转换为直角坐标方程为:x+y﹣3=0,曲线C的极坐标方程为,转换为直角坐标方程为y2=2x.(2)把代入抛物线方程y2=2x得t2sin2α+2t(sinα﹣cosα)﹣3=0(*),设A,B所对应的参数为t1,t2,则.∵P(2,1)为AB的中点,∴P点所对应的参数为,∴sinα﹣cosα=0,即.则(*)变为,此时,∴.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+|x﹣1|.(1)求函数f(x)的最小值a;(2)根据(1)中的结论,若m3+n3=a,且m>0,n>0,求证:m+n≤2.【解答】(1)解:f(x)=|x+1|+|x﹣1|≥|x+1﹣(x﹣1)|=2,当且仅当﹣1≤x≤1时取等号,所以f(x)min=2,即a=2.(2)证明:假设:m+n>2,则m>2﹣n,m3>(2﹣n)3.所以m3+n3>(2﹣n)3+n3=2+6(1﹣n)2≥2.①由(1)知a=2,所以m3+n3=2.②①与②矛盾,所以m+n≤2.。
2018年广东省茂名市高考数学一模试卷(文科)

2018年广东省茂名市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(5分)若集合A={x|﹣1<x<3},B={﹣1,0,1,2},则A∩B=()A.{﹣1,0,1,2} B.{x|﹣1<x<3}C.{0,1,2}D.{﹣1,0,1} 2.(5分)已知复数z满足zi=2+i,i是虚数单位,则|z|=()A.B.C.2 D.3.(5分)在1,2,3,6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是()A.B.C.D.4.(5分)已知变量x,y满足约束条件则z=3x+y的最小值为()A.11 B.12 C.8 D.35.(5分)设等差数列{a n}的前n项和为S n,若a2+a8=10,则S9=()A.20 B.35 C.45 D.906.(5分)已知抛物线y2=8x的准线与x轴交于点D,与双曲线交于A,B两点,点F为抛物线的焦点,若△ADF为等腰直角三角形,则双曲线的离心率是()A.B.C. D.7.(5分)已知函数f(x)=sin(ωx+ϕ)(ω>0,0<ϕ<),f(x1)=1,f(x2)=0,若|x1﹣x2|min=,且f()=,则f(x)的单调递增区间为()A. B..C.D.8.(5分)函数的部分图象大致为()A.B.C.D.9.(5分)《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则该塔中间一层有()盏灯.A.24 B.48 C.12 D.6010.(5分)执行如图所示的程序框图,那么输出S的值是()A.2 018 B.﹣1 C.D.211.(5分)如图为一正方体的平面展开图,在这个正方体中,有下列四个命题:①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的个数是()A.1 B.2 C.3 D.412.(5分)定义在R上函数y=f(x+2)的图象关于直线x=﹣2对称,且函数f(x+1)是偶函数.若当x∈[0,1]时,,则函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数为()A.2017 B.2018 C.4034 D.4036二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)已知=(2,1),﹣2=(1,1),则=.14.(5分)曲线y=ln(x+1)在点(1,ln2)处的切线方程为.15.(5分)从原点O向圆C:x2+y2﹣12y+27=0作两条切线,则该圆被两切点所分的劣弧与优弧之比为.16.(5分)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB=,∠ACB=60°,∠BCD=90°,AB⊥CD,CD=,则该球的体积为.三、解答题:本大题共5小题,共70分.其中17至21题为必做题,22、23题为选做题.解答过程应写出文字说明、证明过程或演算步骤.17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且2c•cosB﹣b=2a.(Ⅰ)求角C的大小;(Ⅱ)设角A的平分线交BC于D,且AD=,若b=,求△ABC的面积.18.(12分)在四棱锥P﹣ABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,∠ABC=∠DCB=60°,E是PC上一点.(Ⅰ)证明:平面EAB⊥平面PAC;(Ⅱ)若△PAC是正三角形,且E是PC中点,求三棱锥A﹣EBC的体积.19.(12分)一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如表:经计算得:,,,,,线性回归模型的残差平方和,e8.0605≈3167,其中x i,y i分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.(i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.(ii)用拟合效果好的模型预测温度为35°C时该种药用昆虫的产卵数(结果取整数).附:一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计为,=﹣;相关指数R2=.20.(12分)已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C(﹣1,0)的直线l与椭圆C2交于A,B两个不同的点,若,求△OAB的面积取得最大值时直线l的方程.21.(12分)已知函数(a∈R).(Ⅰ)讨论g(x)的单调性;(Ⅱ)若.证明:当x>0,且x≠1时,.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分,作答时,请用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l经过点P(﹣2,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ﹣4cosθ=0.(Ⅰ)若直线l与曲线C有公共点,求倾斜角α的取值范围;(Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≥2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≤M有解,求m的取值范围.2018年广东省茂名市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(5分)若集合A={x|﹣1<x<3},B={﹣1,0,1,2},则A∩B=()A.{﹣1,0,1,2} B.{x|﹣1<x<3}C.{0,1,2}D.{﹣1,0,1}【解答】解:∵集合A={x|﹣1<x<3},B={﹣1,0,1,2},∴A∩B={0,1,2}.故选:C.2.(5分)已知复数z满足zi=2+i,i是虚数单位,则|z|=()A.B.C.2 D.【解答】解:由zi=2+i,得,∴|z|=,故选:D.3.(5分)在1,2,3,6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是()A.B.C.D.【解答】解:在1,2,3,6这组数据中随机取出三个数,基本事件总数有4个,分别为:(1,2,3),(1,2,6),(1,3,6),(2,3,6)数字2是这三个不同数字的平均数所包含的基本事件只有(1,2,3),共1个.∴数字2是这三个不同数字的平均数的概率是.故选:A.4.(5分)已知变量x,y满足约束条件则z=3x+y的最小值为()A.11 B.12 C.8 D.3【解答】解:由约束条件作出可行域如图,联立,解得A(2,2),化目标函数z=3x+y为y=﹣3x+z,由图可知,当直线y=﹣3x+z过A时,直线在y轴上的截距最小,z有最小值为z=3×2+2=8.故选:C.5.(5分)设等差数列{a n}的前n项和为S n,若a2+a8=10,则S9=()A.20 B.35 C.45 D.90【解答】解:由等差数列的性质得,a1+a9=a2+a8=10,S9=.故选:C.6.(5分)已知抛物线y2=8x的准线与x轴交于点D,与双曲线交于A,B两点,点F为抛物线的焦点,若△ADF为等腰直角三角形,则双曲线的离心率是()A.B.C. D.【解答】解:抛物线y2=8x的准线方程为x=﹣2,准线与x轴的交点为D(﹣2,0),由△ADF为等腰直角三角形,得|AD|=|DF|=4,故点A的坐标为(﹣2,4),由点A在双曲线上,可得,解得,即,∴,∴双曲线的离心率.故选:D.7.(5分)已知函数f(x)=sin(ωx+ϕ)(ω>0,0<ϕ<),f(x1)=1,f(x2)=0,若|x1﹣x2|min=,且f()=,则f(x)的单调递增区间为()A. B..C.D.【解答】解:设f(x)的周期为T,由f(x1)=1,f(x2)=0,|x1﹣x2|min=,得,由f()=,得sin(π+ϕ)=,即cosϕ=,又0<ϕ<,∴ϕ=,f(x)=sin(πx).由,得.∴f(x)的单调递增区间为.故选:B.8.(5分)函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.9.(5分)《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则该塔中间一层有()盏灯.A.24 B.48 C.12 D.60【解答】解:由题意可知从上至下每层灯盏数构成公比为2的等比数列,设首项为a,则,解之得a=3,则该塔中间一层灯盏数有3×23=24.故选:A.10.(5分)执行如图所示的程序框图,那么输出S的值是()A.2 018 B.﹣1 C.D.2【解答】解:依题意,执行如图所示的程序框图可知:初始S=2,当k=0时,S0=﹣1,k=1时,S1=,同理S2=2,S3=﹣1,S4=,…,可见S n的值周期为3.∴当k=2017时,S2017=S1=,k=2018,退出循环.输出S=.故选:C.11.(5分)如图为一正方体的平面展开图,在这个正方体中,有下列四个命题:①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:将正方体纸盒展开图还原成正方体,在①中,如图知AF与GC异面垂直,故①正确;在②中,BD与GC成异面直线,连接EB,ED.则BM∥GC,在等边△BDM中,BD与BM所成的60°角就是异面直线BD与GC所成的角,故②正确;在③中,BD与MN异面垂直,故③错误;在④中,GD⊥平面ABCD,所以在Rt△BDG中,∠GBD是BG与平面ABCD所成的角,Rt△BDG不是等腰直角三角形.所以BG与平面ABCD所成的角不是为45°,故④错误.故选:B.12.(5分)定义在R上函数y=f(x+2)的图象关于直线x=﹣2对称,且函数f(x+1)是偶函数.若当x∈[0,1]时,,则函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数为()A.2017 B.2018 C.4034 D.4036【解答】解:函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数⇔函数的图象与y=e﹣|x|的图象交点个数.由y=f(x+2)的图象关于直线x=﹣2对称,得f(x)是偶函数,即f(﹣x)=f(x).又∵函数f(x+1)是偶函数,∴f(x+1)=f(﹣x+1),故f(x+2)=f(﹣x)=f(x),因此,f(x)是周期为2的偶函数.∵当x∈[0,1]时,,作出y=f(x)与图象如下图,可知每个周期内有两个交点,所以函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数为2018×2=4036.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)已知=(2,1),﹣2=(1,1),则=1.【解答】解:根据题意,设=(x,y),则﹣2=(2﹣2x,1﹣2y)=(1,1),则有2﹣2x=1,1﹣2y=1,解可得x=,y=0,则=(,0),则=2×+1×0=1;故答案为:114.(5分)曲线y=ln(x+1)在点(1,ln2)处的切线方程为x﹣2y﹣1+2ln2=0.【解答】解:根据题意,曲线y=ln(x+1),则有y′=,则由所求切线斜率,又由f(1)=ln(1+1)=ln2,则曲线在点(1,ln2)处的切线方程为,即x﹣2y﹣1+2ln2=0.故答案为:x﹣2y﹣1+2ln2=015.(5分)从原点O向圆C:x2+y2﹣12y+27=0作两条切线,则该圆被两切点所分的劣弧与优弧之比为.【解答】解:把圆的方程化为标准方程为x2+(y﹣6)2=9,得到圆心C(0,6),圆的半径r=3,由圆切线的性质可知,∠CBO=∠CAO=90°,且AC=BC=3,OC=6,则有∠ACB=∠ACO+∠BCO=60°+60°=120°,∴该圆被两切点所分的劣弧与优弧之比为.故答案为:.16.(5分)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB=,∠ACB=60°,∠BCD=90°,AB⊥CD,CD=,则该球的体积为.【解答】解:以△ABC所在平面为球的截面,则由正弦定理得截面圆的半径为,依题意得CD⊥平面ABC,故球心到截面的距离为,则球的半径为.所以球的体积为.故答案为:.三、解答题:本大题共5小题,共70分.其中17至21题为必做题,22、23题为选做题.解答过程应写出文字说明、证明过程或演算步骤.17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且2c•cosB﹣b=2a.(Ⅰ)求角C的大小;(Ⅱ)设角A的平分线交BC于D,且AD=,若b=,求△ABC的面积.【解答】解:(Ⅰ)根据题意,若2c•cosB﹣b=2a,则有,整理得a2+b2﹣c2=﹣ab,,又在△ABC中,0<C<π,∴,即角C的大小为;(Ⅱ)由(Ⅰ),在△ADC中,AC=b=,AD=,由正弦定理得,∵在△ADC中,0<∠CDA<π,C为钝角,∴,故.∵在△ABC中,AD是角A的平分线,∴,∴△ABC是等腰三角形,,故△ABC的面积.18.(12分)在四棱锥P﹣ABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,∠ABC=∠DCB=60°,E是PC上一点.(Ⅰ)证明:平面EAB⊥平面PAC;(Ⅱ)若△PAC是正三角形,且E是PC中点,求三棱锥A﹣EBC的体积.【解答】证明:(Ⅰ)依题意得四边形ABCD是底角为60°的等腰梯形,…(1分)∴∠BAD=∠ADC=120°..…(2分)∵AD=DC,∴∠DAC=∠DCA=30°.…(3分)∴∠BAC=∠BAD﹣∠DAC=120°﹣30°=90°,即AB⊥AC.…(4分)∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,∴AB⊥平面PAC,…(5分)又平面AB⊂平面EAB,∴平面EAB⊥平面PAC.…(6分)解:(Ⅱ)解法一:由(Ⅰ)及已知得,在Rt△ABC中,∠ABC=60°,AB=1,∴AC=AB∙tan60°=,BC=2AB=2,且AB⊥平面PAC,…(7分)∴AB是三棱锥B﹣EAC的高,正△PAC的边长为…(8分)=S△PAC=.…∵E是PC的中点,∴S△EAC(10分)∴三棱锥A﹣EBC的体积为…(12分)(Ⅱ)解法二:过P作PO⊥AC于点O,∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,∴PO⊥平面ABC,过E作EF⊥AC于点F,同理得EF⊥平面ABC,∴EF是三棱锥E﹣ABC的高,且PO∥EF,…(7分)又E是PC中点,∴EF是△POC的中位线,故.由(Ⅰ)及已知得,在Rt△ABC中,∠ABC=60°,AB=1,∴BC=2AB=2,AC=AB∙tan60°=,即正△PAC的边长为,…(8分)∴PO=,故EF=…(9分)=.…(10分)在Rt△ABC中,S△ABC∴三棱锥A﹣EBC的体积为…(12分)19.(12分)一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如表:经计算得:,,,,,线性回归模型的残差平方和,e8.0605≈3167,其中x i,y i分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.(i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.(ii)用拟合效果好的模型预测温度为35°C时该种药用昆虫的产卵数(结果取整数).附:一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计为,=﹣;相关指数R2=.【解答】解:(Ⅰ)依题意,n=6,,….…(2分)≈33﹣6.6×26=﹣138.6,…(3分)∴y关于x的线性回归方程为=6.6x﹣138.6…(4分)(Ⅱ)(i )利用所给数据,,得,线性回归方程=6.6x﹣138.6的相关指数R2=.…(6分)∵0.9398<0.9522,…(7分)因此,回归方程=0.06e0.2303x比线性回归方程=6.6x﹣138.6拟合效果更好…..…(8分)(ii)由(i )得温度x=35°C时,=0.06e0.2303×35=0.06×e8.0605…..…..…(9分)又∵e8.0605≈3167,…(10分)∴≈0.06×3167≈190(个)…(11分)所以当温度x=35°C时,该种药用昆虫的产卵数估计为190个…(12分)20.(12分)已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C(﹣1,0)的直线l与椭圆C2交于A,B两个不同的点,若,求△OAB的面积取得最大值时直线l的方程.【解答】解:(Ⅰ)所给直线方程变形为,可知直线所过定点为.∴椭圆焦点在y轴,且c=,依题意可知b=2,∴a2=c2+b2=9.则椭圆C1的方程标准为;(Ⅱ)依题意,设椭圆C2的方程为,A(x1,y1),B(x2,y2),∵λ>1,∴点C(﹣1,0)在椭圆内部,直线l与椭圆必有两个不同的交点.当直线l垂直于x轴时,(不是零向量),不合条件;故设直线l为y=k(x+1)(A,B,O三点不共线,故k≠0),由,得.由韦达定理得.∵,而点C(﹣1,0),∴(﹣1﹣x1,﹣y1)=2(x2+1,y2),则y1=﹣2y2,即y1+y2=﹣y2,故.=S△AOC+S△BOC∴△OAB的面积为S△OAB====.上式取等号的条件是,即k=±时,△OAB的面积取得最大值.∴直线的方程为或.21.(12分)已知函数(a∈R).(Ⅰ)讨论g(x)的单调性;(Ⅱ)若.证明:当x>0,且x≠1时,.【解答】(Ⅰ)解:由已知得g(x)的定义域为(0,+∞),…(1分)方程2x2+x﹣a=0的判别式△=1+8a.…(2分)①当时,△≤0,g'(x)≥0,此时,g(x)在(0,+∞)上为增函数;…(3分)②当时,设方程2x2+x﹣a=0的两根为,若,则x1<x2≤0,此时,g'(x)>0,g(x)在(0,+∞)上为增函数;…(4分)若a>0,则x1<0<x2,此时,g(x)在(0,x2]上为减函数,在(x2,+∞)上为增函数,…..…(5分)综上所述:当a≤0时,g(x)的增区间为(0,+∞),无减区间;当a>0时,g(x)的减区间为(0,x2],增区间为(x2,+∞).…(6分)(Ⅱ)证明:由题意知,…(7分)∴,…(8分)考虑函数,则…(9分)所以x≠1时,h'(x)<0,而h(1)=0…(10分)故x∈(0,1)时,,可得,x∈(1,+∞)时,,可得,…(11分)从而当x>0,且x≠1时,.…(12分)请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分,作答时,请用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l经过点P(﹣2,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ﹣4co sθ=0.(Ⅰ)若直线l与曲线C有公共点,求倾斜角α的取值范围;(Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.【解答】解:(Ⅰ)由曲线C的极坐标方程得ρ2﹣4ρcosθ=0,又x=ρcosθ,y=ρsinθ,∴曲线C的直角坐标方程为x2+y2﹣4x=0,即(x﹣2)2+y2=4…(1分)∴曲线C是圆心为C(2,0),半径为2的圆.∵直线l过点P(﹣2,0),当l的斜率不存在时,l的方程为x=﹣2与曲线C没有公共点,∴直线l的斜率存在,设直线l:y=k(x+2),即kx﹣y+2k=0.直线l与圆有公共点,则圆心C到直线l的距离,得,α∈[0,π),∴α的取值范围是.(Ⅱ)法一:由(Ⅰ)曲线C的直角坐标方程为(x﹣2)2+y2=4,故其参数方程为(θ为参数).∵M(x,y)为曲线C上任意一点,∴,,∴,因此,的取值范围是[﹣2,6].[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≥2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≤M有解,求m的取值范围.【解答】解:(Ⅰ)当x≥3时,f(x)=﹣8,此时f(x)≥2无解;…(1分)当﹣5<x<3时,f(x)=﹣2x﹣2,由f(x)≥2解得﹣5<x≤﹣2;…(3分)当x≤﹣5时,f(x)=8,此时f(x)≥2恒成立.…(4分)综上,不等式f(x)≥2的解集是{x|x≤﹣2}.…(5分)(Ⅱ)由(Ⅰ)可知…(6分)易知函数f(x)的最大值M=8,…(7分)若x2+2x+m≤8有解,得m≤﹣x2﹣2x+8有解.…(8分)即m≤[﹣(x+1)2+9]max=9.…(9分)因此,m的取值范围是m≤9.…(10分)。
2018年广东省茂名市高考数学一模试卷(文科及答案)

2018年广东省茂名市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(5分)若集合A={x|﹣1<x<3},B={﹣1,0,1,2},则A∩B=()A.{﹣1,0,1,2} B.{x|﹣1<x<3}C.{0,1,2}D.{﹣1,0,1} 2.(5分)已知复数z满足zi=2+i,i是虚数单位,则|z|=()A.B.C.2 D.3.(5分)在1,2,3,6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是()A.B.C.D.4.(5分)已知变量x,y满足约束条件则z=3x+y的最小值为()A.11 B.12 C.8 D.35.(5分)设等差数列{a n}的前n项和为S n,若a2+a8=10,则S9=()A.20 B.35 C.45 D.906.(5分)已知抛物线y2=8x的准线与x轴交于点D,与双曲线交于A,B两点,点F为抛物线的焦点,若△ADF为等腰直角三角形,则双曲线的离心率是()A.B.C. D.7.(5分)已知函数f(x)=sin(ωx+ϕ)(ω>0,0<ϕ<),f(x1)=1,f(x2)=0,若|x1﹣x2|min=,且f()=,则f(x)的单调递增区间为()A. B..C.D.8.(5分)函数的部分图象大致为()A. B.C.D.9.(5分)《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则该塔中间一层有()盏灯.A.24 B.48 C.12 D.6010.(5分)执行如图所示的程序框图,那么输出S的值是()A.2 018 B.﹣1 C.D.211.(5分)如图为一正方体的平面展开图,在这个正方体中,有下列四个命题:①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的个数是()A.1 B.2 C.3 D.412.(5分)定义在R上函数y=f(x+2)的图象关于直线x=﹣2对称,且函数f(x+1)是偶函数.若当x∈[0,1]时,,则函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数为()A.2017 B.2018 C.4034 D.4036二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)已知=(2,1),﹣2=(1,1),则=.14.(5分)曲线y=ln(x+1)在点(1,ln2)处的切线方程为.15.(5分)从原点O向圆C:x2+y2﹣12y+27=0作两条切线,则该圆被两切点所分的劣弧与优弧之比为.16.(5分)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB=,∠ACB=60°,∠BCD=90°,AB⊥CD,CD=,则该球的体积为.三、解答题:本大题共5小题,共70分.其中17至21题为必做题,22、23题为选做题.解答过程应写出文字说明、证明过程或演算步骤.17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且2c•cosB﹣b=2a.(Ⅰ)求角C的大小;(Ⅱ)设角A的平分线交BC于D,且AD=,若b=,求△ABC的面积.18.(12分)在四棱锥P﹣ABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,∠ABC=∠DCB=60°,E是PC上一点.(Ⅰ)证明:平面EAB⊥平面PAC;(Ⅱ)若△PAC是正三角形,且E是PC中点,求三棱锥A﹣EBC的体积.19.(12分)一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如表:经计算得:,,,,,线性回归模型的残差平方和,e8.0605≈3167,其中x i,y i分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.(i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.(ii)用拟合效果好的模型预测温度为35°C时该种药用昆虫的产卵数(结果取整数).附:一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计为,=﹣;相关指数R2=.20.(12分)已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C(﹣1,0)的直线l与椭圆C2交于A,B两个不同的点,若,求△OAB的面积取得最大值时直线l的方程.21.(12分)已知函数(a∈R).(Ⅰ)讨论g(x)的单调性;(Ⅱ)若.证明:当x>0,且x≠1时,.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分,作答时,请用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l经过点P(﹣2,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ﹣4cosθ=0.(Ⅰ)若直线l与曲线C有公共点,求倾斜角α的取值范围;(Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≥2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≤M有解,求m的取值范围.2018年广东省茂名市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(5分)若集合A={x|﹣1<x<3},B={﹣1,0,1,2},则A∩B=()A.{﹣1,0,1,2} B.{x|﹣1<x<3}C.{0,1,2}D.{﹣1,0,1}【解答】解:∵集合A={x|﹣1<x<3},B={﹣1,0,1,2},∴A∩B={0,1,2}.故选:C.2.(5分)已知复数z满足zi=2+i,i是虚数单位,则|z|=()A.B.C.2 D.【解答】解:由zi=2+i,得,∴|z|=,故选:D.3.(5分)在1,2,3,6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是()A.B.C.D.【解答】解:在1,2,3,6这组数据中随机取出三个数,基本事件总数有4个,分别为:(1,2,3),(1,2,6),(1,3,6),(2,3,6)数字2是这三个不同数字的平均数所包含的基本事件只有(1,2,3),共1个.∴数字2是这三个不同数字的平均数的概率是.故选:A.4.(5分)已知变量x,y满足约束条件则z=3x+y的最小值为()A.11 B.12 C.8 D.3【解答】解:由约束条件作出可行域如图,联立,解得A(2,2),化目标函数z=3x+y为y=﹣3x+z,由图可知,当直线y=﹣3x+z过A时,直线在y轴上的截距最小,z有最小值为z=3×2+2=8.故选:C.5.(5分)设等差数列{a n}的前n项和为S n,若a2+a8=10,则S9=()A.20 B.35 C.45 D.90【解答】解:由等差数列的性质得,a1+a9=a2+a8=10,S9=.故选:C.6.(5分)已知抛物线y2=8x的准线与x轴交于点D,与双曲线交于A,B两点,点F为抛物线的焦点,若△ADF为等腰直角三角形,则双曲线的离心率是()A.B.C. D.【解答】解:抛物线y2=8x的准线方程为x=﹣2,准线与x轴的交点为D(﹣2,0),由△ADF为等腰直角三角形,得|AD|=|DF|=4,故点A的坐标为(﹣2,4),由点A在双曲线上,可得,解得,即,∴,∴双曲线的离心率.故选:D.7.(5分)已知函数f(x)=sin(ωx+ϕ)(ω>0,0<ϕ<),f(x1)=1,f(x2)=0,若|x1﹣x2|min=,且f()=,则f(x)的单调递增区间为()A. B..C.D.【解答】解:设f(x)的周期为T,由f(x1)=1,f(x2)=0,|x1﹣x2|min=,得,由f()=,得sin(π+ϕ)=,即cosϕ=,又0<ϕ<,∴ϕ=,f(x)=sin(πx).由,得.∴f(x)的单调递增区间为.故选:B.8.(5分)函数的部分图象大致为()A. B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选:C.9.(5分)《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则该塔中间一层有()盏灯.A.24 B.48 C.12 D.60【解答】解:由题意可知从上至下每层灯盏数构成公比为2的等比数列,设首项为a,则,解之得a=3,则该塔中间一层灯盏数有3×23=24.故选:A.10.(5分)执行如图所示的程序框图,那么输出S的值是()A.2 018 B.﹣1 C.D.2【解答】解:依题意,执行如图所示的程序框图可知:初始S=2,当k=0时,S0=﹣1,k=1时,S1=,同理S2=2,S3=﹣1,S4=,…,可见S n的值周期为3.∴当k=2017时,S2017=S1=,k=2018,退出循环.输出S=.故选:C.11.(5分)如图为一正方体的平面展开图,在这个正方体中,有下列四个命题:①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:将正方体纸盒展开图还原成正方体,在①中,如图知AF与GC异面垂直,故①正确;在②中,BD与GC成异面直线,连接EB,ED.则BM∥GC,在等边△BDM中,BD与BM所成的60°角就是异面直线BD与GC所成的角,故②正确;在③中,BD与MN异面垂直,故③错误;在④中,GD⊥平面ABCD,所以在Rt△BDG中,∠GBD是BG与平面ABCD所成的角,Rt△BDG不是等腰直角三角形.所以BG与平面ABCD所成的角不是为45°,故④错误.故选:B.12.(5分)定义在R上函数y=f(x+2)的图象关于直线x=﹣2对称,且函数f(x+1)是偶函数.若当x∈[0,1]时,,则函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数为()A.2017 B.2018 C.4034 D.4036【解答】解:函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数⇔函数的图象与y=e﹣|x|的图象交点个数.由y=f(x+2)的图象关于直线x=﹣2对称,得f(x)是偶函数,即f(﹣x)=f(x).又∵函数f(x+1)是偶函数,∴f(x+1)=f(﹣x+1),故f(x+2)=f(﹣x)=f(x),因此,f(x)是周期为2的偶函数.∵当x∈[0,1]时,,作出y=f(x)与图象如下图,可知每个周期内有两个交点,所以函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数为2018×2=4036.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)已知=(2,1),﹣2=(1,1),则=1.【解答】解:根据题意,设=(x,y),则﹣2=(2﹣2x,1﹣2y)=(1,1),则有2﹣2x=1,1﹣2y=1,解可得x=,y=0,则=(,0),则=2×+1×0=1;故答案为:114.(5分)曲线y=ln(x+1)在点(1,ln2)处的切线方程为x﹣2y﹣1+2ln2=0.【解答】解:根据题意,曲线y=ln(x+1),则有y′=,则由所求切线斜率,又由f(1)=ln(1+1)=ln2,则曲线在点(1,ln2)处的切线方程为,即x﹣2y﹣1+2ln2=0.故答案为:x﹣2y﹣1+2ln2=015.(5分)从原点O向圆C:x2+y2﹣12y+27=0作两条切线,则该圆被两切点所分的劣弧与优弧之比为.【解答】解:把圆的方程化为标准方程为x2+(y﹣6)2=9,得到圆心C(0,6),圆的半径r=3,由圆切线的性质可知,∠CBO=∠CAO=90°,且AC=BC=3,OC=6,则有∠ACB=∠ACO+∠BCO=60°+60°=120°,∴该圆被两切点所分的劣弧与优弧之比为.故答案为:.16.(5分)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB=,∠ACB=60°,∠BCD=90°,AB⊥CD,CD=,则该球的体积为.【解答】解:以△ABC所在平面为球的截面,则由正弦定理得截面圆的半径为,依题意得CD⊥平面ABC,故球心到截面的距离为,则球的半径为.所以球的体积为.故答案为:.三、解答题:本大题共5小题,共70分.其中17至21题为必做题,22、23题为选做题.解答过程应写出文字说明、证明过程或演算步骤.17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且2c•cosB﹣b=2a.(Ⅰ)求角C的大小;(Ⅱ)设角A的平分线交BC于D,且AD=,若b=,求△ABC的面积.【解答】解:(Ⅰ)根据题意,若2c•cosB﹣b=2a,则有,整理得a2+b2﹣c2=﹣ab,,又在△ABC中,0<C<π,∴,即角C的大小为;(Ⅱ)由(Ⅰ),在△ADC中,AC=b=,AD=,由正弦定理得,∵在△ADC中,0<∠CDA<π,C为钝角,∴,故.∵在△ABC中,AD是角A的平分线,∴,∴△ABC是等腰三角形,,故△ABC的面积.18.(12分)在四棱锥P﹣ABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,∠ABC=∠DCB=60°,E是PC上一点.(Ⅰ)证明:平面EAB⊥平面PAC;(Ⅱ)若△PAC是正三角形,且E是PC中点,求三棱锥A﹣EBC的体积.【解答】证明:(Ⅰ)依题意得四边形ABCD是底角为60°的等腰梯形,…(1分)∴∠BAD=∠ADC=120°..…(2分)∵AD=DC,∴∠DAC=∠DCA=30°.…(3分)∴∠BAC=∠BAD﹣∠DAC=120°﹣30°=90°,即AB⊥AC.…(4分)∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,∴AB⊥平面PAC,…(5分)又平面AB⊂平面EAB,∴平面EAB⊥平面PAC.…(6分)解:(Ⅱ)解法一:由(Ⅰ)及已知得,在Rt△ABC中,∠ABC=60°,AB=1,∴AC=AB∙tan60°=,BC=2AB=2,且AB⊥平面PAC,…(7分)∴AB是三棱锥B﹣EAC的高,正△PAC的边长为…(8分)=S△PAC=.…∵E是PC的中点,∴S△EAC(10分)∴三棱锥A﹣EBC的体积为…(12分)(Ⅱ)解法二:过P作PO⊥AC于点O,∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,∴PO⊥平面ABC,过E作EF⊥AC于点F,同理得EF⊥平面ABC,∴EF是三棱锥E﹣ABC的高,且PO∥EF,…(7分)又E是PC中点,∴EF是△POC的中位线,故.由(Ⅰ)及已知得,在Rt△ABC中,∠ABC=60°,AB=1,∴BC=2AB=2,AC=AB∙tan60°=,即正△PAC的边长为,…(8分)∴PO=,故EF=…(9分)=.…(10分)在Rt△ABC中,S△ABC∴三棱锥A﹣EBC的体积为…(12分)19.(12分)一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如表:经计算得:,,,,,线性回归模型的残差平方和,e8.0605≈3167,其中x i,y i分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.(i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.(ii)用拟合效果好的模型预测温度为35°C时该种药用昆虫的产卵数(结果取整数).附:一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计为,=﹣;相关指数R2=.【解答】解:(Ⅰ)依题意,n=6,,….…(2分)≈33﹣6.6×26=﹣138.6,…(3分)∴y关于x的线性回归方程为=6.6x﹣138.6…(4分)(Ⅱ)(i )利用所给数据,,得,线性回归方程=6.6x﹣138.6的相关指数R2=.…(6分)∵0.9398<0.9522,…(7分)因此,回归方程=0.06e0.2303x比线性回归方程=6.6x﹣138.6拟合效果更好…..…(8分)(ii)由(i )得温度x=35°C时,=0.06e0.2303×35=0.06×e8.0605…..…..…(9分)又∵e8.0605≈3167,…(10分)∴≈0.06×3167≈190(个)…(11分)所以当温度x=35°C时,该种药用昆虫的产卵数估计为190个…(12分)20.(12分)已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C(﹣1,0)的直线l与椭圆C2交于A,B两个不同的点,若,求△OAB的面积取得最大值时直线l的方程.【解答】解:(Ⅰ)所给直线方程变形为,可知直线所过定点为.∴椭圆焦点在y轴,且c=,依题意可知b=2,∴a2=c2+b2=9.则椭圆C1的方程标准为;(Ⅱ)依题意,设椭圆C2的方程为,A(x1,y1),B(x2,y2),∵λ>1,∴点C(﹣1,0)在椭圆内部,直线l与椭圆必有两个不同的交点.当直线l垂直于x轴时,(不是零向量),不合条件;故设直线l为y=k(x+1)(A,B,O三点不共线,故k≠0),由,得.由韦达定理得.∵,而点C(﹣1,0),∴(﹣1﹣x1,﹣y1)=2(x2+1,y2),则y1=﹣2y2,即y1+y2=﹣y2,故.=S△AOC+S△BOC∴△OAB的面积为S△OAB====.上式取等号的条件是,即k=±时,△OAB的面积取得最大值.∴直线的方程为或.21.(12分)已知函数(a∈R).(Ⅰ)讨论g(x)的单调性;(Ⅱ)若.证明:当x>0,且x≠1时,.【解答】(Ⅰ)解:由已知得g(x)的定义域为(0,+∞),…(1分)方程2x2+x﹣a=0的判别式△=1+8a.…(2分)①当时,△≤0,g'(x)≥0,此时,g(x)在(0,+∞)上为增函数;…(3分)②当时,设方程2x2+x﹣a=0的两根为,若,则x1<x2≤0,此时,g'(x)>0,g(x)在(0,+∞)上为增函数;…(4分)若a>0,则x1<0<x2,此时,g(x)在(0,x2]上为减函数,在(x2,+∞)上为增函数,…..…(5分)综上所述:当a≤0时,g(x)的增区间为(0,+∞),无减区间;当a>0时,g(x)的减区间为(0,x2],增区间为(x2,+∞).…(6分)(Ⅱ)证明:由题意知,…(7分)∴,…(8分)考虑函数,则…(9分)所以x≠1时,h'(x)<0,而h(1)=0…(10分)故x∈(0,1)时,,可得,x∈(1,+∞)时,,可得,…(11分)从而当x>0,且x≠1时,.…(12分)请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分,作答时,请用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l经过点P(﹣2,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ﹣4c osθ=0.(Ⅰ)若直线l与曲线C有公共点,求倾斜角α的取值范围;(Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.【解答】解:(Ⅰ)由曲线C的极坐标方程得ρ2﹣4ρcosθ=0,又x=ρcosθ,y=ρsinθ,∴曲线C的直角坐标方程为x2+y2﹣4x=0,即(x﹣2)2+y2=4…(1分)∴曲线C是圆心为C(2,0),半径为2的圆.∵直线l过点P(﹣2,0),当l的斜率不存在时,l的方程为x=﹣2与曲线C没有公共点,∴直线l的斜率存在,设直线l:y=k(x+2),即kx﹣y+2k=0.直线l与圆有公共点,则圆心C到直线l的距离,得,α∈[0,π),∴α的取值范围是.(Ⅱ)法一:由(Ⅰ)曲线C的直角坐标方程为(x﹣2)2+y2=4,故其参数方程为(θ为参数).∵M(x,y)为曲线C上任意一点,∴,,∴,因此,的取值范围是[﹣2,6].[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≥2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≤M有解,求m的取值范围.【解答】解:(Ⅰ)当x≥3时,f(x)=﹣8,此时f(x)≥2无解;…(1分)当﹣5<x<3时,f(x)=﹣2x﹣2,由f(x)≥2解得﹣5<x≤﹣2;…(3分)当x≤﹣5时,f(x)=8,此时f(x)≥2恒成立.…(4分)综上,不等式f(x)≥2的解集是{x|x≤﹣2}.…(5分)(Ⅱ)由(Ⅰ)可知…(6分)易知函数f(x)的最大值M=8,…(7分)若x2+2x+m≤8有解,得m≤﹣x2﹣2x+8有解.…(8分)即m≤[﹣(x+1)2+9]max=9.…(9分)因此,m的取值范围是m≤9.…(10分)。
2018年广东省茂名市化州市高考数学二模试卷(理科)及答案

2018年广东省茂名市化州市高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)若集合A={0,1},B={y|y=2x,x∈A},则(∁R A)∩B=()A.{0}B.{2}C.{2,4}D.{0,1,2}2.(5分)已知=b+i(a,b∈R),其中i为虚数单位,则a﹣b=()A.﹣1 B.1 C.2 D.﹣33.(5分)如图,正方形ABCD内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.4.(5分)已知=(2sin13°,2sin77°),|﹣|=1,与﹣的夹角为,则•=()A.2 B.3 C.4 D.55.(5分)已知双曲线﹣=1的一个焦点在直线x+y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)一个几何体的三视图如图所示,则该几何体的体积的是()A.7 B.C.D.7.(5分)公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.16 B.20 C.24 D.488.(5分)在平面直角坐标系xoy中,已知点A(2,3),B(3,2),C(1,1),点P(x,y)在△ABC三边围成的区域(含边界)内,设=m﹣n(m,n ∈R),则2m+n的最大值为()A.﹣1 B.1 C.2 D.39.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0,),则cos(2)=()A.B.C.﹣D.10.(5分)已知有穷数列{a n}中,n=1,2,3,…,729.且a n=(2n﹣1)•(﹣1)n+1.从数列{a}中依次取出a2,a5,a14,….构成新数列{b n},容易发现数列{b n}n是以﹣3为首项,﹣3为公比的等比数列.记数列{a n}的所有项的和为S,数列{b n}的所有项的和为T,则()A.S>T B.S=TC.S<T D.S与T的大小关系不确定11.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,中心为O,=,=,则四面体OEBF的体积为()A.B.C.D.12.(5分)已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有,且方程|f(x)﹣3|=a在区间(0,3]上有两解,则实数a的取值范围是()A.0<a≤1 B.a<1 C.0<a<1 D.a≥1二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知S n为数列{a n}的前n项和,且log2(S n+1)=n+1,则数列{a n}的通项公式为.14.(5分)在(1+2x)7的展开式中,是第项的二项式系数,第3项的系数是.15.(5分)已知函数f(x)=e x﹣mx+1的图象为曲线C,若曲线C存在与直线y=ex 垂直的切线,则实数m的取值范围为.16.(5分)已知椭圆与直线,,过椭圆上一点P作l1,l2的平行线,分别交l1,l2于M,N两点.若|MN|为定值,则的值是.三、解答题(共5小题,满分60分)17.(12分)设△ABC三个内角A,B,C的对边分别为a,b,c,△ABC的面积S满足4S=a2+b2﹣c2.(1)求角C的值;(2)求sinB﹣cosA的取值范围.18.(12分)如图,在矩形ABCD中,CD=2,BC=1,E,F是平面ABCD同一侧两点,EA∥FC,AE⊥AB,EA=2,DE=,FC=1.(1)证明:平面CDF⊥平面ADE;(2)求二面角E﹣BD﹣F的正弦值.19.(12分)中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的,的值(,精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:=,=﹣,=94,=945)(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.20.(12分)已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且•=.(1)求弦AB的长;(2)当直线l 的斜率k=,且直线l′∥l 时,l′交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.21.(12分)已知α,β是方程4x2﹣4tx﹣1=0(t∈R)的两个不等实根,函数f (x)=的定义域为[α,β](1)当t=0时,求函数f(x)的最值(2)试判断函数f(x)在区间[α,β]的单调性(3)设g(t)=f(x)max﹣f(x)min,试证明:对于α,β,γ∈(0,),若sinα+sinβ+sinγ=1,则++<(参考公式:≥(a,b,c>0),当且仅当a=b=c时等号成立)请考生在22,23两题中任选一题作答,如果多做,则按所做第一题计分[选修4—4:坐标系与参数方程]22.(10分)在平面直角坐标系中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ(a≠0).(Ⅰ)求圆C的直角坐标系方程与直线l的普通方程;(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的倍,求a的值.[选修4-5:不等式证明]23.已知函数f(x)=|x+1|,g(x)=2|x|+a(1)当a=0时,求不等式f(x)≥g(x)的解集(2)若存在实数x,使得g(x)≤f(x)成立,求实数a的取值范围.2018年广东省茂名市化州市高考数学二模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)若集合A={0,1},B={y|y=2x,x∈A},则(∁R A)∩B=()A.{0}B.{2}C.{2,4}D.{0,1,2}【解答】解:根据题意,集合A={0,1},则B={y|y=2x,x∈A}={0,2},则(∁R A)∩B={2};故选:B.2.(5分)已知=b+i(a,b∈R),其中i为虚数单位,则a﹣b=()A.﹣1 B.1 C.2 D.﹣3【解答】解:由=,得a=﹣1,b=2,∴a﹣b=﹣1﹣2=﹣3.故选:D.3.(5分)如图,正方形ABCD内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:设正方形边长为2,则正方形面积为4,正方形内切圆中的黑色部分的面积S=.∴在正方形内随机取一点,则此点取自黑色部分的概率是P=.故选:C.4.(5分)已知=(2sin13°,2sin77°),|﹣|=1,与﹣的夹角为,则•=()A.2 B.3 C.4 D.5【解答】解:=(2sin13°,2sin77°)=(2sin13°,2cos13°),||=2,|﹣|=1,与﹣的夹角为,所以==﹣,1=4﹣,∴•=3,故选:B.5.(5分)已知双曲线﹣=1的一个焦点在直线x+y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:根据题意,双曲线的方程为﹣=1,则其焦点在x轴上,直线x+y=5与x轴交点的坐标为(5,0),则双曲线的焦点坐标为(5,0),则有9+m=25,解可得,m=16,则双曲线的方程为:﹣=1,其渐近线方程为:y=±x,故选:B.6.(5分)一个几何体的三视图如图所示,则该几何体的体积的是()A.7 B.C.D.【解答】解:由三视图可知该几何体的直观图是正方体去掉一个三棱锥,正方体的边长为2,三棱锥的三个侧棱长为1,则该几何体的体积V==8﹣=,故选:D7.(5分)公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.16 B.20 C.24 D.48【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:C.8.(5分)在平面直角坐标系xoy中,已知点A(2,3),B(3,2),C(1,1),点P(x,y)在△ABC三边围成的区域(含边界)内,设=m﹣n(m,n ∈R),则2m+n的最大值为()A.﹣1 B.1 C.2 D.3【解答】解:=(1,﹣1),=(1,2),=(x,y),∵=m﹣n,∴,∴2m+n=x﹣y,作出平面区域如图所示:令z=x﹣y,则y=x﹣z,由图象可知当直线y=x﹣z经过点B(3,2)时,截距最小,即z最大.∴z的最大值为3﹣2=1.即2m+n的最大值为1.故选:B.9.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0,),则cos(2)=()A.B.C.﹣D.【解答】解:由图象可得A=3,=4(﹣),解得ω=2,故f(x)=3sin(2x+φ),代入点(,﹣3)可得3sin(+φ)=﹣3,故sin(+φ)=﹣1,+φ=2kπ﹣,∴φ=2kπ﹣,k∈Z结合0<φ<π可得当k=1时,φ=,故f(x)=3sin(2x+),∵f(α)=3sin(2α+)=1,∴sin(2α+)=,∵α∈(0,),∴2α+∈(,),∴cos(2)=﹣=﹣,故选:C.10.(5分)已知有穷数列{a n}中,n=1,2,3,…,729.且a n=(2n﹣1)•(﹣1)n+1.从数列{a}中依次取出a2,a5,a14,….构成新数列{b n},容易发现数列{b n}n是以﹣3为首项,﹣3为公比的等比数列.记数列{a n}的所有项的和为S,数列{b n}的所有项的和为T,则()A.S>T B.S=TC.S<T D.S与T的大小关系不确定【解答】解:S=1﹣3+5﹣…﹣(2×728﹣1)+(2×729﹣1)=﹣728+2×729﹣1=729.由|﹣3×(﹣3)n﹣1|≤2k﹣1,k≤729,解得:n≤6,可取n=6,﹣3×(﹣3)5=729=(2×365﹣1)×(﹣1)366,∴T==546.∴S>T.故选:A.11.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,中心为O,=,=,则四面体OEBF的体积为()A.B.C.D.【解答】解:如图,以D为坐标原点,分别以DA、DC、DD1所在直线为x、y、z轴建立空间直角坐标系,则O(),B(1,1,0),E(1,0,),F(,1,0),则||=,||=,,∴cos∠BOE=.∴sin∠BOE=.=.∴S△OEB设平面OEB的一个法向量为,由,取z=1,得.又,∴F到平面OEB的距离h==.∴四面体OEBF的体积V==.故选:D.12.(5分)已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有,且方程|f(x)﹣3|=a在区间(0,3]上有两解,则实数a的取值范围是()A.0<a≤1 B.a<1 C.0<a<1 D.a≥1【解答】解:∵f(x)是定义域为(0,+∞)的单调函数,对任意的x∈(0,+∞),都有f[f(x)+x]=4,∴必存在唯一的正实数a,满足f(x)+x=a,f(a)=4 ①,∴f(a)+a=a ②,由①②得:4+a=a,即a=a﹣4,∴a=()a﹣4,解得a=3.故f(x)+x=a=3,∴f(x)=3﹣x,由方程|f(x)﹣3|=a在区间(0,3]上有两解,即有|x|=a在区间(0,3]上有两解,作出y=|x|的图象,如图所示:,结合题意,0<a≤1,故选:A.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知S n为数列{a n}的前n项和,且log2(S n+1)=n+1,则数列{a n}的通项公式为.【解答】解:由log2(S n+1)=n+1,得S n+1=2n+1,当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=2n,所以数列{a n}的通项公式为a n=.故答案为:.14.(5分)在(1+2x)7的展开式中,是第3项的二项式系数,第3项的系数是84.【解答】解:(1+2x)7的展开式的通项为,当r=2时,可得.∴是第3项的二项式系数,第3项的系数是84.故答案为:3,84.15.(5分)已知函数f(x)=e x﹣mx+1的图象为曲线C,若曲线C存在与直线y=ex 垂直的切线,则实数m的取值范围为(,+∞).【解答】解:函数f(x)=e x﹣mx+1的导数为f′(x)=e x﹣m,若曲线C存在与直线y=ex垂直的切线,即有e x﹣m=﹣有解,即m=e x+,由e x>0,则m>,则实数m的范围为(,+∞),故答案为:(,+∞).16.(5分)已知椭圆与直线,,过椭圆上一点P作l1,l2的平行线,分别交l1,l2于M,N两点.若|MN|为定值,则的值是2.【解答】解:当点P为(0,b)时,过椭圆上一点P作l1,l2的平行线分别为+b,+b,联立可得M(b,),同理可得N(﹣b,),|MN|=2b.当点P为(a,0)时,过椭圆上一点P作l1,l2的平行线分别为﹣,+,联立可得M(,),同理可得N(,﹣),),|MN|=.若|MN|为定值,则2b=,⇒,∴则的值是2.故答案为:2.三、解答题(共5小题,满分60分)17.(12分)设△ABC三个内角A,B,C的对边分别为a,b,c,△ABC的面积S满足4S=a2+b2﹣c2.(1)求角C的值;(2)求sinB﹣cosA的取值范围.【解答】解:(1)△ABC的面积S满足4S=a2+b2﹣c2,可得4×absinC=a2+b2﹣c2,即有cosC===sinC,则tanC==,由0<C<π,可得C=;(2)由A+B=π﹣C=,即B=﹣A,sinB﹣cosA=sin(﹣A)﹣cosA=cosA+sinA﹣cosA=sinA﹣cosA=sin(A﹣),由0<A<,可得﹣<A﹣<,则﹣<sin(A﹣)≤1,即有sinB﹣cosA的取值范围是(﹣,1].18.(12分)如图,在矩形ABCD中,CD=2,BC=1,E,F是平面ABCD同一侧两点,EA∥FC,AE⊥AB,EA=2,DE=,FC=1.(1)证明:平面CDF⊥平面ADE;(2)求二面角E﹣BD﹣F的正弦值.【解答】证明:(1)∵四边形ABCD是矩形,∴CD⊥AD.∵AE⊥AB,CD∥AB,∴CD⊥AE.又AD∩AE=A,∴CD⊥平面ADE.∵CD⊂平面CDF,∴平面CDF⊥平面ADE.…(4分)解:(1)∵BC=1,EA=2,DE=,∴DE2=AD2+AE2,∴AE⊥AD,又AE⊥AB,AB∩AD=A,∴AE⊥平面ABCD.…(6分)以D为坐标原点,建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(1,2,0),F(0,2,1),E(1,0,2).∴=(1,2,0),=(0,2,1),设平面BDF的一个法向量=(x,y,z),由,令x=2,得=(2,﹣1,2).同理可求得平面BDE的一个法向量=(2,﹣1,﹣1),∴cos<>===,…(10分)∴sin<>=.故二面角E﹣BD﹣F的正弦值为.…(12分)19.(12分)中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的,的值(,精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:=,=﹣,=94,=945)(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.(Ⅰ)利用前5组数据得到=(2+4+5+6+8)=5,=(30+40+60+50+70)【解答】解:=50,∵y=6.5x+a,∴a=50﹣6.5×5=17.5,∴回归直线方程为y=6.5x+17.5,当x=1时,y=6.5+17.5=24,∴y的预报值为24.(Ⅱ)∵=4,=46.25,=84,=945,∴==≈6.83,∴=46.25﹣6.83×4=18.93,即=6.83,=18.93,b=6.5,a=17.5,≈5%,≈8%,均不超过10%,∴可使用位置最接近的已有旧井6(1,24).(Ⅲ)由题意,1、3、5、7这4口井是优质井,2,4这两口井是非优质井,∴勘察优质井数X的可能取值为2,3,4,P(X=k)=,可得P(X=2)=,P(X=3)=,P(X=4)=.∴X的分布列为:EX=2×+3×+4×=.20.(12分)已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且•=.(1)求弦AB的长;(2)当直线l 的斜率k=,且直线l′∥l 时,l′交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.【解答】解:(1)由题意可知:2c=2,c=,设F(,0),A(x0,y0),B (﹣x0,﹣y0),则M(,),N(,﹣),由•==,则x02+y02=5,则丨AB丨=2=2,(2)由直线l的斜率k=时,且l′∥l,则l:y=x,设l′:y=x+m,y0=x0,由x02+y02=5,则A(2,1),由c=,代入椭圆方程解得:a=2,c=,∴椭圆的方程:,联立,整理得x2+2mx+2m2﹣4=0,设直线AP,AQ的斜率分别为k1,k2,设P(x1,y1),Q(x2,y2),则k1=,k2=.由x2+2mx+2m2﹣4=0,可得x1+x2=﹣2m,x1x2=2m2﹣4,k1+k2=•=====0.即k1+k2=0.直线AP,AQ与x轴围成一个等腰三角形.21.(12分)已知α,β是方程4x2﹣4tx﹣1=0(t∈R)的两个不等实根,函数f(x)=的定义域为[α,β](1)当t=0时,求函数f(x)的最值(2)试判断函数f(x)在区间[α,β]的单调性(3)设g(t)=f(x)max﹣f(x)min,试证明:对于α,β,γ∈(0,),若sinα+sinβ+sinγ=1,则++<(参考公式:≥(a,b,c>0),当且仅当a=b=c时等号成立)【解答】解:(1)当t=0时,方程4x2﹣1=0的两实根为,f(x)=.,当时,f′(x)>0,f(x)在为单调递增函数,∴f(x)的最小值为,f(x)的最大值为;(2)由题知:x∈[α,β]时,4x2﹣4tx﹣1<0,所以f′(x)>0,f(x)在区间[α,β]为单调递增函数.(3)证明:由(2)知,又由题得:,∴,,=,(,∴,由于等号不能同时成立,故得证++<.请考生在22,23两题中任选一题作答,如果多做,则按所做第一题计分[选修4—4:坐标系与参数方程]22.(10分)在平面直角坐标系中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ(a≠0).(Ⅰ)求圆C的直角坐标系方程与直线l的普通方程;(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的倍,求a的值.【解答】解:(Ⅰ)直线l的参数方程为(t为参数),消去参数t,可得:4x+3y﹣8=0;由圆C的极坐标方程为ρ=asinθ(a≠0),可得ρ2=ρasinθ,根据ρsinθ=y,ρ2=x2+y2可得圆C的直角坐标系方程为:x2+y2﹣ay=0,即.(Ⅱ)由(Ⅰ)可知圆C的圆心为(0,)半径r=,直线方程为4x+3y﹣8=0;那么:圆心到直线的距离d==直线l截圆C的弦长为=2解得:a=32或a=故得直线l截圆C的弦长等于圆C的半径长的倍时a的值为32或.[选修4-5:不等式证明]23.已知函数f(x)=|x+1|,g(x)=2|x|+a(1)当a=0时,求不等式f(x)≥g(x)的解集(2)若存在实数x,使得g(x)≤f(x)成立,求实数a的取值范围.【解答】解:(1)当a=0时,由f(x)≥g(x)得|x+1|≥2|x|,两边平方整理得3x2﹣2x﹣1≤0,解得所以原不等式的解集为…(4分)(2)由g(x)≤f(x)得a≤|x+1|﹣2|x|,令h(x)=|x+1|﹣2|x|,则,作出函数的图象,得h(x)max=h(0)=1从而实数a的取值范围为(﹣∞,1]…(10分)。
2023年广东省茂名市高考数学二模数学试卷【答案版】

2023年广东省茂名市高考数学二模数学试卷一、单选题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤1},B ={x |2x ﹣a <0},若A ⊆B ,则实数a 的取值范围是( ) A .(2,+∞)B .[2,+∞)C .(﹣∞,2)D .(﹣∞,2]2.若复数z 满足iz =4+3i ,则|z |=( ) A .√5B .3C .5D .253.已知平面α,直线m ,n 满足m ⊄a ,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充要条件B .既不充分也不必要条件C .必要不充分条件D .充分不必要条件4.从1、2、3、4、5中任选3个不同数字组成一个三位数,则该三位数能被3整除的概率为( ) A .110B .15C .310D .255.已知平面xoy 内的动点P ,直线l :x sin θ+y cos θ=1,当θ变化时点P 始终不在直线l 上,点Q 为⊙C :x 2+y 2﹣8x ﹣2y +16=0上的动点,则|PQ |的取值范围为( ) A .(√17−2,√17) B .(√17−2,√17+2] C .[√17−2,√17+2)D .(√17−2,√17+2)6.如图所示,正三棱锥P ﹣ABC ,底面边长为2,点P 到平面ABC 距离为2,点M 在平面P AC 内,且点M 到平面ABC 的距离是点P 到平面ABC 距离的23,过点M 作一个平面,使其平行于直线PB 和AC ,则这个平面与三棱锥表面交线的总长为( )A .24+16√39B .12+16√39C .12+8√39D .24+8√397.黎曼函数R (x )是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R (x )在[0,1]上的定义为:当x =qp (p >q ,且p ,q 为互质的正整数)时,R(x)=1p ;当x =0或x =1或x 为(0,1)内的无理数时,R (x )=0,则下列说法错误的是( ) A .R (x )在[0,1]上的最大值为12B .若a ,b ∈[0,1],则R (a •b )≥R (a )•R (b )C .存在大于1的实数m ,使方程R(x)=mm+1(x ∈[0,1])有实数根 D .∀x ∈[0,1],R (1﹣x )=R (x )8.已知函数f (x )=2sin x cos x +4cos 2x ﹣1,若实数a 、b 、c 使得af (x )﹣bf (x +c )=3对任意的实数x 恒成立,则2a +b ﹣cos c 的值为( ) A .12B .32C .2D .52二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.小爱同学在一周内自测体温(单位:℃)依次为36.1,36.2,36.1,36.5,36.3,36.6,36.3,则该组数据的( ) A .平均数为36.3 B .方差为0.04C .中位数为36.3D .第80百分位数为36.5510.已知O 为坐标原点,椭圆C :x 216+y 29=1的左、右焦点分别为F 1、F 2,椭圆的上顶点和右顶点分别为A 、B ,点P 、Q 都在C 上,且PO →=OQ →,则下列说法正确的是( ) A .△PQF 2周长的最小值为14B .四边形PF 1QF 2可能是矩形C .直线PB ,QB 的斜率之积为定值−916D .△PQF 2的面积最大值为3√7 11.已知f (x )={−x 2+2x +1,x <0x e x,x ≥0,若关于x 的方程4ef 2(x )﹣af (x )+1e =0恰好有6个不同的实数解,则a 的取值可以是( ) A .174B .194C .214D .23412.如图所示,有一个棱长为4的正四面体P ﹣ABC 容器,D 是PB 的中点,E 是CD 上的动点,则下列说法正确的是( )A .若E 是CD 的中点,则直线AE 与PB 所成角为π2B .△ABE 的周长最小值为4+√34C .如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为√63D .如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为√6−2 三、填空题:本大题共4小题,每小题5分,共20分.13.已知实数a ,b 满足lga +lgb =lg (a +2b ),则a +b 的最小值是 .14.已知函数f (x )的图象关于直线x =1对称,且x ≤1时,f (x )=e x +x ﹣1,则曲线y =f (x )在点P (2,f (2))处的切线方程为 .15.已知抛物线y 2=6x 的焦点为F ,准线为l ,过F 的直线与抛物线交于点A 、B ,与直线l 交于点D ,若AF →=λFB →(λ>1)且|BD →|=4,则λ= .16.修建栈道是提升旅游观光效果的一种常见手段.如图,某水库有一个半径为1百米的半圆形小岛,其圆心为C 且直径MN 平行坝面.坝面上点A 满足AC ⊥MN ,且AC 长度为3百米,为便于游客到小岛观光,打算从点A 到小岛建三段栈道AB 、BD 与BE ,水面上的点B 在线段AC 上,且BD 、BE 均与圆C 相切,切点分别为D 、E ,其中栈道AB 、BD 、BE 和小岛在同一个平面上.此外在半圆小岛上再修建栈道MÊ、DN ̂以及MN ,则需要修建的栈道总长度的最小值为 百米.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知数列{a n }的前n (n ∈N *)项和S n 满足S n +1+S n =2(n +1)2,且a 1=1. (1)求a 2,a 3,a 4;(2)若S n 不超过240,求n 的最大值.18.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足tanB =sin(C+π3)sin(C−π6).(1)求A ;(2)若D 为边BC 上一点,且2CD =AD =BD ,试判断△ABC 的形状.19.(12分)在四棱锥P ﹣ABCD 中,平面P AD ⊥平面ABCD ,P A =PD ,O 为AD 的中点. (1)求证:PO ⊥BC ;(2)若AB ∥CD ,AB =8,AD =DC =CB =4,PO =2√7,点E 在棱PB 上,直线AE 与平面ABCD 所成角为π6,求点E 到平面PCD 的距离.20.(12分)已知F 1,F 2分别为双曲线E :x 2a 2−y 2b 2=1({a >0,b >0})的左、右焦点,P 为渐近线上一点,且√3|PF 1|=√7|PF 2|,cos ∠F 1PF 2=√217.(1)求双曲线的离心率;(2)若双曲线E 实轴长为2,过点F 2且斜率为k 的直线l 交双曲线C 的右支不同的A ,B 两点,Q 为x 轴上一点且满足|QA |=|QB |,试探究2|QF 2||AF 1|+|BF 1|−4是否为定值,若是,则求出该定值;若不是,请说明理由.21.(12分)已知函数f (x )=x 22+lnx ﹣2ax ,a 为常数,且a >0. (1)判断f (x )的单调性;(2)当0<a <1时,如果存在两个不同的正实数m ,n 且f (m )+f (n )=1﹣4a ,证明:m +n >2. 22.(12分)马尔可夫链是因俄国数学家安德烈•马尔可夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n ﹣1,n ﹣2,n ﹣3,…次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n (n ∈N *)次操作后,记甲盒子中黑球个数为X n ,甲盒中恰有1个黑球的概率为a n ,恰有2个黑球的概率为b n . (1)求X 1的分布列; (2)求数列{a n }的通项公式; (3)求X n 的期望.2023年广东省茂名市高考数学二模数学试卷参考答案与试题解析一、单选题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤1},B ={x |2x ﹣a <0},若A ⊆B ,则实数a 的取值范围是( ) A .(2,+∞)B .[2,+∞)C .(﹣∞,2)D .(﹣∞,2]解:由已知可得A ={x ||x |≤1}={x |﹣1≤x ≤1},B ={x |2x ﹣a <0}={x |x <a2}, 因为A ⊆B ,所以a2>1,即a >2,故选:A .2.若复数z 满足iz =4+3i ,则|z |=( ) A .√5B .3C .5D .25解:由iz =4+3i ,得﹣z =4i ﹣3,得z =3﹣4i ,则|z |=√32+(−4)2=5, 故选:C .3.已知平面α,直线m ,n 满足m ⊄a ,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充要条件B .既不充分也不必要条件C .必要不充分条件D .充分不必要条件解:若“m ∥n ”则“m ∥α”成立,即充分性成立, ∵m ∥α,∴m 不一定平行n ,即“m ∥n ”是“m ∥α”的充分不必要条件, 故选:D .4.从1、2、3、4、5中任选3个不同数字组成一个三位数,则该三位数能被3整除的概率为( ) A .110B .15C .310D .25解:从1,2,3,4,5中任选3个不同数字组成一个三位数, 有n =A 53=60种选法,要使该三位数能被3整除,只需数字和能被3整除, ∴数字为1,2,3时,有A 33有6种, 数字为1,3,5时,有A 33有6种, 数字为2,3,4时,有A 33有6种, 数字为3,4,5时,有A 33有6种,共有m =6×4=24种,∴该三位数能被3整除的概率为P =m n =2460=25. 故选:D .5.已知平面xoy 内的动点P ,直线l :x sin θ+y cos θ=1,当θ变化时点P 始终不在直线l 上,点Q 为⊙C :x 2+y 2﹣8x ﹣2y +16=0上的动点,则|PQ |的取值范围为( ) A .(√17−2,√17) B .(√17−2,√17+2] C .[√17−2,√17+2)D .(√17−2,√17+2)解:由圆点O 到直线l :x sin θ+y cos θ=1的距离为d =|0+0−1|√cos 2θ+sin 2θ=1,可知直线l 是圆O :x 2+y 2=1的切线,又动直线始终不经过点P , ∴点P 在圆O 内,∵点Q 为⊙C :x 2+y 2﹣8x ﹣2y +16=0上的动点,且C (4,1),r =1, ∴|OC |﹣2<|PQ |<|OC |+2,|OC |=√(4−0)2+(1−0)2=√17, ∴|PQ |的取值范围为(√17−2,√17+2). 故选:D .6.如图所示,正三棱锥P ﹣ABC ,底面边长为2,点P 到平面ABC 距离为2,点M 在平面P AC 内,且点M 到平面ABC 的距离是点P 到平面ABC 距离的23,过点M 作一个平面,使其平行于直线PB 和AC ,则这个平面与三棱锥表面交线的总长为( )A .24+16√39B .12+16√39C .12+8√39D .24+8√39解:因为三棱锥P ﹣ABC 为正三棱锥,所有三角形ABC 为等边三角形并且边长为2,即AB =AC =BC =2,又因为P ﹣ABC 为正三棱锥,因此过点P 作底面ABC 的垂线PO ,垂足为O ,则点O 为三角形ABC 的中心,过B 作AC 的垂线于H ,由三角形ABC 为等边三角形,因此AH =CH =1,BH =√22−12=√3,OH =13BH =√33,在直角三角形AHO 中,AO =√AH 2+OH 2=√12+(√33)2=2√33, 又因为PO =2,在直角三角形AOP 中,AP =√AO 2+OP 2=√(2√33)2+22=4√33,故AP =BP =CP =4√33, 因为三棱锥P ﹣ABC 为正三棱锥,因此△APC ,△APB ,△BPC 均为等腰三角形, 又M 到平面ABC 距离为点P 到平面ABC 距离的23,因此M 为PH 的三等分点(靠近P ),过点M 作Q 1Q 2∥AC 交PC 于Q 1,交P A 于Q 2,过点Q 1作Q 1Q 4∥BP 交BC 于Q 4,过点Q 4作Q 3Q 4∥AC 交AB 于Q 3,连接Q 3Q 4,所以Q 1Q 2∥AC ∥Q 3Q 4,则Q 1,Q 2、Q 3、Q 4四点共面, 因为Q 1Q 4∥BP ,Q 1Q 4⊂面Q 1Q 2Q 3Q 4,BP ⊄面Q 1Q 2Q 3Q 4, 所以BP ∥面Q 1Q 2Q 3Q 4,所以面Q 1Q 2Q 3Q 4即为过点M 且平行于直线PB 和AC 的平面, 利用三角形相似可得:Q 1Q 2=Q 3Q 4=13AC =23,Q 2Q 3=Q 1Q 4=23BP =8√39, 这个平面与三棱锥表面交线的总长为Q 1Q 2+Q 2Q 3+Q 3Q 4+Q 1Q 4=2×8√39+2×23=12+16√39. 故选:B .7.黎曼函数R (x )是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R (x )在[0,1]上的定义为:当x =q p(p >q ,且p ,q 为互质的正整数)时,R(x)=1p;当x =0或x =1或x 为(0,1)内的无理数时,R (x )=0,则下列说法错误的是( ) A .R (x )在[0,1]上的最大值为12B .若a ,b ∈[0,1],则R (a •b )≥R (a )•R (b )C .存在大于1的实数m ,使方程R(x)=mm+1(x ∈[0,1])有实数根 D .∀x ∈[0,1],R (1﹣x )=R (x )解:对于A ,由题意,R (x )的值域为{0,12,13,⋯⋯,1p ,⋯⋯},其中p 是大于等于2的正整数,选项A 正确;对于B ,①若a ,b ∈(0,1],设a =qp,b =n m (p ,q 互质,m ,n 互质),a ⋅b =q p ⋅n m ≥1p ⋅1m,则R (a •b )≥R (a )•R (b ),②若a ,b 有一个为0,则R (a •b )≥R (a )•R (b )=0,选项B 正确; 对于C ,若n 为大于1的正数,则n n+1>12,而R (x )的最大值为12,所以该方程不可能有实根,选项C 错误;对于D ,x =0,1或(0,1)内的无理数,则R (x )=0,R (1﹣x )=0,R (x )=R (1﹣x ), 若x 为(0,1)内的有理数,设x =qp (p ,q 为正整数,qp为最简真分数),则R(x)=R(1−x)=1p ,选项D 正确. 故选:C .8.已知函数f (x )=2sin x cos x +4cos 2x ﹣1,若实数a 、b 、c 使得af (x )﹣bf (x +c )=3对任意的实数x 恒成立,则2a +b ﹣cos c 的值为( ) A .12B .32C .2D .52解:f (x )=sin2x +2(1+cos2x )﹣1=sin2x +2cos2x +1=√5sin(2x +θ)+1,其中tan θ=2,0<θ<π2, ∴由af (x )﹣bf (x +c )=3得,√5asin(2x +θ)−√5bsin(2x +θ+c)+a −b −3=0, ∴√5(a −bcosc)sin(2x +θ)−√5bsinc ⋅cos(2x +θ)+a −b −3=0, 由已知条件,上式对任意x ∈R 恒成立,故必有{a −bcosc =0①bsinc =0②a −b −3=0③,若b =0,则a =0,由③得﹣3=0,∴b ≠0,由②得sin c =0,若cos c =1,由①得a ﹣b =0,与③矛盾,∴cos c =﹣1,∴{a +b =0a −b −3=0,解得{a =32b =−32, ∴2a +b −cosc =3−32+1=52. 故选:D .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.小爱同学在一周内自测体温(单位:℃)依次为36.1,36.2,36.1,36.5,36.3,36.6,36.3,则该组数据的( ) A .平均数为36.3B .方差为0.04C .中位数为36.3D .第80百分位数为36.55解:根据题意,将7个数据从小到大排列:36.1,36.1,36.2,36.3,36.3,36.5,36.6, 由此分析选项:对于A ,其平均数x =17(36.1+36.1+36.2+36.3+36.3+36.5+36.6)=36.3,A 正确; 对于B ,其方差S 2=17(0.04+0.04+0.01+0+0+0.04+0.09)=22700,B 错误; 对于C ,其中位数为第4个数据,即36.3,C 正确;对于D ,7×80%=5.6,则该组数据的第80百分位数为36.5,D 错误. 故选:AC .10.已知O 为坐标原点,椭圆C :x 216+y 29=1的左、右焦点分别为F 1、F 2,椭圆的上顶点和右顶点分别为A 、B ,点P 、Q 都在C 上,且PO →=OQ →,则下列说法正确的是( ) A .△PQF 2周长的最小值为14B .四边形PF 1QF 2可能是矩形C .直线PB ,QB 的斜率之积为定值−916 D .△PQF 2的面积最大值为3√7 解:由PO →=OQ →,可知P ,Q 关于原点对称,对于A ,根据椭圆的对称性,|PQ |+|PF 2|+|QF 2|=|PQ |+|PF 2|+|PF 1|=|PQ |+8,当PQ 为椭圆的短轴时,|PQ |有最小值6,所以△PQF 2周长的最小值为14,故A 正确; 对于B ,因为tan ∠F 1AO =c b =√73,所以∠F 1AO <π4, 则∠F 1AF 2<π2,故椭圆上不存在点P ,使得∠F 1PF 2=π2,又四边形PF 1QF 2是平行四边形,所以四边形PF 1QF 2不可能是矩形,故B 不正确; 对于C ,由题意得B (4,0),设P (x ,y ),则Q (﹣x ,﹣y ), 所以k PB ⋅k QB=y x−4⋅−y (−x)−4=y 2x 2−16=9(1−x 216)x 2−16=−916,故C 正确; 对于D ,设△PF 2Q 的面积为S =12|OF||y P −y Q |,所以当PQ 为椭圆的短轴时,|y P ﹣y Q |=6最大, 所以S =12|OF||y P −y Q |≤12×√7×6=3√7,故D 正确. 故选:ACD .11.已知f (x )={−x 2+2x +1,x <0x e x,x ≥0,若关于x 的方程4ef 2(x )﹣af (x )+1e =0恰好有6个不同的实数解,则a 的取值可以是( ) A .174B .194C .214D .234解:令g (x )=x e x ,则g '(x )=1−xex ,所以g (x )在[0,1)上单调增,在(1,+∞)上单调减, 所以f (x )的大致图像如下所示:令t =f (x ),所以关于x 的方程4ef 2(x )﹣af (x )+1e=0有6个不同实根等价于关于t 方程4et 2﹣at +1e=0在t ∈(0,1e)内有2个不等实根,即h (t )=4et +1et 与y =a 在t ∈(0,1e)内有2个不同交点, 又因为h ′(t )=4e −1et 2=4e 2t 2−1et 2,令h ′(t )=0,则t =±12e,所以当t ∈(0,12e)时,h ′(t )<0,h (t )单调递减;当t ∈(12e,+∞)时,h ′(t )>0,h (t )单调递增; 所以h (t )=4et +1et的大致图像如下所示:又h (12e)=4,h (1e)=5,所以a ∈(4,5).对照四个选项,AB 符合题意. 故选:AB .12.如图所示,有一个棱长为4的正四面体P ﹣ABC 容器,D 是PB 的中点,E 是CD 上的动点,则下列说法正确的是( )A .若E 是CD 的中点,则直线AE 与PB 所成角为π2B .△ABE 的周长最小值为4+√34C .如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为√63D .如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为√6−2 A 选项,连接AD ,如图所示:在正四面体P ﹣ABC 中,D 是PD 的中点,所以PB ⊥AD ,PB ⊥CD ,因为AD ⊂平面ACD ,CD ⊂平面ACD ,AD ∩CD =D ,所以直线PB ⊥平面ACD ,因为AE ⊆平面ACD ,所以PB ⊥AE ,所以直线AE 与PB 所成角为π2;故A 选项正确;B 选项,把△ACD 沿着CD 展开与面BCD 同一平面内,由AD =CD =2√3,AC =4,cos ∠ACD =13,所以cos ∠ADB =cos (π2+∠ADC )=﹣sin ∠ADC =−2√23,所以AB 2=22+(2√3)2−2×2×2√3×(−2√23)=16+16√63≠34,所以△ABC 的周长最小值为4+√34不正确,故B 选项错误; C 选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,设半径为r ,由等体积法可知,V P−ABC =13S △ABC ×ℎ=13S 表×r ,所以半径r =14ℎ=√612×4=√63,故C 选项正确;D 选项,10个小球分三层,(1个,3个,6个)放进去,要使小球半径最大,则外层小球与四个面相切,设小球半径为r ,四个角小球球心连线M ﹣NGF 是棱长为4r 的正四面体,其高为4√63r ,由正四面体内切球的半径为高的14得,如图正四面体P ﹣HIJ ,则MP =3r ,正四面体P ﹣ABC 的高为3r +4√63r +r =√63×4,得r =√6−2,故D 选项正确. 故选:ACD .三、填空题:本大题共4小题,每小题5分,共20分.13.已知实数a ,b 满足lga +lgb =lg (a +2b ),则a +b 的最小值是 3+2√2 . 解:因为lga +lgb =lg (a +2b ),所以ab =a +2b ,a >0,b >0,所以1b+2a=1,故a +b =(a +b )(2a +1b )=3+2ba +ab ≥3+2√2,当且仅当a =√2b 时取等号.故答案为:3+2√2.14.已知函数f (x )的图象关于直线x =1对称,且x ≤1时,f (x )=e x +x ﹣1,则曲线y =f (x )在点P (2,f (2))处的切线方程为 2x +y ﹣4=0 .解:∵函数f (x )图象关于直线x =1对称,∴f (x )=f (2﹣x ) ∵当x ≤1,f (x )=e x +x ﹣1, ∴x >1时,2﹣x <1,∴f (x )=f (2﹣x )=e 2﹣x +2﹣x ﹣1=e 2﹣x ﹣x +1.则f ′(x )=﹣e 2﹣x ﹣1,可得f ′(2)=﹣2,f (2)=0.∴曲线y =f (x )在点P (2,f (2))处的切线方程为y =﹣2(x ﹣2),即2x +y ﹣4=0. 另解:由函数f (x )的图象关于直线x =1对称,可得f (2)=f (0)=0,即P (2,0),由x ≤1时,f (x )=e x +x ﹣1,导数为f ′(x )=e x +1,可得f (x )在(0,0)处的切线的斜率为2, 则f (x )在(2,0)处的切线的斜率为﹣2,可得曲线y =f (x )在点P (2,f (2))处的切线方程为y =﹣2(x ﹣2),即2x +y ﹣4=0. 故答案为:2x +y ﹣4=0.15.已知抛物线y 2=6x 的焦点为F ,准线为l ,过F 的直线与抛物线交于点A 、B ,与直线l 交于点D ,若AF →=λFB →(λ>1)且|BD →|=4,则λ= 3 .解:设准线与x 轴的交点为K ,作AA 1⊥l ,BB 1⊥l ,垂足分别为A 1,B 1,则BB 1∥FK ∥AA 1.根据抛物线定义知|BB 1|=|BF |,|AA 1|=|AF |,又若AF →=λFB →(λ>1),且|BD →|=4, 因为BB 1∥FK ∥AA 1,设|BF |=m , 则|BB 1||KF|=|BD||FD|,∴m p=44+m,又p =3,解得m =2,∴|AF |=λ|FB |=2λ,所以|BA |=2+2λ, 因为BB 1∥FK ∥AA 1, 所以|BB 1||AA 1|=|BD||AD|,∴1λ=44+2+2λ,解得λ=3.故答案为:3.16.修建栈道是提升旅游观光效果的一种常见手段.如图,某水库有一个半径为1百米的半圆形小岛,其圆心为C 且直径MN 平行坝面.坝面上点A 满足AC ⊥MN ,且AC 长度为3百米,为便于游客到小岛观光,打算从点A 到小岛建三段栈道AB 、BD 与BE ,水面上的点B 在线段AC 上,且BD 、BE 均与圆C 相切,切点分别为D 、E ,其中栈道AB 、BD 、BE 和小岛在同一个平面上.此外在半圆小岛上再修建栈道MÊ、DN ̂以及MN ,则需要修建的栈道总长度的最小值为 2π3+5 百米.解:连接CD ,CE ,由半圆半径为1得:CD =CE =1,由对称性,设∠CBE =∠CBD =θ,又CD ⊥BD ,CE ⊥BE ,所以BE =BD =CD tanθ=1tanθ,BC =CDsinθ=1sinθ, 易知∠MCE =∠NCD =θ,所以MÊ,ND ̂的长为θ, 又AC =3,故AB =AC ﹣BC =3−1sinθ∈(0,2),故sin θ∈(13,1),令sin θ0=13,且θ0∈(0,π6),则f (θ)=5−1sinθ+2tanθ+2θ,θ∈(θ0,π2),所以f ′(θ)=−cosθ(2cosθ−1)sin 2θ,所以栈道总长度最小值f (θ)min =f (3)=2π3+5. 故答案为:2π3+5.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知数列{a n }的前n (n ∈N *)项和S n 满足S n +1+S n =2(n +1)2,且a 1=1. (1)求a 2,a 3,a 4;(2)若S n 不超过240,求n 的最大值.解:(1)当n =1时,S 2+S 1=a 2+a 1=2(1+1)2=8,又a 1=1,a 2=6, 当n =2时,S 3+S 2=a 3+2a 2+2a 1=2(2+1)2=18,a 3=4,当n =3时,S 4+S 3=a 4+2a 3+2a 2+2a 1=2(3+1)2=32,又a 1=1,a 4=10; (2)∵S n +1+S n =2(n +1)2①,当n =1时,S 2+S 1=a 2+a 1=2(1+1)2=8,又a 1=1,S 2=8﹣S 1=7, 当n ≥2时,S n +S n ﹣1=2n 2②, ①﹣②得:S n +1﹣S n ﹣1=4n +2, 当n (n >2)为偶数时,S n ﹣S 2=(4×4﹣2)+(4×6﹣2)+⋯+(4n ﹣2)={14+(4n−2)]2•(12n ﹣1)=n 2+n ﹣6, ∴S n =n (n +1)+1, 当n (n >2)为奇数时,S n ﹣S 1=(4×3﹣2)+(4×5﹣2)+⋯+(4n ﹣2)={10+(4n−2)]2•(n−12)=n 2+n ﹣2,∴S n =n (n +1)﹣1,由15×(15+1)﹣1=239<240,16×17+1=273>240, ∴n 的最大值为15.18.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足tanB =sin(C+π3)sin(C−π6).(1)求A ;(2)若D 为边BC 上一点,且2CD =AD =BD ,试判断△ABC 的形状.解:(1)因为tanB =sin(C+π3)sin(C−π6),所以sinBcosB=12sinC+√32cosC √32sinC−12cosC , 化简得sin C cos B +sin B cos C =√3(sin B sin C ﹣cos B cos C ), 所以sin (B +C )=−√3cos (B +C ), 所以sin A =√3cos A ,即tan A =√3, 又A 为三角形内角, 所以A =π3;(2)设∠BAD =θ,θ∈(0,π3),则∠ADC =2θ,∠DAC =π3−θ,∠ACD =2π3−θ, △ADC 中,由正弦定理得AD sin(2π3−θ)=DC sin(π3−θ),即2sin (π3−θ)=sin (2π3−θ)),所以√3cos θ﹣sin θ=√32cos θ+12sin θ, 化简得tan θ=√33,故θ=π6,∠ACD =π2, 所以△ABC 为直角三角形.19.(12分)在四棱锥P ﹣ABCD 中,平面P AD ⊥平面ABCD ,P A =PD ,O 为AD 的中点. (1)求证:PO ⊥BC ;(2)若AB ∥CD ,AB =8,AD =DC =CB =4,PO =2√7,点E 在棱PB 上,直线AE 与平面ABCD 所成角为π6,求点E 到平面PCD 的距离.(1)证明:∵P A =PD ,O 为AD 的中点,∴PO ⊥AD , 又∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , ∴PO ⊥平面ABCD ,又BC ⊂平面ABCD , ∴PO ⊥BC .(2)解:由AB =8,AD =DC =CB =4,可知ABCD 四边形为等腰梯形,易知BD =4√3, ∵AD 2+BD 2=AB 2,∴AD ⊥BD , 建立如图所示的空间直角坐标系,P(0,0,2√7),A (2,0,0),B(−2,4√3,0),C(−4,2√3,0),D (﹣2,0,0), 平面ABCD 的法向量为n →=(0,0,1), 设E =(x ,y ,z ),则AE →=(x −2,y ,z), PE →=(x ,y ,z −2√7),PB →=(−2,4√3,−2√7), ∵直线AE 与平面ABCD 所成角为π6, ∴sin π6=|cos〈n →,AE →〉|=√(x−2)+y 2+z 2=12,∴x 2﹣4x +4+y 2﹣3z 2=0①∵点E 在棱PB 上,∴PE →=λPB →(0<λ<1), 即(x ,y ,z −2√7)=λ(−2,4√3,−2√7),∴x =﹣2λ,y =4√3λ,z =2√7−2√7λ,代入①解得λ=12或λ=5(舍去), PE →=(−1,2√3,−√7),PD →=(−2,0,−2√7),PC →=(−4,2√3,−2√7), 设m →=(x 1,y 1,z 1)为平面PCD 的一个法向量, 则{m →⋅PD →=−2x 1−2√7z 1=0m →⋅PC →=−4x 1+2√3y 1−2√7z 1=0, 令z 1=1,得x 1=−√7,y 1=−√213,∴平面PCD 的法向量m →=(−√7,−√213,1),∴点E 到平面PCD 的距离d =|PE →⋅m →||m →|=2√7√313=2√2131=2√65131.20.(12分)已知F 1,F 2分别为双曲线E :x 2a 2−y 2b 2=1({a >0,b >0})的左、右焦点,P 为渐近线上一点,且√3|PF 1|=√7|PF 2|,cos ∠F 1PF 2=√217.(1)求双曲线的离心率;(2)若双曲线E 实轴长为2,过点F 2且斜率为k 的直线l 交双曲线C 的右支不同的A ,B 两点,Q 为x 轴上一点且满足|QA |=|QB |,试探究2|QF 2||AF 1|+|BF 1|−4是否为定值,若是,则求出该定值;若不是,请说明理由.解:(1)由√3|PF 1|=√7|PF 2|,可设|PF 1|=√7x ,|PF 2|=√3x , 在△PF 1F 2中cos ∠F 1PF 2=√217,∴|F 1F 2|2=7x 2+3x 2﹣2√7x •√3x ⋅√217=4x 2, 即|F 1F 2|=2x ,∴|PF 1|2=|PF 2|2+|F 1F 2|2,∴△PF 1F 2为直角三角形, ∴在△OPR 2中,PF 2⊥OF 2,|PF 2|=√3x ,|OF 2|=x ,b a=|PF 2||OF 2|=√3,则双曲线的离心率为e =c a =√1+(ba )2=√1+3=√4=2.(2)在双曲线中b a=√3,且实轴长为2,所以a =1,b =√3,所以双曲线E 方程为x 2−y 23=1. 由F 2(2,0),故设斜率为k 的直线l 为y =k (x ﹣2), y =k (x ﹣2)代入x 2−y 23=1.可得(3﹣k 2)x 2+4k 2x ﹣4k 2﹣3=0, ∵直线l 与双曲线右支交于不同两点,∴{Δ=36(k 2+1)>0−4k 23−k 2>0−4k 2−33−k 2>0,解得k 2≥3,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k2k 2−3,x 1x 2=4k 2+3k 2−3,则x 1+x 22=2k 2k 2−3,y 1+y 22=k (2k 2k 2−3−2)=6k k 2−3,即A ,B 的中点坐标为(2k 2k 2−3,6kk 2−3),因为Q 为x 轴上一点,满足|QA |=|QB |,故Q 为AB 的垂直平分线与x 轴的交点,AB 的垂直平分线的方程为:y −6kk 2−3=−1k (x −2k 2k 2−3−),令y =0,则得x =8k2k 2−3,即Q (8k 2k 2−3,0),∴|QF 2|=|8k 2k 2−3−−2|=6(k 2+1)|k 2−3|,又|AB |=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2•√(4k2k 2−3)2−4×4k 2+3k 2−3=6(k 2+1)|k 2−3|,又因为A ,B 在双曲线的右支上,故|AF 1|﹣|AF 2|=2a =2,|BF 1|﹣|BF 2|=2, 故|AF 1|+|BF 1|﹣|AF 2|﹣|BF 2|=4,即|AF 1|+|BF 1|﹣4=|AB |, 故2|QF 2||AF 1|+|BF 1|−4=2|QF 2||AB|=2×6(k 2+1)|k 2−3|6(k 2+1)|k 2−3|=2,即2|QF 2||AF 1|+|BF 1|−4为定值.21.(12分)已知函数f (x )=x 22+lnx ﹣2ax ,a 为常数,且a >0. (1)判断f (x )的单调性;(2)当0<a <1时,如果存在两个不同的正实数m ,n 且f (m )+f (n )=1﹣4a ,证明:m +n >2. 解:(1)因为f (x )=x 22+lnx ﹣2ax , 所以f ′(x )=x +1x −2a =x 2−2ax+1x,x ∈(0,+∞), 设g (x )=x 2﹣2ax +1,Δ=(﹣2a )2﹣4≤0,即0<a ≤1时,g (x )=x 2﹣2ax +1≥0恒成立, 所以f ′(x )≥0在(0,+∞)上恒成立, 所以f (x )在(0,+∞)上单调递增,Δ=(﹣2a )2﹣4>0,即a >1时,方程有两个不等的实数根,且x 1=2a+√4a 2−42=a −√a 2−1>0,x 2=2a+√4a 2−42=a +√a 2−1>0,所以任意x ∈(0,a −√a 2−1),x 2﹣2ax +1>0,f ′(x )>0,f (x )单调递增, 任意x ∈(a −√a 2−1,a +√a 2−1),x 2﹣2ax +1>0,f ′(x )<0,f (x )单调递减, 任意x ∈(a +√a 2−1,+∞),x 2﹣2ax +1>0,f ′(x )>0,f (x )单调递增, 综上所述,当0<a ≤1时,f (x )在(0,+∞)上单调递增,当a >1时,f (x )在(0,a −√a 2−1),(a +√a 2−1,+∞)上单调递增,在(a −√a 2−1,a +√a 2−1)上单调递减.(2)证明:因为f (1)=12−2a , 所以f (m )+f (n )=1﹣4a =2f (1),由(1)可得0<a <1时,f (x )在(0,+∞)上单调递增, 不妨设0<m <1<n ,要证m +n >2,即证n >2﹣m >1, 所以f (n )>f (2﹣m ), 所以1﹣4a ﹣f (m )>f (2﹣m ), 所以f (m )+f (2﹣m )<1﹣4a ,设F (x )=f (x )+f (2﹣x ),x ∈(0,1),F ′(x )=f ′(x )﹣f ′(2﹣x )=x +1x −2a ﹣(2﹣x )−12−x +2a =−(x−1)3x(2−x),所以x ∈(0,1)时,F ′(x )>0,F (x )单调递增, 所以F (x )<F (1)=2f (1)=1﹣4a , 所以m +n >2.22.(12分)马尔可夫链是因俄国数学家安德烈•马尔可夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n ﹣1,n ﹣2,n ﹣3,…次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n (n ∈N *)次操作后,记甲盒子中黑球个数为X n ,甲盒中恰有1个黑球的概率为a n ,恰有2个黑球的概率为b n . (1)求X 1的分布列; (2)求数列{a n }的通项公式; (3)求X n 的期望.解:(1)由题可知,X 1的可能取值为0,1,2,由相互独立事件概率乘法公式可知: P (X 1=0)=13×23=29,P (X 1=1)=13×13+23×23=59,P (X 1=2)=23×13=29, 故X 1的分布列如下表:(2)由全概率公式可知:P (X n +1=1)=P (X n =1)P (X n +1=1|X n =1)+P (X n =2)P (X n +1=1|X n =2)+P (X n =0)P (X n +1=1|X n =0) =(13×13+23×23)P (X n =1)+(23×1)P (X n =2)+(1×23)P (X n =0)=59P (X n =1)+23P (X n =2)+23P (X n =0), 即:a n +1=59a n +23b n +23(1−a n −b n ),所以a n +1=−19a n +23, 所以a n +1−35=−19(a n −35), 又a 1=P (X 1=1)=59,所以,数列{a n −35}是以a 1−35为首项,以−19为公比的等比数列, 所以a n −35=−245×(−19)n−1=25×(−19)n , 即:a n =35+25×(−19)n . (3)由全概率公式可得:P (X n +1=2)=P (X n =1)P (X n +1=2|X n =1)+P (X n =2)P (X n +1=2|X n =2)+P (X n =0)P (X n +1=2|X n =0)=(23×13)P (X n =1)+(13×1)P (X n =2)+0×P (X n =0),即:b n +1=29a n +13b n , 又a n =35+25×(−19)n ,所以b n +1=13b n +29×[35+25×(−19)n ], 所以b n +1−15+15×(−19)n+1=13×[b n −15+15×(−19)n ], 又b 1=P (X 1=2)=29, 所以b 1−15+15×(−19)=29−15−145=0, 所以b n −15+15×(−19)n =0, 所以b n =15−15×(−19)n , 所以E (X n )=a n +2b n +0×(1﹣a n ﹣b n )=a n +2b n =1.。
2018年广东省东莞市高考数学二调试卷(文科)
2018年广东省东莞市高考数学二调试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A={1,2,4,8,16},B={y|y=log2x,x∈A},则A∩B=()A.{1,2}B.{2,4,8}C.{1,2,4}D.{1,2,4,8}2.(5分)若复数z满足(1+2i)z=(1﹣i),则|z|=()A.B.C.D.3.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣ B.﹣ C.D.4.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.5.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.6.(5分)已知,则z=22x+y的最小值是()A.1 B.16 C.8 D.47.(5分)执行如图所示的程序框图,则输出的结果为()A.7 B.9 C.10 D.118.(5分)设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0,则点P的坐标为()A.(0,0) B.(1,﹣1)C.(﹣1,1)D.(1,﹣1)或(﹣1,1)9.(5分)在正四棱锥P﹣ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角为()A.90°B.60°C.45°D.30°10.(5分)已知函数f(x)=sinx+λcosx(λ∈R)的图象关于x=﹣对称,则把函数f(x)的图象上每个点的横坐标扩大到原来的2倍,再向右平移,得到函数g(x)的图象,则函数g(x)的一条对称轴方程为()A.x=B.x=C.x=D.x=11.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.12.(5分)已知函数f(x)=xsinx+cosx+x2,则不等式的解集为()A.(e,+∞)B.(0,e) C.D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)在各项都为正数的等比数列{a n}中,已知a1=2,,则数列{a n}的通项公式a n=.15.(5分)已知|x|≤2,|y|≤2,点P的坐标为(x,y),当x,y∈R时,点P 满足(x﹣2)2+(y﹣2)2≤4的概率为.16.(5分)已知函数,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的零点,则m的取值范围是.三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{S n}的前n项和T n.18.(12分)某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:API[0,(50,(100,(150,(200,(250,>30050]100]150]200]250]300]空气质量优良轻微污染轻度污染中度污染中度重污染重度污染天数413183091115记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω.在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元;(1)试写出是S(ω)的表达式:(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:P(K2≥k0)0.250.150.100.050.0250.0100.0050.001k0 1.32 2.07 2.70 3.848.02 6.637.8710.82K2=非重度污染重度污染合计供暖季非供暖季合计10019.(12分)如图1,矩形ABCD中,AB=12,AD=6,E、F分别为CD、AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE位置(如图2所示),连结AP、PF,其中PF=2.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.20.(12分)已知椭圆C:的离心率为,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ的斜率是否为定值?若是,求出该值;若不是,说明理由.21.(12分)已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.答题时请写清题号并将相应信息点涂黑.[选修4-4参数方程与极坐标系]22.(10分)在直角坐标系中,直线的参数方程为(t为参数)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)求曲线上的点到直线的距离的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(1)若f(1)<3,求实数a的取值范围;(2)若a≥1,x∈R,求证:f(x)≥2.2018年广东省东莞市高考数学二调试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A={1,2,4,8,16},B={y|y=log2x,x∈A},则A∩B=()A.{1,2}B.{2,4,8}C.{1,2,4}D.{1,2,4,8}【解答】解:∵A={1,2,4,8,16},∴B={y|y=log2x,x∈A}={0,1,2,3,4},∴A∩B={1,2,4}.故选:C.2.(5分)若复数z满足(1+2i)z=(1﹣i),则|z|=()A.B.C.D.【解答】解:由(1+2i)z=(1﹣i),得=,则|z|=.故选:C.3.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣ B.﹣ C.D.【解答】解:∵sinα﹣cosα=,∴(sinα﹣c osα)2=1﹣2sinαcosα=1﹣sin2α=,∴sin2α=﹣,故选:A.4.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.5.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.【解答】解:∵在△ABC中,B=,BC边上的高等于BC,∴AB=BC,由余弦定理得:AC===BC,故BC•BC=AB•AC•sinA=•BC•BC•sinA,∴sinA=,故选:D.6.(5分)已知,则z=22x+y的最小值是()A.1 B.16 C.8 D.4【解答】解:作出不等式组对应的平面区域如图,设m=2x+y,则得y=﹣2x+m,平移直线y=﹣2x+m,由图象可知当直线y=﹣2x+m经过点A时,直线的截距最小,此时m最小,z也最小,由,解得,得A(1,1)此时m=2×1+1=3,z=22x+y=z=23=8,故选:C.7.(5分)执行如图所示的程序框图,则输出的结果为()A.7 B.9 C.10 D.11【解答】解:模拟程序的运行,可得:,否;,否;,否;,否;,是,输出i=9,故选:B.8.(5分)设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0,则点P的坐标为()A.(0,0) B.(1,﹣1)C.(﹣1,1)D.(1,﹣1)或(﹣1,1)【解答】解:∵f(x)=x3+ax2,∴f′(x)=3x2+2ax,∵函数在点(x0,f(x0))处的切线方程为x+y=0,∴3x02+2ax0=﹣1,∵x0+x03+ax02=0,解得x0=±1.当x0=1时,f(x0)=﹣1,当x0=﹣1时,f(x0)=1.故选:D.9.(5分)在正四棱锥P﹣ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角为()A.90°B.60°C.45°D.30°【解答】解:连接AC,BD交于点O,连接OE,OP因为E为PC中点,所以OE∥PA,所以∠OEB即为异面直线PA与BE所成的角.因为四棱锥P﹣ABCD为正四棱锥,所以PO⊥平面ABCD,所以AO为PA在面ABCD内的射影,所以∠PAO即为PA与面ABCD所成的角,即∠PAO=60°,因为PA=2,所以OA=OB=1,OE=1.所以在直角三角形EOB中∠OEB=45°,即面直线PA与BE所成的角为45°.故选:C.10.(5分)已知函数f(x)=sinx+λcosx(λ∈R)的图象关于x=﹣对称,则把函数f(x)的图象上每个点的横坐标扩大到原来的2倍,再向右平移,得到函数g(x)的图象,则函数g(x)的一条对称轴方程为()A.x=B.x=C.x=D.x=【解答】解:根据函数f(x)=sinx+λcosx(λ∈R)的图象关于x=﹣对称,可得,可得λ=﹣1,所以.把f(x)的图象横坐标扩大到原来的2倍,可得y=sin(x﹣)的图象,再向右平移,得到函数g(x)=sin[(x﹣)﹣]=sin(x﹣)的图象,即g(x)=sin(﹣),令=kπ+,求得x=2kπ+,k∈Z,故函数g(x)的图象的对称轴方程为x=2kπ+,k∈Z.当k=0时,对称轴的方程为,故选:D.11.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.12.(5分)已知函数f(x)=xsinx+cosx+x2,则不等式的解集为()A.(e,+∞)B.(0,e) C.D.【解答】解:函数f(x)=xsinx+cosx+x2的导数为:f′(x)=sinx+xcosx﹣sinx+2x=x(2+cosx),则x>0时,f′(x)>0,f(x)递增,且f(﹣x)=xsinx+cos(﹣x)+(﹣x)2=f(x),则为偶函数,即有f(x)=f(|x|),则不等式,即为f(lnx)<f(1)即为f(|lnx|)<f(1),则|lnx|<1,即﹣1<lnx<1,解得,<x<e.故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.14.(5分)在各项都为正数的等比数列{a n}中,已知a1=2,,则数列{a n}的通项公式a n=.【解答】解:设等比数列{a n}的公比为q>0,∵a1=2,,∴+=4,化为:q4﹣4q2+4=0,解得q2=2,q>0,解得q=.则数列{a n}的通项公式a n==.故答案为:.15.(5分)已知|x|≤2,|y|≤2,点P的坐标为(x,y),当x,y∈R时,点P 满足(x﹣2)2+(y﹣2)2≤4的概率为.【解答】解:如图,点P所在的区域为正方形ABCD及其内部满足(x﹣2)2+(y﹣2)2≤4的点位于的区域是以C(2,2)为圆心,半径等于2的圆及其内部∴P满足(x﹣2)2+(y﹣2)2≤4的概率为P1===.故答案为:16.(5分)已知函数,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的零点,则m的取值范围是(3,+∞).【解答】解:当m>0时,函数的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{S n}的前n项和T n.【解答】解:(Ⅰ)列{a n}的前n项和为S n,且S n=2a n﹣2①.=2a n+1﹣2②,则:S n+1②﹣①得:a n=2a n,+1即:(常数),当n=1时,a1=S1=2a1﹣2,解得:a1=2,所以数列的通项公式为:,(Ⅱ)由于:,则:,=,=2n+1﹣2.﹣2﹣2﹣ (2)=2n+2﹣4﹣2n.18.(12分)某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:API[0,50](50,100](100,150](150,200](200,250](250,300]>300空气质量优良轻微污染轻度污染中度污染中度重污染重度污染天数413183091115记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω.在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元;(1)试写出是S(ω)的表达式:(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:P(K2≥k0)0.250.150.100.050.0250.0100.0050.001k0 1.32 2.07 2.70 3.848.02 6.637.8710.82K2=非重度污染重度污染合计供暖季非供暖季合计100【解答】解:(1)根据在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元,可得S(ω)=;(2)设“在本年内随机抽取一天,该天经济损失S大于200元且不超过600元”为事件A;由200<S≤600,得100<ω≤175,频数为33,∴P(A)=;(2)根据以上数据得到如表:非重度污染重度污染合计供暖季22830非供暖季63770合计8515100K2的观测值K2=≈4.575>3.841所以有95%的把握认为空气重度污染与供暖有关.19.(12分)如图1,矩形ABCD中,AB=12,AD=6,E、F分别为CD、AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE位置(如图2所示),连结AP、PF,其中PF=2.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.【解答】解:(1)连结EF,由翻折不变性可知,PB=BC=6,PE=CE=9,在△PBF中,PF2+BF2=20+16=36=PB2,所以PF⊥BF…(2分)在图1中,利用勾股定理,得EF==,在△PEF中,EF2+PF2=61+20=81=PE2,∴PF⊥EF…(4分)又∵BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,∴PF⊥平面ABED.…(6分)(2)解:由(1)知PF⊥平面ABED,∴PF为三棱锥P﹣ABE的高.…(8分)设点A到平面PBE的距离为h,=V P﹣ABE,…(10分)由等体积法得V A﹣PBE即∴h=,即点A到平面PBE的距离为.…(14分)20.(12分)已知椭圆C:的离心率为,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ的斜率是否为定值?若是,求出该值;若不是,说明理由.【解答】解:(Ⅰ)因为椭圆C的离心率为,且过点A(2,1),所以,.…(2分)因为a2=b2+c2,解得a2=8,b2=2,…(3分)所以椭圆C的方程为.…(4分)(Ⅱ)解法一:因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.设直线PA的斜率为k,则直线AQ的斜率为﹣k.…(5分)所以直线PA的方程为y﹣1=k(x﹣2),直线AQ的方程为y﹣1=﹣k(x﹣2).设点P(x P,y P),Q(x Q,y Q),由,消去y,得(1+4k2)x2﹣(16k2﹣8k)x+16k2﹣16k﹣4=0.①因为点A(2,1)在椭圆C上,所以x=2是方程①的一个根,则,…(6分)所以.…(7分)同理.…(8分)所以.…(9分)又.…(10分)所以直线PQ的斜率为.…(11分)所以直线PQ的斜率为定值,该值为.…(12分)解法二:设点P(x1,y1),Q(x2,y2),则直线PA的斜率,直线QA的斜率.因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.所以k PA=﹣k QA,即,①…(5分)因为点P(x1,y1),Q(x2,y2)在椭圆C上,所以,②.③由②得,得,④…(6分)同理由③得,⑤…(7分)由①④⑤得,化简得x1y2+x2y1+(x1+x2)+2(y1+y2)+4=0,⑥…(8分)由①得x1y2+x2y1﹣(x1+x2)﹣2(y1+y2)+4=0,⑦…(9分)⑥﹣⑦得x1+x2=﹣2(y1+y2).…(10分)②﹣③得,得.…(11分)所以直线PQ的斜率为为定值.…(12分)解法三:设直线PQ的方程为y=kx+b,点P(x1,y1),Q(x2,y2),则y1=kx1+b,y2=kx2+b,直线PA的斜率,直线QA的斜率.…(5分)因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.所以k PA=﹣k QA,即=,…(6分)化简得x1y2+x2y1﹣(x1+x2)﹣2(y1+y2)+4=0.把y1=kx1+b,y2=kx2+b代入上式,并化简得2kx1x2+(b﹣1﹣2k)(x1+x2)﹣4b+4=0.(*)…(7分)由,消去y得(4k2+1)x2+8kbx+4b2﹣8=0,(**)则,…(8分)代入(*)得,…(9分)整理得(2k﹣1)(b+2k﹣1)=0,所以或b=1﹣2k.…(10分)若b=1﹣2k,可得方程(**)的一个根为2,不合题意.…(11分)若时,合题意.所以直线PQ的斜率为定值,该值为.…(12分)21.(12分)已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=2x﹣(a﹣2)﹣=…(2分)当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,所以,函数f(x)在区间(0,+∞)单调递增;…(4分)当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,当x变化时,g′(x)和g(x)变化情况如下表x(0,x0)x0(x0,∞)g′(x)﹣0+g(x)递减递增g(x)min=g(x0)=e x0﹣lnx0﹣2=+x0﹣2,因为x0>0,且x0≠1,所以g(x)min>2﹣2=0,因此不等式得证.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.答题时请写清题号并将相应信息点涂黑.[选修4-4参数方程与极坐标系]22.(10分)在直角坐标系中,直线的参数方程为(t为参数)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)求曲线上的点到直线的距离的最大值.【解答】解:(Ⅰ)直线的参数方程为(t为参数),转化为:x+y﹣4=0.曲线C:ρ=2.转化为:x2+y2=2x+2y,即:x2+y2﹣2x﹣2y=0.(Ⅱ)圆的方程x2+y2﹣2x﹣2y=0,转化为标准式为:(x﹣1)2+(y﹣1)2=2,则:圆心(1,1)到直线的距离d=,所以:曲线上的点到直线的最大距离为:.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(1)若f(1)<3,求实数a的取值范围;(2)若a≥1,x∈R,求证:f(x)≥2.【解答】解:(1)因为f(1)<3,所以|a|+|1﹣2a|<3.①当a≤0时,得﹣a+(1﹣2a)<3,解得a>﹣,所以﹣<a≤0;②当0<a<时,得a+(1﹣2a)<3,解得a>﹣2,所以0<a<;③当a≥时,得a﹣(1﹣2a)<3,解得a<,所以≤a<;综上所述,实数a的取值范围是(﹣,).(2)因为a≥1,x∈R,所以f(x)=|x+a﹣1|+|x﹣2a|≥|(x+a﹣1)﹣(x﹣2a)|=|3a﹣1|=3a﹣1≥2.。
2018年广东省茂名市高考数学一模试卷(文科)
2018年广东省茂名市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(5分)若集合A={x|﹣1<x<3},B={﹣1,0,1,2},则A∩B=()A.{﹣1,0,1,2} B.{x|﹣1<x<3}C.{0,1,2}D.{﹣1,0,1} 2.(5分)已知复数z满足zi=2+i,i是虚数单位,则|z|=()A.B.C.2 D.3.(5分)在1,2,3,6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是()A.B.C.D.4.(5分)已知变量x,y满足约束条件则z=3x+y的最小值为()A.11 B.12 C.8 D.35.(5分)设等差数列{a n}的前n项和为S n,若a2+a8=10,则S9=()A.20 B.35 C.45 D.906.(5分)已知抛物线y2=8x的准线与x轴交于点D,与双曲线交于A,B两点,点F为抛物线的焦点,若△ADF为等腰直角三角形,则双曲线的离心率是()A.B.C. D.7.(5分)已知函数f(x)=sin(ωx+ϕ)(ω>0,0<ϕ<),f(x1)=1,f(x2)=0,若|x1﹣x2|min=,且f()=,则f(x)的单调递增区间为()A. B..C.D.8.(5分)函数的部分图象大致为()A. B.C.D.9.(5分)《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则该塔中间一层有()盏灯.A.24 B.48 C.12 D.6010.(5分)执行如图所示的程序框图,那么输出S的值是()A.2 018 B.﹣1 C.D.211.(5分)如图为一正方体的平面展开图,在这个正方体中,有下列四个命题:①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的个数是()A.1 B.2 C.3 D.412.(5分)定义在R上函数y=f(x+2)的图象关于直线x=﹣2对称,且函数f(x+1)是偶函数.若当x∈[0,1]时,,则函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数为()A.2017 B.2018 C.4034 D.4036二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)已知=(2,1),﹣2=(1,1),则=.14.(5分)曲线y=ln(x+1)在点(1,ln2)处的切线方程为.15.(5分)从原点O向圆C:x2+y2﹣12y+27=0作两条切线,则该圆被两切点所分的劣弧与优弧之比为.16.(5分)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB=,∠ACB=60°,∠BCD=90°,AB⊥CD,CD=,则该球的体积为.三、解答题:本大题共5小题,共70分.其中17至21题为必做题,22、23题为选做题.解答过程应写出文字说明、证明过程或演算步骤.17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且2c•cosB﹣b=2a.(Ⅰ)求角C的大小;(Ⅱ)设角A的平分线交BC于D,且AD=,若b=,求△ABC的面积.18.(12分)在四棱锥P﹣ABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,∠ABC=∠DCB=60°,E是PC上一点.(Ⅰ)证明:平面EAB⊥平面PAC;(Ⅱ)若△PAC是正三角形,且E是PC中点,求三棱锥A﹣EBC的体积.19.(12分)一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如表:温度x/°C212324272932产卵数y/个61120275777经计算得:,,,,,线性回归模型的残差平方和,e8.0605≈3167,其中x i,y i分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.(i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.(ii)用拟合效果好的模型预测温度为35°C时该种药用昆虫的产卵数(结果取整数).附:一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计为,=﹣;相关指数R2=.20.(12分)已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C(﹣1,0)的直线l与椭圆C2交于A,B两个不同的点,若,求△OAB的面积取得最大值时直线l的方程.21.(12分)已知函数(a∈R).(Ⅰ)讨论g(x)的单调性;(Ⅱ)若.证明:当x>0,且x≠1时,.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分,作答时,请用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l经过点P(﹣2,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ﹣4cosθ=0.(Ⅰ)若直线l与曲线C有公共点,求倾斜角α的取值范围;(Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≥2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≤M有解,求m的取值范围.2018年广东省茂名市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(5分)若集合A={x|﹣1<x<3},B={﹣1,0,1,2},则A∩B=()A.{﹣1,0,1,2} B.{x|﹣1<x<3}C.{0,1,2}D.{﹣1,0,1}【解答】解:∵集合A={x|﹣1<x<3},B={﹣1,0,1,2},∴A∩B={0,1,2}.故选:C.2.(5分)已知复数z满足zi=2+i,i是虚数单位,则|z|=()A.B.C.2 D.【解答】解:由zi=2+i,得,∴|z|=,故选:D.3.(5分)在1,2,3,6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是()A.B.C.D.【解答】解:在1,2,3,6这组数据中随机取出三个数,基本事件总数有4个,分别为:(1,2,3),(1,2,6),(1,3,6),(2,3,6)数字2是这三个不同数字的平均数所包含的基本事件只有(1,2,3),共1个.∴数字2是这三个不同数字的平均数的概率是.故选:A.4.(5分)已知变量x,y满足约束条件则z=3x+y的最小值为()A.11 B.12 C.8 D.3【解答】解:由约束条件作出可行域如图,联立,解得A(2,2),化目标函数z=3x+y为y=﹣3x+z,由图可知,当直线y=﹣3x+z过A时,直线在y轴上的截距最小,z有最小值为z=3×2+2=8.故选:C.5.(5分)设等差数列{a n}的前n项和为S n,若a2+a8=10,则S9=()A.20 B.35 C.45 D.90【解答】解:由等差数列的性质得,a1+a9=a2+a8=10,S9=.故选:C.6.(5分)已知抛物线y2=8x的准线与x轴交于点D,与双曲线交于A,B两点,点F为抛物线的焦点,若△ADF为等腰直角三角形,则双曲线的离心率是()A.B.C. D.【解答】解:抛物线y2=8x的准线方程为x=﹣2,准线与x轴的交点为D(﹣2,0),由△ADF为等腰直角三角形,得|AD|=|DF|=4,故点A的坐标为(﹣2,4),由点A在双曲线上,可得,解得,即,∴,∴双曲线的离心率.故选:D.7.(5分)已知函数f(x)=sin(ωx+ϕ)(ω>0,0<ϕ<),f(x1)=1,f(x2)=0,若|x1﹣x2|min=,且f()=,则f(x)的单调递增区间为()A. B..C.D.【解答】解:设f(x)的周期为T,由f(x1)=1,f(x2)=0,|x1﹣x2|min=,得,由f()=,得sin(π+ϕ)=,即cosϕ=,又0<ϕ<,∴ϕ=,f(x)=sin(πx).由,得.∴f(x)的单调递增区间为.故选:B.8.(5分)函数的部分图象大致为()A. B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选:C.9.(5分)《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则该塔中间一层有()盏灯.A.24 B.48 C.12 D.60【解答】解:由题意可知从上至下每层灯盏数构成公比为2的等比数列,设首项为a,则,解之得a=3,则该塔中间一层灯盏数有3×23=24.故选:A.10.(5分)执行如图所示的程序框图,那么输出S的值是()A.2 018 B.﹣1 C.D.2【解答】解:依题意,执行如图所示的程序框图可知:初始S=2,当k=0时,S0=﹣1,k=1时,S1=,同理S2=2,S3=﹣1,S4=,…,可见S n的值周期为3.∴当k=2017时,S2017=S1=,k=2018,退出循环.输出S=.故选:C.11.(5分)如图为一正方体的平面展开图,在这个正方体中,有下列四个命题:①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:将正方体纸盒展开图还原成正方体,在①中,如图知AF与GC异面垂直,故①正确;在②中,BD与GC成异面直线,连接EB,ED.则BM∥GC,在等边△BDM中,BD与BM所成的60°角就是异面直线BD与GC所成的角,故②正确;在③中,BD与MN异面垂直,故③错误;在④中,GD⊥平面ABCD,所以在Rt△BDG中,∠GBD是BG与平面ABCD所成的角,Rt△BDG不是等腰直角三角形.所以BG与平面ABCD所成的角不是为45°,故④错误.故选:B.12.(5分)定义在R上函数y=f(x+2)的图象关于直线x=﹣2对称,且函数f(x+1)是偶函数.若当x∈[0,1]时,,则函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数为()A.2017 B.2018 C.4034 D.4036【解答】解:函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数⇔函数的图象与y=e﹣|x|的图象交点个数.由y=f(x+2)的图象关于直线x=﹣2对称,得f(x)是偶函数,即f(﹣x)=f(x).又∵函数f(x+1)是偶函数,∴f(x+1)=f(﹣x+1),故f(x+2)=f(﹣x)=f(x),因此,f(x)是周期为2的偶函数.∵当x∈[0,1]时,,作出y=f(x)与图象如下图,可知每个周期内有两个交点,所以函数g(x)=f(x)﹣e﹣|x|在区间[﹣2018,2018]上零点的个数为2018×2=4036.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)已知=(2,1),﹣2=(1,1),则=1.【解答】解:根据题意,设=(x,y),则﹣2=(2﹣2x,1﹣2y)=(1,1),则有2﹣2x=1,1﹣2y=1,解可得x=,y=0,则=(,0),则=2×+1×0=1;故答案为:114.(5分)曲线y=ln(x+1)在点(1,ln2)处的切线方程为x﹣2y﹣1+2ln2=0.【解答】解:根据题意,曲线y=ln(x+1),则有y′=,则由所求切线斜率,又由f(1)=ln(1+1)=ln2,则曲线在点(1,ln2)处的切线方程为,即x﹣2y﹣1+2ln2=0.故答案为:x﹣2y﹣1+2ln2=015.(5分)从原点O向圆C:x2+y2﹣12y+27=0作两条切线,则该圆被两切点所分的劣弧与优弧之比为.【解答】解:把圆的方程化为标准方程为x2+(y﹣6)2=9,得到圆心C(0,6),圆的半径r=3,由圆切线的性质可知,∠CBO=∠CAO=90°,且AC=BC=3,OC=6,则有∠ACB=∠ACO+∠BCO=60°+60°=120°,∴该圆被两切点所分的劣弧与优弧之比为.故答案为:.16.(5分)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB=,∠ACB=60°,∠BCD=90°,AB⊥CD,CD=,则该球的体积为.【解答】解:以△ABC所在平面为球的截面,则由正弦定理得截面圆的半径为,依题意得CD⊥平面ABC,故球心到截面的距离为,则球的半径为.所以球的体积为.故答案为:.三、解答题:本大题共5小题,共70分.其中17至21题为必做题,22、23题为选做题.解答过程应写出文字说明、证明过程或演算步骤.17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且2c•cosB﹣b=2a.(Ⅰ)求角C的大小;(Ⅱ)设角A的平分线交BC于D,且AD=,若b=,求△ABC的面积.【解答】解:(Ⅰ)根据题意,若2c•cosB﹣b=2a,则有,整理得a2+b2﹣c2=﹣ab,,又在△ABC中,0<C<π,∴,即角C的大小为;(Ⅱ)由(Ⅰ),在△ADC中,AC=b=,AD=,由正弦定理得,∵在△ADC中,0<∠CDA<π,C为钝角,∴,故.∵在△ABC中,AD是角A的平分线,∴,∴△ABC是等腰三角形,,故△ABC的面积.18.(12分)在四棱锥P﹣ABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,∠ABC=∠DCB=60°,E是PC上一点.(Ⅰ)证明:平面EAB⊥平面PAC;(Ⅱ)若△PAC是正三角形,且E是PC中点,求三棱锥A﹣EBC的体积.【解答】证明:(Ⅰ)依题意得四边形ABCD是底角为60°的等腰梯形,…(1分)∴∠BAD=∠ADC=120°..…(2分)∵AD=DC,∴∠DAC=∠DCA=30°.…(3分)∴∠BAC=∠BAD﹣∠DAC=120°﹣30°=90°,即AB⊥AC.…(4分)∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,∴AB⊥平面PAC,…(5分)又平面AB⊂平面EAB,∴平面EAB⊥平面PAC.…(6分)解:(Ⅱ)解法一:由(Ⅰ)及已知得,在Rt△ABC中,∠ABC=60°,AB=1,∴AC=AB∙tan60°=,BC=2AB=2,且AB⊥平面PAC,…(7分)∴AB是三棱锥B﹣EAC的高,正△PAC的边长为…(8分)∵E是PC的中点,∴S△EAC =S△PAC=.…(10分)∴三棱锥A﹣EBC的体积为…(12分)(Ⅱ)解法二:过P作PO⊥AC于点O,∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,∴PO⊥平面ABC,过E作EF⊥AC于点F,同理得EF⊥平面ABC,∴EF是三棱锥E﹣ABC的高,且PO∥EF,…(7分)又E是PC中点,∴EF是△POC的中位线,故.由(Ⅰ)及已知得,在Rt△ABC中,∠ABC=60°,AB=1,∴BC=2AB=2,AC=AB∙tan60°=,即正△PAC的边长为,…(8分)∴PO=,故EF=…(9分)在Rt△ABC中,S△ABC=.…(10分)∴三棱锥A﹣EBC的体积为…(12分)19.(12分)一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如表:温度x/°C212324272932产卵数y/个61120275777经计算得:,,,,,线性回归模型的残差平方和,e8.0605≈3167,其中x i,y i分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.(i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.(ii)用拟合效果好的模型预测温度为35°C时该种药用昆虫的产卵数(结果取整数).附:一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计为,=﹣;相关指数R2=.【解答】解:(Ⅰ)依题意,n=6,,….…(2分)≈33﹣6.6×26=﹣138.6,…(3分)∴y关于x的线性回归方程为=6.6x﹣138.6…(4分)(Ⅱ)(i )利用所给数据,,得,线性回归方程=6.6x﹣138.6的相关指数R2=.…(6分)∵0.9398<0.9522,…(7分)因此,回归方程=0.06e0.2303x比线性回归方程=6.6x﹣138.6拟合效果更好…..…(8分)(ii)由(i )得温度x=35°C时,=0.06e0.2303×35=0.06×e8.0605…..…..…(9分)又∵e8.0605≈3167,…(10分)∴≈0.06×3167≈190(个)…(11分)所以当温度x=35°C时,该种药用昆虫的产卵数估计为190个…(12分)20.(12分)已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C(﹣1,0)的直线l与椭圆C2交于A,B两个不同的点,若,求△OAB的面积取得最大值时直线l的方程.【解答】解:(Ⅰ)所给直线方程变形为,可知直线所过定点为.∴椭圆焦点在y轴,且c=,依题意可知b=2,∴a2=c2+b2=9.则椭圆C1的方程标准为;(Ⅱ)依题意,设椭圆C 2的方程为,A (x 1,y 1),B (x 2,y 2),∵λ>1,∴点C (﹣1,0)在椭圆内部,直线l 与椭圆必有两个不同的交点. 当直线l 垂直于x 轴时,(不是零向量),不合条件;故设直线l 为y=k (x +1)(A ,B ,O 三点不共线,故k ≠0), 由,得.由韦达定理得.∵,而点C (﹣1,0),∴(﹣1﹣x 1,﹣y 1)=2(x 2+1,y 2),则y 1=﹣2y 2, 即y 1+y 2=﹣y 2,故.∴△OAB 的面积为S △OAB =S △AOC +S △BOC ====.上式取等号的条件是,即k=±时,△OAB 的面积取得最大值.∴直线的方程为或.21.(12分)已知函数(a ∈R ).(Ⅰ)讨论g (x )的单调性; (Ⅱ)若.证明:当x >0,且x ≠1时,.【解答】(Ⅰ)解:由已知得g (x )的定义域为(0,+∞),…(1分)方程2x 2+x ﹣a=0的判别式△=1+8a .…(2分) ①当时,△≤0,g'(x )≥0,此时,g(x)在(0,+∞)上为增函数;…(3分)②当时,设方程2x2+x﹣a=0的两根为,若,则x1<x2≤0,此时,g'(x)>0,g(x)在(0,+∞)上为增函数;…(4分)若a>0,则x1<0<x2,此时,g(x)在(0,x2]上为减函数,在(x2,+∞)上为增函数,…..…(5分)综上所述:当a≤0时,g(x)的增区间为(0,+∞),无减区间;当a>0时,g(x)的减区间为(0,x2],增区间为(x2,+∞).…(6分)(Ⅱ)证明:由题意知,…(7分)∴,…(8分)考虑函数,则…(9分)所以x≠1时,h'(x)<0,而h(1)=0…(10分)故x∈(0,1)时,,可得,x∈(1,+∞)时,,可得,…(11分)从而当x>0,且x≠1时,.…(12分)请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分,作答时,请用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l经过点P(﹣2,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ﹣4c osθ=0.(Ⅰ)若直线l与曲线C有公共点,求倾斜角α的取值范围;(Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.【解答】解:(Ⅰ)由曲线C的极坐标方程得ρ2﹣4ρcosθ=0,又x=ρcosθ,y=ρsinθ,∴曲线C的直角坐标方程为x2+y2﹣4x=0,即(x﹣2)2+y2=4…(1分)∴曲线C是圆心为C(2,0),半径为2的圆.∵直线l过点P(﹣2,0),当l的斜率不存在时,l的方程为x=﹣2与曲线C没有公共点,∴直线l的斜率存在,设直线l:y=k(x+2),即kx﹣y+2k=0.直线l与圆有公共点,则圆心C到直线l的距离,得,α∈[0,π),∴α的取值范围是.(Ⅱ)法一:由(Ⅰ)曲线C的直角坐标方程为(x﹣2)2+y2=4,故其参数方程为(θ为参数).∵M(x,y)为曲线C上任意一点,∴,,∴,因此,的取值范围是[﹣2,6].[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≥2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≤M有解,求m的取值范围.【解答】解:(Ⅰ)当x≥3时,f(x)=﹣8,此时f(x)≥2无解;…(1分)当﹣5<x<3时,f(x)=﹣2x﹣2,由f(x)≥2解得﹣5<x≤﹣2;…(3分)当x≤﹣5时,f(x)=8,此时f(x)≥2恒成立.…(4分)综上,不等式f(x)≥2的解集是{x|x≤﹣2}.…(5分)(Ⅱ)由(Ⅰ)可知…(6分)易知函数f(x)的最大值M=8,…(7分)若x2+2x+m≤8有解,得m≤﹣x2﹣2x+8有解.…(8分)即m≤[﹣(x+1)2+9]max=9.…(9分)因此,m的取值范围是m≤9.…(10分)。
广东省化州市高三上学期第二次高考模拟考试数学(理)试卷
广东省化州市2018年高考第二次模拟考试(理科)数学试卷化州市2018年高考第二次模拟考试理科数学参考答案一、选择题 二、填空题: 13.31{22n n n a n ==≥ 14. 3,84 15. 1,e ⎛⎫+∞ ⎪⎝⎭16.4 三、解答题17. 解: (1)由余弦定理得2221sin 2S ab C ===………………4分tan 3C =, 6C π=………………6分(2………………8分 因为50,6A π⎛⎫∈ ⎪⎝⎭,所以7,336A πππ⎛⎫+∈ ⎪⎝⎭, 1cos ,132A π⎛⎫⎛⎤+∈- ⎪ ⎥⎝⎭⎝⎦,所以1sin cos ,12B A ⎛⎤-∈- ⎥⎝⎦.………………12分 18. (Ⅰ)∵四边形是矩形, ∴.∵,,故. 又,∴平面. ∵平面,∴平面平面. ………………4分 (Ⅱ)∵,,,∴,∴,又,,∴平面. ………………6分以为坐标原点,建立如图所示的空间直角坐标系,则,,,.∴ ,,设平面的一个法向量,由,得,令,得. 同理可求得平面的一个法向量,∴,………………10分∴。
故二面角的正弦值为. ………………12分19. (1)因为5x =, 50y =.回归直线必过样本中心点(),x y ,则50 6.5517.5a y bx =-=-⨯=. 故回归直线方程为 6.517.5y x =+,当1x =时, 6.517.524y =+=,即y 的预报值为24. ………………4分 (2)因为4x =, 46.25y =,4221194i i x-==∑, 421211945i i i x y --==∑,所以421211422211ˆ44i i i i i x yxybxx --=-=-=-∑∑ 29454446.256.839444-⨯⨯=≈-⨯, 46.25 6.83418.ˆ93ˆay bx =-=-⨯=,………………6分 即ˆ 6.83b =, ˆ18.93a =, 6.5b =, 17.5a =.ˆ5%b b b -≈, ˆ8%a a a-≈,均不超过10%,因此使用位置最接近的已有旧井()61,24.………………8分(3)由题意,1,3,5,6这4口井是优质井,2,4这两口井是非优质井, 所以勘察优质井数X 的可能取值为2,3,4,()224246225C C P X C ===, ()3142468315C C P X C ===,()4042461415C C P X C ===.2818234515153EX =⨯+⨯+⨯=………………12分20. (1)因为椭圆C : 22221(0)x y a b a b+=>>的焦距为,则)F,设()00,A x y ,则()00,B x y --, 02y M ⎫⎪⎪⎝⎭,02y N ⎫-⎪⎪⎝⎭, 220061•44x y OM ON --==,则2205x y +=,所以AB 的长为………………4分 (2)因为直线l 的斜率12k =时,且直线//ll ',所以1:2l y x =, 设1:2l y x m '=+,0012y x =,∴由(1)知, 22005x y +=,所以()2,1A ,所以椭圆22:182x y C +=,………………6分 222240x mx m ++-=, 设()()1122,,,P x y Q x y ,则122x x m +=-, 21224x x m =-,………………8分设直线,A P A Q的斜率分别为12,k k ,则11112y k x -=-, 22212y k x -=-,那么12121211112222x m x m k k x x +-+-+=+--1211112m x x ⎛⎫=++ ⎪--⎝⎭()()1212124124x x m x x x x +-=+⨯-++()2241024224m m m m --=+⨯=---+,………………11分 所以直线,AP AQ 与x 轴围成一个等腰三角形. ………………12分21. 当0=t 时,方程0142=-x 的两实根为21,21=-=βα 222222/)1()1(2)1(22)(+--=++-=x x x x x f , 当]21,21[-∈x 时,0)(/>x f ,)(x f 在]21,21[-∈x 为单调递增函数, )(x f 的最小值为54)21(-=-f ,)(x f 的最大值为54)21(=f ;………………3分(2)222222222/)1(23)144(21)1()1(2)1(222)(++---=+---=+++-=x tx x x tx x x tx x x f 由题知:],[βα∈x 时01442<--tx x ,所以0)(/>x f ,)(x f 在区间],[βα为单调递增函数;………………7分(3)由(2)知,)1)(1(]22)()[(1212)()()(2222+++-+-=+--+-=-=βααββααβααββαβt t t f f t g 又由题得:⎪⎩⎪⎨⎧-==+41αββαt ,∴2240)()1625t g t t +=+………………8分11(tan )(tan )g g αβ+222sin sin αβγ=++)]22232tan 40)16+24cos (tan )=16tan 2516cos 9cos 16+9cos g ααααααα+=≥++22221sin sin sin sin sin 33αβγαβγ++⎛⎫++≥ ⎪⎝⎭(sin ) 2221sin sin 3αβγ++≥sin )所以1113)(tan )(tan )(tan )g g g αβγ++≤-=由于等号不能同时成立,故得证.………………12分22. (1)圆C 的直角坐标方程为22224a a x y ⎛⎫+-= ⎪⎝⎭; 直线l 的普通方程为4380x y +-=.………………4分(2)圆2221:24a C x y a ⎛⎫+-= ⎪⎝⎭,直线:4380l x y +-=, ∵直线l 截圆C 的弦长等于圆C∴圆心C 到直线的距离3812522a a d -==⨯,………………8分 解得32a =或3211a =.………………10分23. 解:(1)当0=a 时,由)()(x g x f ≥得x x 21≥+,两边平方整理得 01232≤--x x ,解得131≤≤-x 所以原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤-131x x ………………………………4分 (2)由)()(x f x g ≤得x x a 21-+≤,令x x x h 21)(-+=,则⎪⎩⎪⎨⎧≥+-<<-+-≤-=)0(1)01(13)1(1)(x x x x x x x h ,作出函数的图像,得1)0()(max ==h x h从而实数a 的取值范围为(]1,∞-………………10分。
2018年广东省茂名市化州市高考数学二模试卷(理科)
2018年广东省茂名市化州市高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1. 若集合A={0, 1},B={y|y=2x, x∈A},则(∁R A)∩B=()A.{0}B.{2}C.{2, 4}D.{0, 1, 2}2. 已知a+2ii=b+i(a,b∈R),其中i为虚数单位,则a−b=()A.−1B.1C.2D.−33. 如图,正方形ABCD内的图形来自宝马汽车车标的里面部分,正方形内切圆中的“黑色部分”和“白色部分”关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自“黑色部分”的概率是()A.1 4B.12C.π8D.π44. 已知a→=(2sin13∘, 2sin77∘),|a→−b→|=1,a→与a→−b→的夹角为π3,则a→⋅b→=() A.2 B.3 C.4 D.55. 已知双曲线x29−y2m=1的一个焦点在直线x+y=5上,则双曲线的渐近线方程为()A.y=±34x B.y=±43xC.y=±2√23x D.y=±3√24x6. 一个几何体的三视图如图所示,则该几何体的体积的是()A.7B.152C.233D.4767. 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确设计的一个程序框图,则输出n 的值为(参考数据:sin15∘=0.2588,sin7.5∘=0.1305)( )A.16B.20C.24D.488. 在平面直角坐标系xoy 中,已知点A(2, 3),B(3, 2),C(1, 1),点P(x, y)在△ABC 三边围成的区域(含边界)内,设OP →=mAB →−nCA →(m, n ∈R),则2m +n 的最大值为( ) A.−1 B.1 C.2 D.39. 已知函数f(x)=Asin(ωx +φ)(A >0, ω>0, 0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0, π3),则cos(2α+5π6)=( )A.±2√23B.2√23C.−2√23D.1310. 已知有穷数列{a n }中,n =1,2,3,…,729.且a n =(2n −1)⋅(−1)n+1.从数列{a n }中依次取出a 2,a 5,a 14,….构成新数列{b n },容易发现数列{b n }是以−3为首项,−3为公比的等比数列.记数列{a n }的所有项的和为S ,数列{b n }的所有项的和为T ,则( ) A.S >T B.S =T C.S <TD.S 与T 的大小关系不确定11. 如图,正方体ABCD −A 1B 1C 1D 1的棱长为1,中心为O ,BF →=12BC →,A 1E →=14A 1A →,则四面体OEBF 的体积为( )A.1 12B.124C.148D.19612. 已知f(x)是定义域为(0, +∞)的单调函数,若对任意的x∈(0, +∞),都有f[f(x)+ log13xbrack=4,且方程|f(x)−3|=a在区间(0, 3]上有两解,则实数a的取值范围是()A.0<a≤1B.a<1C.0<a<1D.a≥1二、填空题(共4小题,每小题5分,满分20分)已知S n为数列{a n}的前n项和,且log2(S n+1)=n+1,则数列{a n}的通项公式为________.在(1+2x)7的展开式中,C72是第________项的二项式系数,第3项的系数是________.已知函数f(x)=e x−mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为________.已知椭圆x2a2+y2b2=1(a>b>0)与直线l1:y=12x,l2:y=−12x,过椭圆上一点P作l1,l2的平行线,分别交l1,l2于M,N两点.若|MN|为定值,则√ab的值是________.三、解答题(共5小题,满分60分)设△ABC三个内角A,B,C的对边分别为a,b,c,△ABC的面积S满足4√3S=a2+b2−c2.(1)求角C的值;(2)求sinB−cosA的取值范围.如图,在矩形ABCD中,CD=2,BC=1,E,F是平面ABCD同一侧两点,EA // FC,AE⊥AB,EA=2,DE=√5,FC=1.(1)证明:平面CDF⊥平面ADE;(2)求二面角E−BD−F的正弦值.中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:并估计y 的预报值;(Ⅱ)现准备勘探新井7(1, 25),若通过1、3、5、7号井计算出的b ^,a ^的值(b ^,a ^精确到0.01)与(I)中b ,a 的值差不超过10%,则使用位置最接近的已有旧井6(1, y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:b ^=∑−i=1n xiyi nx∗y∑ n i=1x i 2−nx2,a ^=y −b ^x ,∑ 4i=1x 2i−12=94,∑=i=14 x2i−1y2i−1945) (Ⅲ)设出油量与勘探深度的比值k 不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X 的分布列与数学期望.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的焦距为2√6,设右焦点为F ,过原点O 的直线l 与椭圆C 交于A ,B 两点,线段AF 的中点为M ,线段BF 的中点为N ,且OM →⋅ON →=14. (1)求弦AB 的长;(2)当直线 l 的斜率k =12,且直线 l′ // l 时,l′交椭圆于P ,Q ,若点A 在第一象限,求证:直线AP ,AQ 与x 轴围成一个等腰三角形.已知α,β是方程4x 2−4tx −1=0(t ∈R)的两个不等实根,函数f(x)=2x−tx 2+1的定义域为[α, β](1)当t =0时,求函数f(x)的最值(2)试判断函数f(x)在区间[α, β]的单调性(3)设g(t)=f(x)max −f(x)min ,试证明:对于α,β,γ∈(0, π2),若sinα+sinβ+sinγ=1,则1g(tanα)+1g(tanβ)+1g(tanγ)<34√6(参考公式:√a2+b 2+c 23≥a+b+c 3(a, b, c >0),当且仅当a =b =c 时等号成立)请考生在22,23两题中任选一题作答,如果多做,则按所做第一题计分[选修4—4:坐标系与参数方程]在平面直角坐标系中,直线l 的参数方程为{x =−35t +2y =45t(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=asinθ(a ≠0). (Ⅰ)求圆C 的直角坐标系方程与直线l 的普通方程;(Ⅱ)设直线l 截圆C 的弦长等于圆C 的半径长的√3倍,求a 的值. [选修4-5:不等式证明]已知函数f(x)=|x +1|,g(x)=2|x|+a (1)当a =0时,求不等式f(x)≥g(x)的解集(2)若存在实数x ,使得g(x)≤f(x)成立,求实数a 的取值范围.参考答案与试题解析2018年广东省茂名市化州市高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.【答案】B【考点】交、并、补集的混合运算【解析】根据题意,由集合B={y|y=2x, x∈A},结合A的元素可得集合B,分析可得(∁R A)∩B中的元素为属于B不属于A的元素,即可得答案.【解答】根据题意,集合A={0, 1},则B={y|y=2x, x∈A}={0, 2},则(∁R A)∩B={2};2.【答案】D【考点】复数的运算【解析】此题暂无解析【解答】解:∵a+2ii =(a+2i)ii2=2−ai=b+i,∴b=2,a=−1,∴a−b=−3.故选D.3.【答案】C【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】设出正方形边长,求出正方形面积,再求出正方形内切圆中的黑色部分的面积,由面积比得答案.【解答】解:设正方形边长为2,则正方形面积为4,正方形内切圆中的黑色部分的面积S=12×π×12=π2.∴在正方形内随机取一点,则此点取自黑色部分的概率是P=π24=π8.故选C.4.平面向量数量积的性质及其运算律 【解析】利用向量的模以及向量的数量积的运算法则化简求解即可. 【解答】 a →=(2sin13∘, 2sin77∘)=(2sin13∘, 2cos13∘),|a →|=2,|a →−b →|=1,a →与a →−b →的夹角为π3, 所以a →∗(a →−b →)=|a →||a →−b →|cos π3=a →2−a →∗b →,1=4−a →∗b →, ∴ a →⋅b →=3, 5.【答案】 B【考点】 双曲线的特性 【解析】根据题意,由双曲线的方程可以确定其焦点在位置,由直线的方程可得直线与x 轴交点的坐标,即可得双曲线焦点的坐标,由双曲线的几何性质可得9+m =25,解可得m 的值,即可得双曲线的标准方程,进而由双曲线的渐近线方程计算可得答案. 【解答】根据题意,双曲线的方程为x 29−y 2m=1,则其焦点在x 轴上,直线x +y =5与x 轴交点的坐标为(5, 0), 则双曲线的焦点坐标为(5, 0), 则有9+m =25, 解可得,m =16, 则双曲线的方程为:x 29−y 216=1,其渐近线方程为:y =±43x , 6.【答案】 D【考点】由三视图求体积 【解析】根据三视图得到几何体的直观图,利用直观图即可求出对应的体积. 【解答】由三视图可知该几何体的直观图是正方体去掉一个三棱锥, 正方体的边长为2,三棱锥的三个侧棱长为1, 则该几何体的体积V =23−13×12×1×1×1=8−16=476,7.程序框图 【解析】列出循环过程中S 与n 的数值,满足判断框的条件即可结束循环. 【解答】模拟执行程序,可得: n =6,S =3sin60∘=3√32, 不满足条件S ≥3.10,n =12,S =6×sin30∘=3,不满足条件S ≥3.10,n =24,S =12×sin15∘=12×0.2588=3.1056, 满足条件S ≥3.10,退出循环,输出n 的值为24. 8.【答案】 B【考点】 基本不等式平面向量的基本定理 【解析】用x ,y 表示出2m +n ,根据线性规划求出2m +n 的最值. 【解答】AB →=(1, −1),CA →=(1, 2),OP →=(x, y), ∵ OP →=mAB →−nCA →, ∴ {x =m −ny =−m −2n , ∴ 2m +n =x −y , 作出平面区域如图所示:令z =x −y ,则y =x −z ,由图象可知当直线y =x −z 经过点B(3, 2)时,截距最小,即z 最大.∴ z 的最大值为3−2=1. 即2m +n 的最大值为1. 故选:B . 9.正弦函数的图象【解析】由图象可得A值和周期,由周期公式可得ω,代入点(π3, −3)可得φ值,可得解析式,再由f(α)=1和同角三角函数基本关系可得.【解答】由图象可得A=3,2πω=4(7π12−π3),解得ω=2,故f(x)=3sin(2x+φ),代入点(π3, −3)可得3sin(2π3+φ)=−3,故sin(2π3+φ)=−1,2π3+φ=2kπ−π2,∴φ=2kπ−7π6,k∈Z结合0<φ<π可得当k=1时,φ=5π6,故f(x)=3sin(2x+5π6),∵f(α)=3sin(2α+5π6)=1,∴sin(2α+5π6)=13,∵α∈(0, π3),∴2α+5π6∈(5π6, 3π2),∴cos(2α+5π6)=−√1−sin2(2α+5π6)=−2√23,10.【答案】A【考点】数列的求和【解析】S=1−3+5−...−(2×728−1)+(2×729−1),通过分组求和即可得出.由|−3×(−3)n−1|≤2k−1,k≤729,解得:n≤6,可取n=6,−3×(−3)5=729= (2×365−1)×(−1)366,利用等比数列的求和公式可得T.【解答】S=1−3+5−...−(2×728−1)+(2×729−1)=−728+2×729−1=729.由|−3×(−3)n−1|≤2k−1,k≤729,解得:n≤6,可取n=6,−3×(−3)5=729=(2×365−1)×(−1)366,∴T=−3×[(−3)6−1brack−3−1=546.∴S>T.11.【答案】D【考点】柱体、锥体、台体的体积计算【解析】以D为坐标原点,分别以DA、DC、DD1所在直线为x、y、z轴建立空间直角坐标系,代入棱锥体积公式得答案. 【解答】 如图,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系, 则O(12,12,12),B(1, 1, 0),E(1, 0, 34),F(12, 1, 0),则|OE →|=√14+14+116=34,|OB →|=√32,|BE →|=√1+916=54,∴ cos∠BOE =916+34−25162×34×√32=−√39. ∴ sin∠BOE =√789.∴ S △OEB =12×34×√32×√789=√2616.设平面OEB 的一个法向量为n →=(x,y,z),由{n →∗OE →=12x −12y +14z =0n →∗OB →=12x +12y −12z =0,取z =1,得n →=(14,34,1). 又BF →=(−12,0,0),∴ F 到平面OEB 的距离ℎ=|n →∗BF →||n →|=18√264=√2652. ∴ 四面体OEBF 的体积V =13S OEB ×ℎ=13×√2616×√2652=196.12.【答案】A【考点】函数的零点与方程根的关系 【解析】由题意可得必存在唯一的正实数a ,满足f(x)+log 13x =a ,f(a)=4 ①,可得f(a)+log 13a =a ②,由①②得a =(13)a−4,解得a =3.由题意,|log 13x|=x 3−6x 2+9x −4+a 在区间(0, 3]上有两解,数形结合可得a 的范围. 【解答】,∴ f(a)+log 13a =a (1), 由(2)(3)得:4+log 13a =a ,即 log 13a =a −4,∴ a =(13)a−4,解得a =3. 故f(x)+log 13x =a =3,∴ f(x)=3−log 13x , 由方程|f(x)−3|=a 在区间(0, 3]上有两解, 即有|log 13x|=a 在区间(0, 3]上有两解, 1,结合题意,0<a ≤1, 故选:A .二、填空题(共4小题,每小题5分,满分20分) 【答案】 {3,n =1,2n ,n ≥2【考点】 数列递推式 【解析】 此题暂无解析 【解答】解:由log 2(S n +1)=n +1,得S n +1=2n+1,当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n −S n−1=2n .∴ 数列{a n }的通项公式为a n ={3,n =12n ,n ≥2 .故答案为:a n ={3,n =12n,n ≥2 . 【答案】 3,84【考点】二项式定理的应用 【解析】写出二项展开式的通项,由r =2可知C 72是第3项的二项式系数,进一步求得第3项的系数. 【解答】(1+2x)7的展开式的通项为T r+1=C 7r(2x)r , 当r =2时,可得T 3=C 72∗22∗x 2=84x 2.∴ C 72是第3项的二项式系数,第3项的系数是84. 【答案】(1e, +∞) 【考点】利用导数研究曲线上某点切线方程 【解析】求出函数的导数,运用两直线垂直的条件可得e x −m =−1e 有解,再由指数函数的单调性,即可得到m 的范围 【解答】函数f(x)=e x −mx +1的导数为f′(x)=e x −m , 若曲线C 存在与直线y =ex 垂直的切线, 即有e x −m =−1e 有解, 即m =e x +1e , 由e x >0,则m >1e , 则实数m 的范围为(1e , +∞),【答案】 2【考点】 椭圆的离心率 【解析】取点P 为上下定点,分别求出MN 的长度,两次求出MN 相等,即可得到a 、b 的数量关系. 【解答】当点P 为(0, b)时,过椭圆上一点P 作l 1,l 2的平行线分别为l 1:y =12x +b ,l 2:y =−12x +b ,联立{y =−12x +b y =12x可得M(b, b 2),同理可得N(−b, b 2),|MN|=2b . 当点P 为(a, 0)时,过椭圆上一点P 作l 1,l 2的平行线分别为l 1:y =12x −12a ,l 2:y =−12x +12a ,联立{y =12x y =−12x +12a可得M(a 2, 14a),同理可得N(a 2, −14a),),|MN|=a 2. 若|MN|为定值,则2b =a2,⇒ab =4,∴ 则√ab的值是2.三、解答题(共5小题,满分60分) 【答案】△ABC 的面积S 满足4√3S =a 2+b 2−c 2, 可得4√3×12absinC =a 2+b 2−c 2, 即有cosC =a 2+b 2−c 22ab=2√3absinC2ab=√3sinC ,则tanC =sinCcosC =√33, 由0<C <π,可得C =π6;由A+B=π−C=5π6,即B=5π6−A,sinB−cosA=sin(5π6−A)−cosA=12cosA+√32sinA−cosA=√32sinA−12cosA=sin(A−π6),由0<A<5π6,可得−π6<A−π6<2π3,则−12<sin(A−π6)≤1,即有sinB−cosA的取值范围是(−12, 1].【考点】三角形求面积【解析】(1)运用三角形的面积公式和余弦定理,结合同角的商数关系,可得C的值;(2)由三角形的内角和定理,可得B=5π6−A,运用两角和差的正弦公式,结合正弦函数的图象和性质,即可得到所求范围.【解答】△ABC的面积S满足4√3S=a2+b2−c2,可得4√3×12absinC=a2+b2−c2,即有cosC=a2+b2−c22ab =2√3absinC2ab=√3sinC,则tanC=sinCcosC =√33,由0<C<π,可得C=π6;由A+B=π−C=5π6,即B=5π6−A,sinB−cosA=sin(5π6−A)−cosA=12cosA+√32sinA−cosA=√32sinA−12cosA=sin(A−π6),由0<A<5π6,可得−π6<A−π6<2π3,则−12<sin(A−π6)≤1,即有sinB −cosA 的取值范围是(−12, 1].【答案】∵ 四边形ABCD 是矩形,∴ CD ⊥AD .∵ AE ⊥AB ,CD // AB ,∴ CD ⊥AE . 又AD ∩AE =A ,∴ CD ⊥平面ADE . ∵ CD ⊂平面CDF ,∴ 平面CDF ⊥平面ADE .∵ BC =1,EA =2,DE =√5,∴ DE 2=AD 2+AE 2, ∴ AE ⊥AD ,又AE ⊥AB ,AB ∩AD =A , ∴ AE ⊥平面ABCD .以D 为坐标原点,建立如图所示的空间直角坐标系D −xyz , 则D(0, 0, 0),B(1, 2, 0),F(0, 2, 1),E(1, 0, 2). ∴ DB →=(1, 2, 0),DF →=(0, 2, 1), 设平面BDF 的一个法向量m →=(x, y, z), 由{m →∗DB →=x +2y =0m →∗DF →=2y +z =0, 令x =2,得m →=(2, −1, 2).同理可求得平面BDE 的一个法向量n →=(2, −1, −1), ∴ cos <m →,n →>=m →∗n→|m →|∗|n →|=3∗√6=√66, ∴ sin <m →,n →>=√306.故二面角E −BD −F 的正弦值为√306.【考点】平面与平面垂直二面角的平面角及求法 【解析】(1)推导出CD ⊥AD .CD ⊥AE ,从而CD ⊥平面ADE ,由此能证明平面CDF ⊥平面ADE .(1)推导出AE ⊥AD ,AE ⊥AB ,以D 为坐标原点,建立空间直角坐标系D −xyz ,利用向量法能求出二面角E −BD −F 的正弦值. 【解答】∵ 四边形ABCD 是矩形,∴ CD ⊥AD .∵ AE ⊥AB ,CD // AB ,∴ CD ⊥AE . 又AD ∩AE =A ,∴ CD ⊥平面ADE . ∵ CD ⊂平面CDF ,∴ 平面CDF ⊥平面ADE .∵ BC =1,EA =2,DE =√5,∴ DE 2=AD 2+AE 2,∴ AE ⊥AD ,又AE ⊥AB ,AB ∩AD =A , ∴ AE ⊥平面ABCD .以D 为坐标原点,建立如图所示的空间直角坐标系D −xyz , 则D(0, 0, 0),B(1, 2, 0),F(0, 2, 1),E(1, 0, 2). ∴ DB →=(1, 2, 0),DF →=(0, 2, 1), 设平面BDF 的一个法向量m →=(x, y, z), 由{m →∗DB →=x +2y =0m →∗DF →=2y +z =0, 令x =2,得m →=(2, −1, 2).同理可求得平面BDE 的一个法向量n →=(2, −1, −1), ∴ cos <m →,n →>=m →∗n→|m →|∗|n →|=3∗√6=√66, ∴ sin <m →,n →>=√306.故二面角E −BD −F 的正弦值为√306.【答案】(1)利用前5组数据得到x =15(2+4+5+6+8)=5,y =15(30+40+60+50+70)=50,∵ y =6.5x +a ,∴ a =50−6.5×5=17.5,∴ 回归直线方程为y =6.5x +17.5, 当x =1时,y =6.5+17.5=24, ∴ y 的预报值为(24)(2)∵ x =4,y =46.25,∑=i=14 x2i−1284,∑=i=14 x2i−1y2i−1945, ∴ b ^=∑−i=14 x2i−1y2i−14xy ∑−i=14 x2i−124x 2=945−4×4×46.2594−4×42≈6.83,∴ a ^=46.25−6.83×4=18.93, 即b ^=6.83,a ^=18.93,b =6.5,a =17.5,b ^−bb≈5%,a ^−aa≈8%,均不超过10%,∴ 可使用位置最接近的已有旧井6(1, 24).(Ⅲ)由题意,1、3、5、7这4口井是优质井,2,4这两口井是非优质井, ∴ 勘察优质井数X 的可能取值为2,3,4, P(X =k)=∁4k ∁24−k∁64,可得P(X =2)=25,P(X =3)=815,P(X =4)=115.∴ X 的分布列为:EX =2×25+3×815+4×115=83. 【考点】离散型随机变量及其分布列 离散型随机变量的期望与方差 【解析】(Ⅰ)利用前5组数据与平均数的计算公式可得x =5,y =50,代入y =6.5x +a ,可得a ,进而定点y 的预报值.(Ⅱ)根据计算公式可得x ,y ,b ^=∑−i=14 x2i−1y2i−14xy ∑−i=14 x2i−124x 2≈10.25,a ^=5.25,b ^=10.25,计算可得并且判断出结论.(Ⅲ)由题意,1、3、5、6这4口井是优质井,2,4这两口井是非优质井,勘察优质井数X 的可能取值为2,3,4,P(X =k)=∁4k ∁24−k∁64,可得X 的分布列及其数学期望.【解答】(1)利用前5组数据得到x =15(2+4+5+6+8)=5,y =15(30+40+60+50+70)=50,∵ y =6.5x +a ,∴ a =50−6.5×5=17.5,∴ 回归直线方程为y =6.5x +17.5, 当x =1时,y =6.5+17.5=24, ∴ y 的预报值为(24)(2)∵ x =4,y =46.25,∑=i=14 x2i−1284,∑=i=14 x2i−1y2i−1945, ∴ b ^=∑−i=14 x2i−1y2i−14xy ∑−i=14 x2i−124x 2=945−4×4×46.2594−4×42≈6.83,∴ a ^=46.25−6.83×4=18.93, 即b ^=6.83,a ^=18.93,b =6.5,a =17.5,b ^−bb≈5%,a ^−aa≈8%,均不超过10%,∴ 可使用位置最接近的已有旧井6(1, 24).(Ⅲ)由题意,1、3、5、7这4口井是优质井,2,4这两口井是非优质井, ∴ 勘察优质井数X 的可能取值为2,3,4, P(X =k)=∁4k ∁24−k∁64,可得P(X =2)=25,P(X =3)=815,P(X =4)=115.∴ X 的分布列为:EX =2×25+3×815+4×115=83.【答案】由题意可知:2c =2√6,c =√6,设F(√6, 0),A(x 0, y 0),B(−x 0, −y 0), 则M(x 0+√62, y 02),N(−x 0+√62, −y02),由OM →⋅ON →=6−x 02−y 024=14,则x 02+y 02=5,则|AB|=2√x 02+y 02=2√5, 由直线l 的斜率k =12时,且 l′ // l ,则l:y =12x ,设 l′:y =12x +m ,y 0=12x 0,由x 02+y 02=5,则A(2, 1),由c =√6,代入椭圆方程解得:a =2√2,c =√2,∴ 椭圆的方程:x 28+y 22=1,联立{x 2+4y 2=8y =12x +m,整理得x 2+2mx +2m 2−4=0,设直线AP ,AQ 的斜率分别为k 1,k 2,设P(x 1, y 1),Q(x 2, y 2),则k 1=y 1−1x 1−2,k 2=y 2−1x 2−2.由x 2+2mx +2m 2−4=0,可得x 1+x 2=−2m ,x 1x 2=2m 2−4, k 1+k 2=y 1−1x 1−2+y 2−1x 2−2=(y 1−1)(x 2−2)+(y 2−1)(x 1−2)(x 1−2)(x 2−2)=(12x 1+m−1)(x 2−2)+(12x 2+m−1)(x 1−2)(x 1−2)(x 2−2)=x 1x 2+(m−2)(x 1+x 2)−4(m−1)(x 1−2)(x 2−2)=2m 2−4−2m 2+4m−4(m−1)(x 1−2)(x 2−2)=0.即k 1+k 2=0.直线AP ,AQ 与x 轴围成一个等腰三角形. 【考点】 椭圆的定义 【解析】(1)根据中点坐标公式及向量的坐标运算即可求得x 02+y 02=5,利用两点之间的距离公式即可求得|AB|的长.(2)根据题意求得直线AB 的方程,根据x 02+y 02=5,即可求得A 点坐标,代入即可求得a 和b 的值,求得椭圆的方程,要证直线MA ,MB 与x 轴始终围成一个等腰三角形,只需证直线MA ,MB 的倾斜角互补即可,也即直线MA ,MB 的斜率互为相反数.可分别用A ,B 点坐标表示直线MA ,MB 的斜率,再计算k 1+k 2,消去参数,看结果是否为0.若是0,则问题得证. 【解答】由题意可知:2c =2√6,c =√6,设F(√6, 0),A(x 0, y 0),B(−x 0, −y 0), 则M(x 0+√62, y 02),N(−x 0+√62, −y02),由OM →⋅ON →=6−x 02−y 024=14,则x 02+y 02=5,则|AB|=2√x 02+y 02=2√5,由直线l 的斜率k =12时,且 l′ // l ,则l:y =12x ,设 l′:y =12x +m ,y 0=12x 0,由x 02+y 02=5,则A(2, 1),由c =√6,代入椭圆方程解得:a =2√2,c =√2,∴ 椭圆的方程:x 28+y 22=1,联立{x 2+4y 2=8y =12x +m,整理得x 2+2mx +2m 2−4=0,设直线AP ,AQ 的斜率分别为k 1,k 2,设P(x 1, y 1),Q(x 2, y 2),则k 1=y 1−1x 1−2,k 2=y 2−1x 2−2.由x 2+2mx +2m 2−4=0,可得x 1+x 2=−2m ,x 1x 2=2m 2−4, k 1+k 2=y 1−1x1−2+y 2−1x2−2=(y 1−1)(x 2−2)+(y 2−1)(x 1−2)(x 1−2)(x 2−2)=(12x 1+m−1)(x 2−2)+(12x 2+m−1)(x 1−2)(x 1−2)(x 2−2)=x 1x 2+(m−2)(x 1+x 2)−4(m−1)(x 1−2)(x 2−2)=2m 2−4−2m 2+4m−4(m−1)(x 1−2)(x 2−2)=0.即k 1+k 2=0.直线AP ,AQ 与x 轴围成一个等腰三角形. 【答案】当t =0时,方程4x 2−1=0的两实根为α=−12,β=12, f(x)=2x x 2+1.f /(x)=−2x 2+2(x 2+1)2=−2(x 2−1)(x 2+1)2,当x ∈[−12,12brack 时,f′(x)>0,f(x)在x ∈[−12,12brack 为单调递增函数, ∴ f(x)的最小值为f(−12)=−45,f(x)的最大值为f(12)=45; f /(x)=−2x 2+2tx +222=−2(x 2−tx −1)22=−12(4x 2−4tx −1)+3222由题知:x ∈[α, β]时,4x 2−4tx −1<0,所以f′(x)>0,f(x)在区间[α, β]为单调递增函数.证明:由(2)知,g(t)=f(β)−f(α)=2β−tβ2+1−2α−t α2+1=(β−α)[t(α+β)−2αβ+2brack(α2+1)(β2+1)又由题得:{α+β=tαβ=−14, ∴ g(t)=√t 2+1(16t 2+40)16t 2+25,g(tanα)=√tan 2α+1(16tan 2α+40)16tan 2α+25=16+24cos 2α16cosα+9cos 3α≥16√616+9cos 2α,1g(tanα)+1g(tanβ)+1g(tanγ)≤16√6+9(cos 2α+cos 2β+cos 2γ)=16√6−9(sin 2α+sin 2β+sin 2γ)brack ,13(sin 2α+sin 2β+sin 2γ)≥(sinα+sinβ+sinγ3)2(sin 2α+sin 2β+sin 2γ)≥13,∴1g(tanα)+1g(tanβ)+1g(tanγ)≤16√6−3)=3√64,由于等号不能同时成立,故得证1g(tanα)+1g(tanβ)+1g(tanγ)<34√6. 【考点】函数与方程的综合运用 【解析】(1)当t =0时,方程4x 2−1=0的两实根为α=−12,β=12,f(x)=2xx 2+1.通过求导以及函数的单调性即可得出最值. (2)利用导数可得函数的单调性. (3)由(2)知,g(t)=f(β)−f(α)=2β−tβ+1−2α−tα+1=(β−α)[t(α+β)−2αβ+2brack(α+1)(β+1),又由题得:{α+β=t αβ=−14,可得g(t)=√t2+1(16t 2+40)16t 2+25,代入计算利用已知不等式即可证明.【解答】当t =0时,方程4x 2−1=0的两实根为α=−12,β=12, f(x)=2xx 2+1. f /(x)=−2x 2+2(x 2+1)2=−2(x 2−1)(x 2+1)2,当x ∈[−12,12brack 时,f′(x)>0,f(x)在x ∈[−12,12brack 为单调递增函数, ∴ f(x)的最小值为f(−12)=−45,f(x)的最大值为f(12)=45; f /(x)=−2x 2+2tx +2(x 2+1)2=−2(x 2−tx −1)(x 2+1)2=−12(4x 2−4tx −1)+32(x 2+1)2 由题知:x ∈[α, β]时,4x 2−4tx −1<0,所以f′(x)>0,f(x)在区间[α, β]为单调递增函数.证明:由(2)知,g(t)=f(β)−f(α)=2β−tβ2+1−2α−tα2+1=(β−α)[t(α+β)−2αβ+2brack(α2+1)(β2+1)又由题得:{α+β=tαβ=−14, ∴ g(t)=√t 2+1(16t 2+40)16t 2+25,g(tanα)=√tan 2α+1(16tan 2α+40)16tan 2α+25=16+24cos 2α16cosα+9cos 3α≥16√616+9cos 2α,1g(tanα)+1g(tanβ)+1g(tanγ)≤166+9(cos 2α+cos 2β+cos 2γ)=166−9(sin 2α+sin 2β+sin 2γ)brack ,13(sin 2α+sin 2β+sin 2γ)≥(sinα+sinβ+sinγ3)2(sin 2α+sin 2β+sin 2γ)≥13,∴1g(tanα)+1g(tanβ)+1g(tanγ)≤16√6−3)=3√64, 由于等号不能同时成立,故得证1g(tanα)+1g(tanβ)+1g(tanγ)<34√6.请考生在22,23两题中任选一题作答,如果多做,则按所做第一题计分[选修4—4:坐标系与参数方程] 【答案】(Ⅰ)直线l 的参数方程为{x =−35t +2y =45t(t 为参数),消去参数t ,可得:4x +3y −8=0;由圆C 的极坐标方程为ρ=asinθ(a ≠0),可得ρ2=ρasinθ,根据ρsinθ=y ,ρ2=x 2+y 2可得圆C 的直角坐标系方程为:x 2+y 2−ay =0,即x 2+(y −a2)2=a 24.(Ⅱ)由(Ⅰ)可知圆C 的圆心为(0, a 2)半径r =|a2|, 直线方程为4x +3y −8=0; 那么:圆心到直线的距离d =|3a2−8|5=|3a−810|直线l 截圆C 的弦长为√3a 2=2√r 2−d 2解得:a =32或a =3211故得直线l 截圆C 的弦长等于圆C 的半径长的√3倍时a 的值为32或3211.【考点】参数方程与普通方程的互化 【解析】(Ⅰ)将t 参数消去可得直线l 的普通方程,根据ρcosθ=x ,ρsinθ=y ,ρ2=x 2+y 2带入圆C 可得直角坐标系方程;(Ⅱ)利用弦长公式直接建立关系求解即可. 【解答】(Ⅰ)直线l 的参数方程为{x =−35t +2y =45t (t 为参数),消去参数t ,可得:4x +3y −8=0;由圆C 的极坐标方程为ρ=asinθ(a ≠0),可得ρ2=ρasinθ,根据ρsinθ=y ,ρ2=x 2+y 2可得圆C 的直角坐标系方程为:x 2+y 2−ay =0,即x 2+(y −a2)2=a 24.(Ⅱ)由(Ⅰ)可知圆C 的圆心为(0, a 2)半径r =|a2|, 直线方程为4x +3y −8=0; 那么:圆心到直线的距离d =|3a2−8|5=|3a−810|直线l 截圆C 的弦长为√3a 2=2√r 2−d 2解得:a =32或a =3211故得直线l 截圆C 的弦长等于圆C 的半径长的√3倍时a 的值为32或3211.[选修4-5:不等式证明]【答案】当a =0时,由f(x)≥g(x)得|x +1|≥2|x|,两边平方整理得3x 2−2x −1≤0,解得−13≤x ≤1所以原不等式的解集为{x|−13≤x ≤1}由g(x)≤f(x)得a ≤|x +1|−2|x|,令ℎ(x)=|x +1|−2|x|,则ℎ(x)={x −1(x ≤−1)3x +1(−1<x <0)−x +1(x ≥0),作出函数的图象,得ℎ(x)max =ℎ(0)=1从而实数a 的取值范围为(−∞, 1]【考点】绝对值不等式的解法与证明函数恒成立问题【解析】(1)化简不等式通过平方,转化求解即可.(2)化简不等式,分离变量,去掉绝对值符号,利用函数的图象求解函数的最大值,然后求解a 的范围.【解答】当a =0时,由f(x)≥g(x)得|x +1|≥2|x|,两边平方整理得3x 2−2x −1≤0,解得−13≤x ≤1所以原不等式的解集为{x|−13≤x ≤1}由g(x)≤f(x)得a ≤|x +1|−2|x|,令ℎ(x)=|x +1|−2|x|,则ℎ(x)={x −1(x ≤−1)3x +1(−1<x <0)−x +1(x ≥0),作出函数的图象,得ℎ(x)max =ℎ(0)=1从而实数a 的取值范围为(−∞, 1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广东省茂名市化州市高考数学二模试卷(文科) 一、选择题(共12小题,每小题5分,满分60分) 1.(5分)设集合A={﹣1,0,1},B={x|x>0,x∈A},则B=( ) A.{﹣1,0} B.{﹣1} C.{0,1} D.{1} 2.(5分)设复数z=1+i,(i是虚数单位),则z2+=( ) A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i 3.(5分)若角α终边经过点P(sin),则sinα=( )
A. B. C. D. 4.(5分)已知双曲线的一个焦点与抛物线x2=20y的焦点重合,且其渐近线方程为3x±4y=0,则该双曲线的标准方程为( )
A.=1 B.=1 C. D.=1
5.(5分)实数x,y满足条件,则()x﹣y的最大值为( ) A. B. C.1 D.2 6.(5分)设a=log,b=(),c=(),则a,b,c的大小关系是( ) A.a<b<c B.c<b<a C.b<c<a D.c<a<b 7.(5分)公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)( ) 水秀中华
水秀中华 2 A.16 B.20 C.24 D.48 8.(5分)函数f(x)=的部分图象大致为( )
A. B. C. D. 9.(5分)一个几何体的三视图如图所示,则该几何体的体积的是( )
A.7 B. C. D. 10.(5分)已知函数,则“函数f(x)有两个零点”成立的充分不必要条件是a∈( ) A.(0,2] B.(1,2] C.(1,2) D.(0,1] 水秀中华 水秀中华 3 11.(5分)已知F1,F2是双曲线=1(a>0,b>0)的左,右焦点,过F1的直线l与双曲线
的左右两支分别交于点A,B,若△ABF2为等边三角形,则双曲线的离心率为( ) A. B.4 C. D. 12.(5分)定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)
=,若x∈[﹣4,﹣2)时,f(x)≥恒成立,则实数t的取值范围是( ) A.[﹣2,0)∪(0,1) B.[﹣2,0)∪[1,+∞) C.[﹣2,1] D.(﹣∞,﹣2]∪(0,1]
二、填空题(共4小题,每小题5分,满分20分) 13.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+2|= . 14.(5分)如图,正方形ABCD内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是 .
15.(5分)已知a,b,c分别是△ABC内角A,B,C的对边,a=4,b=5,c=6,则= . 16.(5分)已知球O的正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A﹣BCD的外接球,BC=3,AB=2,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得的截面中面积最小的截面圆的面积是 .
三、解答题(共5小题,满分60分) 17.(12分)设数列{an}满足:a1=1,点均在直线y=2x+1上.
(1)证明数列{an+1}等比数列,并求出数列{an}的通项公式; (2)若bn=log2(an+1),求数列{(an+1)•bn}的前n项和Tn. 水秀中华 水秀中华 4 18.(12分)某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进
行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料: 日期 4月1日 4月7日 4月15日 4月21日 4月30日 温差x/℃ 10 11 13 12 8 发芽数y/颗 23 25 30 26 16 (1)从这5天中任选2天,求这2天发芽的种子数均不小于25的概率; (2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程=x+; (3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
附:回归直线的斜率和截距的最小二乘估计公式分别为=,=﹣. 19.(12分)如图,在三棱锥P﹣ABC中,PA⊥AC,PC⊥BC,M为PB的中点,D为AB的中点,且△AMB为正三角形 (1)求证:BC⊥平面PAC (2)若PA=2BC,三棱锥P﹣ABC的体积为1,求点B到平面DCM的距离.
20.(12分)如图,已知椭圆C:,其左右焦点为F1(﹣1,0)及F2(1,0),过点F1
的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|、|F1F2|、|AF2|构成等差数列. (1)求椭圆C的方程; 水秀中华 水秀中华 5 (2)记△GF1D的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?
说明理由.
21.(12分)已知α,β是方程4x2﹣4tx﹣1=0(t∈R)的两个不等实根,函数f(x)=的定义域为[α,β] (1)当t=0时,求函数f(x)的最值 (2)试判断函数f(x)在区间[α,β]的单调性 (3)设g(t)=f(x)max﹣f(x)min,试证明:<2(﹣1)
请考生在22,23两题中任选一题作答,如果多做,则按所做第一题计分[选修4—4:坐标系与参数方程]
22.(10分)在平面直角坐标系中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ(a≠0). (Ⅰ)求圆C的直角坐标系方程与直线l的普通方程; (Ⅱ)设直线l截圆C的弦长等于圆C的半径长的倍,求a的值.
[选修4-5:不等式证明] 23.已知函数f(x)=|x+1|,g(x)=2|x|+a (1)当a=0时,求不等式f(x)≥g(x)的解集 (2)若存在实数x,使得g(x)≤f(x)成立,求实数a的取值范围. 水秀中华
水秀中华 6 2018年广东省茂名市化州市高考数学二模试卷(文科) 参考答案与试题解析
一、选择题(共12小题,每小题5分,满分60分) 1.(5分)设集合A={﹣1,0,1},B={x|x>0,x∈A},则B=( ) A.{﹣1,0} B.{﹣1} C.{0,1} D.{1} 【解答】解:A={﹣1,0,1},B={x|x>0,x∈A}, 则A∩B=B,即{﹣1,0,1}∩{x|x>0}={1}. 故选:D.
2.(5分)设复数z=1+i,(i是虚数单位),则z2+=( ) A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i 【解答】解:z2+==2i+=2i+1﹣i=1+i. 故选:C.
3.(5分)若角α终边经过点P(sin),则sinα=( ) A. B. C. D. 【解答】解:∵角α终边经过点P(sin),即点P(,﹣), ∴x=,y=﹣,r=|OP|=1, 则sinα==y=﹣, 故选:C.
4.(5分)已知双曲线的一个焦点与抛物线x2=20y的焦点重合,且其渐近线方程为3x±4y=0,则该双曲线的标准方程为( )
A.=1 B.=1 C. D.=1 【解答】解:∵抛物线x2=20y中,2p=20,=5, 水秀中华 水秀中华 7 ∴抛物线的焦点为F(0,5),
设双曲线的方程为﹣=1, ∵双曲线的一个焦点为F(0,5),且渐近线的方程为3x±4y=0即y=x,
∴, 解得a=3,b=4(舍负), 可得该双曲线的标准方程为:=1.. 故选:B.
5.(5分)实数x,y满足条件,则()x﹣y的最大值为( ) A. B. C.1 D.2 【解答】解:画出可行域
令z=x﹣y,变形为y=x﹣z,作出对应的直线, 将直线平移至点(4,0)时,直线纵截距最小,z最大, 将直线平移至点(0,1)时,直线纵截距最大,z最小, 将(0,1)代入z=x﹣y得到z的最小值为﹣1, 则()x﹣y的最大值是2, 水秀中华 水秀中华 8 故选:D.
6.(5分)设a=log,b=(),c=(),则a,b,c的大小关系是( ) A.a<b<c B.c<b<a C.b<c<a D.c<a<b 【解答】解:a=log=log23>1,1>b=()=>c=()=, 则c<b<a, 故选:B.
7.(5分)公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)( )
A.16 B.20 C.24 D.48 【解答】解:模拟执行程序,可得: n=6,S=3sin60°=, 不满足条件S≥3.10,n=12,S=6×sin30°=3, 不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056, 满足条件S≥3.10,退出循环,输出n的值为24. 故选:C.
8.(5分)函数f(x)=的部分图象大致为( )