粒子滤波通俗讲解
粒子滤波和贝叶斯滤波

贝叶斯滤波与粒子滤波:原理、应用与选择
粒子滤波和贝叶斯滤波在原理和应用上存在一定差异。
贝叶斯滤波是一种基于贝叶斯定理的滤波方法,它主要用于解决贝叶斯滤波积分难的问题。
贝叶斯滤波通常有两种假设:线性高斯假设和非线性高斯假设。
在线性高斯假设下,状态转移函数和观测函数均为线性函数,且过程噪声和观测噪声都服从正态分布。
然而,这种假设对于许多实际应用来说并不成立。
非线性高斯假设允许状态转移函数和/或观测函数为非线性函数,且过程噪声和/或观测噪声可以不是正态分布。
粒子滤波是一种基于粒子(或样本)的递归滤波方法,它通过直接参与系统的非线性变换,并利用运动和观测进行重新采样以调整状态粒子点的疏密程度。
粒子滤波在处理非线性、非高斯问题时具有优势,因为它不依赖于对系统动态的特定假设,而是通过从后验概率分布中抽取样本(粒子)来逼近系统的真实状态。
然而,粒子滤波也存在一些问题,例如粒子耗散(粒子多样性的丧失)和维数灾难(当proposal比较差的时候,需要用很多的粒子才能较好的表示机器人的后验概率分布)。
总之,贝叶斯滤波和粒子滤波各有其优点和局限性,需要根据具体应用场景选择合适的滤波方法。
粒子滤波

一、贝叶斯估计
贝叶斯估计是粒子滤波方法的理论基础,是一 种利用客观信息和主观信息相结合的估计方法,它 不仅考虑了样本的客观信息,还考虑了人为的主观 因素,能够很好地处理观测样本出现异常时的情况。 对于待估计的参数,贝叶斯估计在抽取样本前先给 出该参数的先验分布,并结合样本信息可以得到参 数的后验分布信息。 • 假定动态时变系统描述如下: •
X k = f k ( X k −1 , Vk −1 )
Z k = hk ( X k ,Wk )
(1)
一、贝叶斯估计
X f 式中, k 为系统状态,k 为n维向量函数, hk 为m维向 量函数, k 为n维随机过程噪声,Wk 为m维随机测 V 量噪声。 若已知状态的初始概率密度函数为 P( X 0 Z 0 ) = P( X 0 ) 则状态预测方程为: P ( xk z1:k −1 ) = ∫ P ( xk xk −1 ) P( xk −1 z1:k −1 )dxk −1 (2)
• 状态更新方程为: • P( X k Z1:k −1 ) = P( Z k X k ) P( X k Z1:k −1 )
P( Z k Z1:k −1 )
(3)
一、贝叶斯估计
• 式中归一化常量 • P( Z k Z1:k −1 ) = ∫ P( Z k X k )P( X k Z1:k −1 )dX k (4) 它取决与似然函数 P( Z k X k )及测量噪声的统计特性。
二、粒子滤波算法
• • • • • 步骤1 初始化 k = 0 i i x0 ~ P( x0 ) 即根据 P( x0 )分布采样得到 x0 , i = 1,2,...N 采样 步骤2 重要性权值计算 i i xk ~ q( xk x0:k −1 , zo:k ), i = 1,2,...N 采样 计算重要性权值如下
多种粒子滤波介绍

粒子滤波算法经典粒子滤波算法的一般描述:1.初始化:取k =0,按0()p x 抽取N 个样本点()0i x ,i =1,…,N 。
2.重要性采样: ()()0:11:(|,)i i k k k kx q x x z -~,令 ()()()0:0:1(,)i i i k k k x x x -=,其中i =1,…,N 。
3.计算权值: ()()()()()11()()0:11:(|)(|)(|,)i i i i i k k k k kk i i kk k p z x p x x q xxz ---ω=ω若采用一步转移后验状态分布,该式可简化为()()()1(|)i i i k k k k p z x -ω=ω。
4.归一化权值: ()j j i i kk Nk()()=1ωω=ω∑5.重采样:根据各自归一化权值 ()i k ω的大小复制/舍弃样本 ()0:i k x ,得到N 个近似服从()0:1:(|)i k k p x z 分布的样本()0:i k x 。
令()i k ω= ()i k ω=1/N ,i =1,…,N 。
6.输出结果:算法的输出是粒子集()0:{: 1...}i k x i N =,用它可以近似表示后验概率和函数0:()k k g x 的期望0:0:1:0:11(|)()i kNk k k x i p x z dx N()==δ∑0:0:11(())()Nik k k k i E g x g x N==∑7.K=K+1,重复2步至6步。
其它粒子滤波 正则粒子滤波正则粒子滤波(Regularized Particle Filter ,RPF)是为了解决由重采样引入的新问题而提出的一种改进的粒子滤波。
当通过序贯重要性采样后引起粒子退化问题时,前面提到可以用重采样的方法来减小退化的影响,但是引入重采样策略同时也引入了新的问题,即粒子匮乏问题,经过若干次迭代之后,所有粒子都趋向于同一个粒子,导致粒子的多样性丧失。
粒子滤波算法在目标跟踪中的应用

粒子滤波算法在目标跟踪中的应用第一章:引言目标跟踪是计算机视觉领域中的一个重要研究方向,它用于自动识别并跟踪一个或多个目标。
目标跟踪技术在许多应用场景中都发挥着重要作用,例如视频监控、智能交通系统和机器人视觉等领域。
粒子滤波算法是目前目标跟踪领域中比较常用的算法之一,下面将详细讲解它在目标跟踪中的应用。
第二章:粒子滤波算法的原理粒子滤波算法是一种基于贝叶斯滤波的非线性滤波算法。
该算法基于样本集合(即粒子),通过加权统计方式表示目标状态概率密度,以达到目标状态预测和估计的目的。
具体原理如下:1. 首先,根据目标运动模型,通过一定的转移概率对目标状态进行预测。
2. 在当前观测到的状态下,对每个粒子求取其对应目标状态的权重,即粒子的概率密度。
3. 通过重采样方法,产生一些新的粒子,使得优秀的粒子得以传递至下一步。
4. 重复执行第1-3步,直到达到满足精度要求或者满足停止条件时,停止运行程序。
在粒子滤波算法中,粒子数目的选择非常重要,过少的粒子会导致算法的不稳定和精度下降,而过多的粒子会导致算法的计算量过大,降低算法的实时性和效率。
第三章:粒子滤波算法在目标跟踪中的应用粒子滤波算法在目标跟踪中的具体应用步骤如下:1. 预处理:确定目标的区域和关键特征,选择合适的目标描述子,对图像进行去噪和预处理。
2. 初始化:在第一帧图像中,确定目标的位置和大小,产生一组粒子,表示目标的状态分布。
3. 预测:基于目标的运动模型,利用转移概率对每个粒子进行预测,得到下一时刻目标的状态分布。
4. 更新:基于观测模型,根据目标描述子和当前图像信息,对每个粒子进行权重计算,得到目标状态后验概率分布。
5. 重采样:根据粒子的权重,利用重采样方法产生一些新的粒子,使得优秀的粒子得以传递至下一步。
6. 目标定位:利用粒子集合的重心、加权平均或者最大化后验概率,确定目标在当前帧中的位置。
7. 图像跟踪:重复执行步骤3-6,实现对目标在连续帧图像中的跟踪。
粒子数动态调整的粒子滤波新算法

粒子数动态调整的粒子滤波新算法
粒子滤波(Particle Filter)是一种基于贝叶斯滤波的随机游走算法,用于处理非线性、非高斯的状态估计问题。
然而,粒子滤波需要大量
的粒子数量才能获得较好的估计结果,而且随着时间的推移,粒子数量会
逐渐增加,导致计算时间和存储空间的急剧增加。
为了解决这个问题,近年来出现了一些粒子数动态调整的粒子滤波新
算法,可以根据实时观测数据的不同情况,自适应地调整粒子数,从而在
保证估计精度的同时,减少计算时间和存储空间的开销。
这些算法主要包
括以下几类:
1.基于采样思想的粒子滤波算法:这类算法主要考虑粒子增减的策略,通过对采样粒子的质量和分布进行评估,实现粒子数量的动态调整。
2.基于注意力机制的粒子滤波算法:这类算法利用注意力机制来识别
关键的观测数据,从而减少不必要的粒子数量,提高计算效率。
3.基于机器学习的粒子滤波算法:这类算法利用机器学习技术来学习
不同观测数据下的粒子数量,实现自适应的粒子数调整。
总的来说,粒子数动态调整的粒子滤波算法是一种非常有效的方法,
可以在保证估计精度的同时,提高计算效率和存储效率,具有很广泛的应
用前景。
定位(粒子滤波)

定位(粒⼦滤波)⼀、粒⼦滤波1.1 介绍粒⼦滤波器是⼀种基于蒙特卡罗的近似解法,由于计算机计算能⼒的不断提⾼和易于实现,粒⼦滤波器在机器⼈定位领域得到了⼴泛的应⽤,其优势在于对复杂问题的求解上,⽐如⼀些⾮线性、⾮⾼斯动态系统的状态递推估计或概率推理问题。
粒⼦滤波器的本质是使⽤⼀组有限的加权随机样本(粒⼦)来近似表征任意状态的后验概率密度 bel(x t) 。
1.2 算法粒⼦滤波器的算法流程主要是对粒⼦集X的预测和更新。
该算法的输⼊是粒⼦集X t−1,以及最新的控制u t和测量z t。
算法⾸先构造⼀个暂时的粒⼦集 ¯X,表⽰置信度¯bel(x t)。
这通过系统地处理输⼊粒⼦集Xt−1中的每个粒⼦x[1]t−1完成。
随后它将这些粒⼦转换为粒⼦集X t,⽤于近似后验分布 bel(x t)。
值得注意的是,这⾥ M 代表粒⼦集X t的粒⼦数量,M的要根据实际情况选取合适的值。
w[m]t =p(z t|x[m]t)是测量z t在粒⼦x[m]t下的概率,是粒⼦滤波表征后验概率密度的由来,即通过当前的观测到的数据来预测当前状态的发⽣概率。
还有就是算法的更新部分,采⽤了重采样(有⼀个版本是不进⾏重采样的)。
⼆、定位2.1 初始化假定机器⼈是在⼀个⼆维的世界中,在这个世界中可以被感知到的路标点有4个,分别是L1(20.0,20.0), L2(80.0,80.0), L3(20.0,80.0), L4(80.0,20.0),同时地图的⼤⼩是100X100。
那么⾸先我们在地图上随机⼀个机器⼈的坐标(x,y)和运动⽅向orientation,设定粒⼦集的M为1000,每个粒⼦都初始化⼀个和机器⼈相同数据结构的状态。
N = 1000 #初始粒⼦个数p = [] #粒⼦集world_size = 100.0 #地图尺⼨for i in range(N):x = random.random() * world_sizey = random.random() * world_sizeorientation = random.random() * 2.0 * pip.append([x,y,orientation])接着给机器⼈设定初始噪声参数,分别是前进噪声forward noise,转向噪声turn noise和传感器噪声 sense noise。
粒子滤波在单目标跟踪中的应用

粒子滤波在单目标跟踪中的应用粒子滤波在单目标跟踪中的应用粒子滤波(Particle Filter)是一种常用于目标跟踪的方法,特别适用于单目标跟踪。
下面将按照步骤思路来解释粒子滤波在单目标跟踪中的应用。
1. 初始化:首先,需要初始化一组粒子。
每个粒子代表一个可能的目标状态,例如目标的位置和速度。
这些粒子在整个跟踪过程中会被不断更新和调整。
2. 预测:根据当前的目标状态和运动模型,对每个粒子进行预测,即预测目标在下一帧中的位置和速度。
这可以通过使用运动模型和随机噪声来模拟目标的运动。
3. 观测更新:接下来,需要根据观测数据来更新粒子权重。
观测数据可以是从图像或传感器中获得的目标特征,例如颜色、纹理或形状。
对于每个粒子,计算其与观测数据之间的相似度,并将相似度作为粒子的权重。
4. 重采样:根据粒子的权重,进行重采样操作。
重采样过程会根据粒子的权重来选择新一轮的粒子,即根据权重较高的粒子更有可能被选择,而权重较低的粒子会被淘汰。
这样可以保留较好的粒子,并且用新的粒子替代权重较低的粒子。
5. 目标估计:通过对最后一轮重采样后的粒子进行统计分析,可以估计出目标的最可能状态。
常见的估计方法有计算粒子的平均值或最大权重粒子的位置。
这样就得到了目标的估计位置和速度。
6. 更新迭代:随着新的观测数据的到来,需要不断重复以上步骤,即预测、观测更新、重采样和目标估计,来实现目标的持续跟踪。
综上所述,粒子滤波在单目标跟踪中的应用通过初始化粒子、预测目标状态、根据观测数据更新粒子权重、重采样和目标估计来实现目标的准确跟踪。
通过不断迭代更新的过程,可以在复杂环境中实现目标的高效跟踪,并且适用于各种目标特征和运动模型。
粒子滤波原理

粒子滤波原理粒子滤波是一种基于蒙特卡洛方法的非线性、非高斯状态估计算法,它通过在状态空间中随机抽取一组粒子来近似表示目标系统的状态分布,从而实现对系统状态的估计和预测。
粒子滤波在目标跟踪、机器人定位、信号处理等领域有着广泛的应用,本文将介绍粒子滤波的基本原理和算法流程。
粒子滤波的基本原理是基于贝叶斯滤波理论,它通过不断地对系统状态进行采样和更新,来逼近系统的真实状态分布。
在粒子滤波中,我们通过一组随机抽取的粒子来表示系统的状态空间,每个粒子都有一个权重来表示其对系统状态的估计贡献。
通过不断地对粒子进行采样和更新,可以逐步逼近系统的真实状态分布。
粒子滤波的算法流程大致可以分为预测和更新两个步骤。
在预测步骤中,我们根据系统的动力学模型对当前的粒子进行状态预测,得到下一个时刻的状态估计。
在更新步骤中,我们根据系统的观测模型,计算每个粒子的观测概率,并根据观测值对粒子的权重进行调整,从而得到更新后的粒子集合。
通过不断地重复预测和更新步骤,可以逐步逼近系统的真实状态分布。
粒子滤波的优势在于它能够处理非线性、非高斯的系统,并且可以适用于任意维度的状态空间。
同时,由于粒子滤波是一种基于蒙特卡洛方法的近似推断算法,因此它可以灵活地处理各种复杂的状态分布,包括多峰分布和非参数分布等。
然而,粒子滤波也面临着粒子数目的选择和计算复杂度的增加等问题。
由于粒子滤波是一种基于蒙特卡洛方法的近似推断算法,因此粒子的数目会直接影响到滤波的性能。
通常情况下,粒子数目越多,滤波的性能越好,但同时也会增加计算的复杂度。
因此在实际应用中,需要根据系统的复杂度和计算资源的限制来选择合适的粒子数目。
总的来说,粒子滤波是一种非常灵活和强大的状态估计算法,它能够有效地处理各种复杂的非线性、非高斯系统,并且在目标跟踪、机器人定位、信号处理等领域有着广泛的应用前景。
通过不断地改进和优化,相信粒子滤波在未来会有更加广泛的应用和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粒子滤波通俗讲解
粒子滤波(Particle Filter)是一种基于蒙特卡洛方法的非线性滤波算法,常用于目标跟踪、定位和SLAM(同步定位与地图构建)等领域。
它的核心思想是通过一系列粒子(也称为样本或假设)来近似表示系统的后验概率分布,从而实现对系统状态的估计和预测。
粒子滤波的基本原理是利用一组随机生成的粒子来表示系统的潜在状态。
每个粒子都有一个权重,反映了它与真实状态的拟合程度。
粒子滤波通过对粒子的重采样和更新,逐步减小粒子权重的方差,从而逼近真实状态的后验概率分布。
在粒子滤波中,首先需要初始化一组随机粒子,这些粒子在状态空间中均匀或按某种分布进行采样。
然后,根据系统的状态转移方程,将粒子进行预测,得到下一时刻的状态估计。
预测过程中,可以考虑系统的动力学模型和外部扰动等因素。
接下来,需要利用观测数据对粒子进行更新。
观测数据可以是传感器采集到的现实数据,如图像、激光雷达或GPS测量值等。
通过比较观测数据和预测状态之间的差异,可以计算粒子的权重,即粒子与真实状态的拟合程度。
在更新过程中,通常会使用重要性采样(Importance Sampling)来调整粒子的权重。
重要性采样的基本思想是根据观测数据的条件概率分布,对粒子的权重进行重新分配。
权重较高的粒子将被保留,
而权重较低的粒子将被淘汰。
为了避免粒子权重的退化(degeneracy),即只有少数粒子具有较高权重,大多数粒子权重趋近于0,需要进行重采样(Resampling)。
重采样过程中,根据粒子的权重对粒子进行有放回或无放回的随机抽样,使得权重较高的粒子被重复选择,而权重较低的粒子被剔除。
通过重采样,粒子滤波可以实现对系统状态的精确估计。
重采样后,可以利用重采样后的粒子集合进行下一时刻的预测和更新,循环迭代直到获得最终的状态估计。
粒子滤波作为一种基于蒙特卡洛方法的非线性滤波算法,具有一定的优势。
与传统的卡尔曼滤波相比,粒子滤波可以处理非线性系统和非高斯噪声,并且不需要对系统进行线性化。
此外,粒子滤波还可以通过增加粒子数量来提高估计的精度,但同时也会增加计算复杂度。
粒子滤波是一种基于蒙特卡洛方法的非线性滤波算法,通过一系列随机生成的粒子来近似表示系统的后验概率分布。
通过预测、更新和重采样等步骤,粒子滤波可以实现对系统状态的估计和预测,广泛应用于目标跟踪、定位和SLAM等领域。