动态规划 运筹学 例题

合集下载

《运筹学》试题及答案(四)

《运筹学》试题及答案(四)

《运筹学》试题及答案一、单选题1. μ是关于可行流f的一条增广链,则在μ上有(D)A.对一切B.对一切C.对一切D.对一切2.不满足匈牙利法的条件是(D)A.问题求最小值B.效率矩阵的元素非负C.人数与工作数相等D.问题求最大值3.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.当基变量x i的系数c i波动时,最优表中引起变化的有(B)A.最优基BB.所有非基变量的检验数C.第i 列的系数D.基变量X B6.当非基变量x j的系数c j波动时,最优表中引起变化的有(C)A.单纯形乘子B.目标值C.非基变量的检验数D. 常数项7.当线性规划的可行解集合非空时一定(D)A.包含点X=(0,0,···,0)B.有界C.无界D.是凸集8.对偶单纯形法的最小比值规划则是为了保证(B)A.使原问题保持可行B.使对偶问题保持可行C.逐步消除原问题不可行性D.逐步消除对偶问题不可行性9.对偶单纯形法迭代中的主元素一定是负元素()AA.正确B.错误C.不一定D.无法判断10.对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正()BA.换出变量B.换入变量C.非基变量D.基变量11.对LP问题的标准型:max,,0Z CX AX b X==≥,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值Z必为()BA.增大B.不减少C.减少D.不增大12. 单纯形法迭代中的主元素一定是正元素( )AA.正确B.错误C.不一定D.无法判断13.单纯形法所求线性规划的最优解()是可行域的顶点。

AA.一定B.一定不C.不一定D.无法判断14.单纯形法所求线性规划的最优解()是基本最优解。

运筹学习题答案运筹学答案

运筹学习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解( )BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?( )BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是( )DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的 B .不增不减的 C .增加的 D .难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CB.14009.在求最短路线问题中,已知起点到A ,B ,C 三相邻结点的距离分别为15km ,20km,25km ,则( )。

DA.最短路线—定通过A 点B.最短路线一定通过B 点C.最短路线一定通过C 点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈 C .存在三个圈 D .不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于 600 700300 500 400锅炉房12312.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

(完整word版)运筹学》习题答案 运筹学答案汇总

(完整word版)运筹学》习题答案  运筹学答案汇总

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解( )BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?( )BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是( )DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的 B .不增不减的 C .增加的 D .难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A ,B ,C 三相邻结点的距离分别为15km ,20km,25km ,则( )。

DA.最短路线—定通过A 点B.最短路线一定通过B 点C.最短路线一定通过C 点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈 C .存在三个圈 D .不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于 600 700300 500 400锅炉房12312.在计算最大流量时,我们选中的每一条路线( )。

实用运筹学——5.3 动态规划的模型及求解方法

实用运筹学——5.3 动态规划的模型及求解方法

min 1
6
min
7
7
v 2(B3,C 3 ) f3(C 3 )
5 12
17
即从点 B3 到终点 E 的最短路线为B 3 C 2 D 2 E ,最短距离为 7.
第一阶段,从始点 A 到终点 E 的最优决策为
v 1(A,B1) f2(B1)
2 10
12
f1(A) minv 1(A,B2 ) f2(B2 ) min5 13 min18 8
f4(D f4(D
12))
min45
5 2
min160
6
从点 C2 到终点 E 的最优路线为C 2 D 2 E ,最短距离为 6.
如果从点 C3 出发,则最优决策为
f3(C 3 )
minvv33((CC
3,D1 3,D2
) )
f4(D 1 ) f4(D2 )
min180
5 2
min1123
v 1(A,B3 ) f2(B3 )
1
7
8
即从始点 A 到终点 E 的最短路线为 A B 3 C 2 D 2 E ,最短距离
为 8.
6 12
18
即从点 B1 到终点 E 的最短路线为 B 1 C 2 D 2 E ,最短距离为 10.
从点 B2 到终点 E 的最优决策为
v 2(B 2,C 1) f3(C 1)
6 7
13
f2(B2 ) minv 2(B2,C 2 ) f3(C 2 ) min10 6 min16 13
❖ 下面通过求解例5.1.4,阐明逆序递推法的基本思路.
❖ 第四阶段,由点D1到终点E只有一条路线,其长度 f4(D1)=5,同理f4(D2)=2.

哈尔滨工业大学运筹学教案教案_动态规划2

哈尔滨工业大学运筹学教案教案_动态规划2
2014-9-4
x (1) 1
* 2
8
管理运筹学课程组 ftp://211.71.69.239
s2 2
f 2 (2) max {g 2 ( x2 ) f 3 ( s3 )}
0 x2 s 2 * x2 (2) 2
3
例1 工业部拟将5台某种设备分配给所属的甲、乙、丙 三个工厂,各工厂若获得这种设备,可以为公司 提供的盈利如表。 问:这五台设备如何分配给各工厂,才能使 公司得到的盈利最大。 解:将问题按工厂分为三 个阶段,甲、乙、丙分别 编号为1,2,3。
工厂 盈利 设备台数 0 1 2 3 4 5 甲 0 3 7 9 12 13 乙 0 5 10 11 11 11 丙 0 4 6 11 12 12
0 x2 s 2 * x2 (0) 0 f 2 (1) max { g 2 ( x2 ) f 3 ( s3 )}
0 x2 s 2
s
2
1
g 2 (0) f 3 (1) 0 4 max max 5 x2 0,1 g 2 (1) f 3 (0) x2 0,15 0
动态规划应用举例 资源分配问题 生产与存贮问题 设备更新问题
2014-9-4
管理运筹学课程组 ftp://211.71.69.239
1
6.3Байду номын сангаас
资源分配问题
将数量一定的一种或若干种资源,恰当地分配 给若干个使用者,使目标函数为最优。 6.3.1一维离散资源分配问题 设有某种原料,总数量为 a ,用于生产 n 种产品。 若分配数量xi用于生产第i 种产品,其收益为gi(xi) 问应如何分配,才能使生产 n 种产品的总收入最大? MAX =g1(x1)+ g2(x2)+‥ ‥+ gn(xn) s.t. x1+x2+…+ xn=a xi≥0 i=1,2, …,n

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

�� �
1
0
1 0� �
0 0�
0 1�
0
0
�� �
∴使总消耗时间为最少的分配任务方案为�
甲→C�乙→B�丙→D�丁→A 此时总消耗时间 W=9+4+11+4=28
七、�6 分�计算下图所示的网络从 A 点到 F 点的最短路线及其长度。
此题在“《运筹学参考综合习题》�我站搜集信息自编�.doc”中已有。
B1
B2
B3
B4
si
A1
1
2
3
4
10
A2
8
7
6
5
80
A3
9
10
11
9
15
dj
8
22
12
18
1�用最小费用法求初始运输方案�并写出相应的总运费��5 分� 2�用 1�得到的基本可行解�继续迭代求该问题的最优解。�10 分� 解�用“表上作业法”求解。
1�先用最小费用法�最小元素法�求此问题的初始基本可行解�
�2 x1 � 4 x2 � 22

�� �
� 2
x1 x1
� �
4 x
x
2
2 � 10 �7
� �
x1

3x2
�1
�� x1 , x 2 � 0
⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺
解�
第 1 页 共 11 页
可行解域为 abcda�最优解为 b 点。
�2 x1 � 4 x2 � 22
由方程组 �

x2 � 0
18
60
费销
用 地
B1
B2
B3

运筹学模拟试卷及详细答案解析填空(含答案)

运筹学模拟试卷及详细答案解析填空(含答案)

运筹学模拟试卷及详细答案解析填空(含答案)一、填空题(每题2分,共40分)1. 线性规划问题中,若决策变量为非负约束,则该约束条件可以表示为______。

2. 在线性规划中,若目标函数为最大化问题,则其标准形式中目标函数的系数应为______。

3. 线性规划问题中,若约束条件为等式约束,则该约束条件对应的松弛变量为______。

4. 在运输问题中,若产地A到销地B的运输成本为2元/吨,则对应的运输成本矩阵中的元素为______。

5. 对偶问题的最优解是原问题的______。

6. 在指派问题中,若甲完成某项工作的时间为3小时,则对应的效率矩阵中的元素为______。

7. 网络图中,若两个节点之间的距离为5,则对应的弧长为______。

8. 在排队论中,若服务时间为负指数分布,则其平均服务时间为______。

9. 随机规划问题中,目标函数和约束条件的参数都是______。

10. 在库存管理中,若每次订购成本为100元,则对应的订购成本系数为______。

11. 在动态规划中,最优策略是______。

12. 在非线性规划中,若目标函数为凹函数,则该问题为______。

13. 线性规划问题中,若目标函数为最小化问题,则其标准形式中目标函数的系数应为______。

14. 在整数规划中,若决策变量为整数变量,则该约束条件可以表示为______。

15. 在排队论中,若到达率为λ,则单位时间内的平均到达人数为______。

16. 在指派问题中,若乙完成某项工作的时间为2小时,则对应的效率矩阵中的元素为______。

17. 在运输问题中,若产地A的供应量为100吨,则对应的供应量矩阵中的元素为______。

18. 在非线性规划中,若目标函数为凸函数,则该问题为______。

19. 在动态规划中,最优子策略是______。

20. 在随机规划问题中,目标函数和约束条件的参数都是______。

二、详细答案解析1. 答案:x ≥ 0解析:线性规划问题中,决策变量通常为非负约束,表示为x ≥ 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
动态规划 运筹学 例题
动态规划是种处理有决策的技术,它基于数学统计并使用数学模
型来帮助决策者更有效地进行决策。它可以将抽象的复杂问题转换为
解决问题所需的最佳解决方案。在运筹学中,动态规划是一种有效的
算法,用于求解最优化问题,并逐步增加在更大范围内的最优解。文
旨在通过讨论和分析《动态规划筹学 例题》中提出的问题,深入了
解动态规划在现实世界中的应用。
首先,我们从例题开始:《动态规划筹学 例题》中提出的问题如
下:一家商场内有五个商品,分别为A、B、C、D和E,现要在限定
的资金内购买这五个商品。每种商品的价格分别为1元、2元、3元、
4元和5元,而限定的资金为14元。现在的问题是,如何在有限的
资金内购买五个商品,使得购买商品的总价值最大?
要解决这个问题,首先要明确目标和限制条件,也就是最高价值
和有限资金。此外,购买商品时也要做出一些限制,即每一种商品最
多只能买一件。接下来,为了求得最优解,需要建立一个决策表,用
以记录每一步的决策结果。
动态规划中,解决这类问题的一般解法为“自底向上”:从最最
基础的决策开始,然后按照这种逐步累积的方式,分析每一步决策对
最终结果的影响,从而得出最终的最优解。照这种思路,解决上述问
题,可先分析可以购买不同种类商品时,可以得到的最优价值。设资
金m=14元,则可以得到以下决策表:
购买价格 | A(1元) | B(2元) | C(3元) | D(4元) | E(5元)
- 2 -


-----------------------------------------------------------
------
购买价值 | 1 | 2 | 3 | 4 | 5

-----------------------------------------------------------
------
从决策表中可以看出,当m=0时,可以购买价值为0;当m=1时,
可以购买价值为1;当m=2时,可以购买价值为2;当m=3时,可以
购买价值为3;当m=4时,可以购买价值为4;当m=5时,可以购买
价值为5,即第一步决策已经完成
接下来,在m=6~14时,可以进行逐步分析,以m=6为例,此时
可以购买A、B和E三种商品,最大价值为1+2+5=8;从m=7~m=14步
骤与上述类似,具体如下表:
购买价格 | A + B(3元) | A + C(4元) | A + D(5元) | B + D(6
元) | C + D(7元) | B + E(7元) | C + E(8元) | D + E(9元)

-----------------------------------------------------------
----------------------------------------------
购买价值 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | 9

-----------------------------------------------------------
- 3 -

----------------------------------------------
结合上述分析,最终可以得出最优解:购买A、C、E三种商品,
获得最大价值1+3+5=9元。
上述《动态规划筹学 例题》是一个经典的动态规划问题,通过
分析可以清楚地看出,它利用解决有限资金内最大价值购买问题的技
术,能够提供一个解决实际问题的可行策略。在现实世界中,动态规
划技术广泛应用于经济、科学、工程、管理等领域,已经被广泛地用
于求解算法优化问题、最优路径问题、网络优化问题、资源调度问题
等。例如,它可以用于求解铁路线路建设、公路规划、资源分配等问
题;对于工厂调度问题,它可以用于解决机器调度、短期订单调度等
问题;对于电力系统运行,它可以帮助求解电力系统的负荷分配和实
时调度等问题。
总之,动态规划是一种很有用的技术,它可以帮助用户更有效地
解决复杂的优化问题,在现实世界中也有广泛的应用,被用于多种复
杂的实际问题的解决上。

相关文档
最新文档