电磁场的四个基本量 (2)

合集下载

工程电磁场导论课件

工程电磁场导论课件
距离远等优点。
电磁场在医疗领域的应用
要点一
总结词
电磁场在医疗领域的应用包括核磁共振成像、微波治疗、 电磁波透视等,为疾病诊断和治疗提供了重要手段。
要点二
详细描述
核磁共振成像是一种无创的影像学检查方法,利用强磁场 和射频脉冲使人体组织中的氢原子发生共振,从而产生人 体结构的图像。微波治疗则利用特定频率的电磁波对病变 组织进行加热,达到治疗肿瘤、炎症等疾病的目的。电磁 波透视则用于观察人体内部器官的形态和功能。
时变电磁场
04
麦克斯韦方程组
麦克斯韦方程组是描述时变电磁场的理论基础, 包括描述电场和磁场变化的微分方程。
麦克斯韦方程组还包括安培环路定律、法拉第电 磁感应定律和洛伦兹力定律等基本物理规律。
这些方程组揭示了电磁场之间的相互依赖关系, 以及它们随时间变化的规律。
波动方程与电磁波速
01
时变电磁场中的波动方程描述了电场和磁场随时间和空间的变 化规律。
电场中的电位差与电动势
电位差
两点之间的电位之差,等于两点之间的电压。
电动势
电源内部非静电力克服静电力做功将其他形式的能转化为电能的本领,其方向由电源负极指向正极。
恒定磁场
03
磁感应强度与磁场强度
磁感应强度
描述磁场强弱和方向的物理量,用B 表示,单位是特斯拉(T)。
磁场强度
描述电流产生磁场能力的物理量,用 H表示,单位是安培/米(A/m)。
静电场
02
电场强度与电位
电场强度
描述电场力的矢量,其方向与电场中 某点的电场方向相同,大小等于单位 正电荷在该点所受的电场力。
电位
描述电场中某点的能量状态,其大小 与电场强度和位置有关,其定义式为 $V = int_{0}^{r}Edl$。

电磁场复习纲要

电磁场复习纲要

《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。

二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。

在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。

3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。

6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。

第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。

三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。

2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。

3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。

求任意点的电场强度及电位。

电动力学电磁场与电磁波课件第1章矢量分析

电动力学电磁场与电磁波课件第1章矢量分析
分析和处理电磁场问题的方法 —— 数学处理过程
矢量分析
本课程约定
? 物理量符号上方用“ ? ”或粗斜? 印刷体代表矢量 ,例如电场强度矢量E
? 物理量符号上方用“ ? ”代表单
位矢量,例如e?x,e?y,e?z 分别代表 x,
y,z 方?向的单位矢量, r? 代表位置 矢量 r 的单位矢量
第一章 矢量分析
e??
?
单位圆
x
?e??
??
?
? e?xcos?
? e?ysin?
?
? e?ρ
xy 平面上的投影图
?
矢量表示: A ? e?? A? ? e?? A? ? e?z Az
z
e?z
位置矢
r ? e?? ? ? e??? ? e?z z ???
?
位置矢量 : r ? e?? ? ? e?zz
? P(?, ?, z) r
场物理量随时间变化。本课程主要讨论随 时间正弦或余弦变化的时变场,称时谐场
标量场( Scalar Field )
场物理量是标量,如温度场,电位场等
场矢物量理场量(是矢Ve量c,to如r F电ie场ldE??)r?,t?
2. 三种常用的坐标系
直角坐标系 基本变量: x, y, z
z
? P(x,y,z) r
e?x ? e?x ? e?y ? e?y ? e?z ? e?z ? 0
e?z e?y
e?x ?e?y ? e?y ?e?z ? e?z ?e?x ? 0
e?x
e?x ?e?x ? e?y ?e?y ? e?z ?e?z ? 1
??
? ? e?x e?x e?x
A?B ? AxBx ? AyBy ? Az Bz A ? B ? Ax Ay Az

谢处方版《电磁场与电磁波》第1章

谢处方版《电磁场与电磁波》第1章
电磁场与电磁波
谢处方等编著
高教出版社
引言 电磁模型 一、基础知识 电磁学是研究静止或运动电荷作用效应的。
电荷有正、负电荷。电场是由正或负电荷产生的。 而运动电荷形成电流,它产生磁场。 建立在理想模型上的理论需要三个基本步骤:
第一,与研究项目有关的一些基本量的定义;第二, 规定这些基本量的运算规则;第三,一些基本关系 的假定。
向 、 和z增加的方向,且满足右旋关系
a a az a az a a z a a 8
矢量A和B的圆柱坐标分量及其代数运算
A a A a A a z Az a B a B a B a z Bz b A B a ( A B ) a ( A B ) a z ( Az Bz 20 A B a A a A a z Az a B a B a z Bz A B A B Az Bz 21 A B a A a A a z Az a B a B a z Bz a ( A Bz Az B ) a ( Az B A Bz ) a z ( A B A B a a a z A A Az B B Bz 22
图1.2 矢量加法
矢量加法服从交换律和结合律 A B = B A
(1.2) (1.3 )
( A B) + C = A ( B C )
图1.3表示借助于矢量加法可以实现矢量减法
A ( B) = A B
(1.4)
图1.3 矢量减法
2.矢量乘法 图1.4表示矢量A和B的点积(或标积)为两个矢量相互 投影之值
2、电荷守恒定律: 电荷体密度

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

欧姆定律
描述导体中电流、电压和电阻之间关系的 定律。
电场强度
描述电场强弱的物理量,其大小与试探电 荷所受电场力成正比,与试探电荷的电荷 量成反比。
恒定电流
电流大小和方向均不随时间变化的电流。
电势与电势差
电势是描述电场中某点电势能的物理量, 电势差则是两点间电势的差值,反映了电 场在这两点间的做功能力。
电介质的极化现象
1 2
电介质的定义 电介质是指在外电场作用下能发生极化的物质。 极化是指电介质内部正负电荷中心发生相对位移, 形成电偶极子的现象。
极化类型 电介质的极化类型包括电子极化、原子极化和取 向极化等。
3
极化强度
极化强度是描述电介质极化程度的物理量,用矢 量P表示。极化强度与电场强度成正比,比例系 数称为电介质的电极化率。
磁场对载流线圈的作用
对于载流线圈,其受力可分解为沿线圈平面的法向力和切线方 向的力,分别用公式Fn=μ0I²S/2πa和Ft=μ0I²a/2π计算。
05
电磁感应原理及技 术应用
法拉第电磁感应定律
法拉第电磁感应定律的内容
01
变化的磁场会产生感应电动势,感应电动势的大小与磁通量的
变化率成正比。
法拉第电磁感应定律的数学表达式
安培环路定理及其推广形式
安培环路定理
磁场中B沿任何闭合路径L的线积分, 等于穿过这路径所围面积的电流代数 和的μ0倍,即∮B·dl=μ0∑I。
推广形式
对于非稳恒电流产生的磁场,安培环路 定理可推广为 ∮B·dl=μ0∑I+ε0μ0∂/∂t∮E·dl。
磁场对载流导线作用力计算
载流导线在磁场中受力
当载流导线与磁场方向不平行时,会受到安培力的作用,其大 小F=BILsinθ,方向用左手定则判断。

电磁场电磁波复习重点

电磁场电磁波复习重点

电磁场电磁波复习重点(共13页) -本页仅作为预览文档封面,使用时请删除本页-电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。

矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。

2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。

4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积定义为矢量F穿过面元矢量dS的通量。

如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。

如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。

如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。

电流是磁场的旋涡源。

5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。

Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。

6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。

第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。

电磁场与电磁波知识点

电磁场与电磁波知识点在我们的日常生活中,电磁场与电磁波虽然看不见摸不着,但却无处不在,发挥着至关重要的作用。

从手机通讯到广播电视,从医疗设备到卫星导航,都离不开电磁场与电磁波的应用。

那么,究竟什么是电磁场与电磁波呢?让我们一起来探索一下相关的知识点。

首先,我们来了解一下电磁场。

电磁场是由电场和磁场组成的统一体。

电场是由电荷产生的,而磁场则是由电流或者变化的电场产生的。

电荷在其周围空间会产生电场,当电荷移动时,也就是形成电流,就会产生磁场。

电场的强度可以用电场强度这个物理量来描述。

它的单位是伏特每米(V/m),用来表示单位电荷在电场中所受到的力。

而磁场的强度则用磁感应强度来衡量,单位是特斯拉(T),描述的是单位电流元在磁场中所受到的力。

电磁波,简单来说,就是电磁场的一种运动形式。

当电场和磁场相互激发时,就会产生电磁波,并以光速在空间中传播。

电磁波具有波动性和粒子性双重性质。

电磁波的波动性可以通过波长、频率和波速这三个重要的参数来描述。

波长是指相邻两个波峰或者波谷之间的距离,单位通常是米(m)。

频率则是指电磁波在单位时间内振动的次数,单位是赫兹(Hz)。

波速是指电磁波在介质中传播的速度,在真空中,电磁波的波速约为3×10⁸米每秒。

它们之间存在着一个简单的关系:波速等于波长乘以频率。

电磁波的频率范围非常广泛,按照频率从低到高的顺序,可以分为无线电波、微波、红外线、可见光、紫外线、X 射线和伽马射线等。

不同频率的电磁波具有不同的特性和应用。

无线电波的频率较低,波长较长,常用于广播、电视和通信等领域。

微波的频率比无线电波高一些,在雷达、卫星通信和微波炉等设备中得到广泛应用。

红外线具有热效应,常用于遥控器、红外测温等。

可见光就是我们能够看到的光,它的频率和波长在一定范围内,使我们能够感知到丰富多彩的世界。

紫外线具有杀菌消毒的作用,但过量的紫外线对人体有害。

X 射线具有很强的穿透力,常用于医学成像和安检。

工程电磁场基础[整理版]

工程电磁场基础目录引言一、电磁学发展简史二、电磁场理论课程的特点第一章自由空间中的电磁场定律1.1基本定义1.1.1电荷密度一、体电荷密度ρ二、面电荷密度η三、线电荷密度λ四、点电荷q1.1.2电流密度一、体电流密度J二、面电流密度K三、线电流I1.1.3基本场量一、洛仑兹力公式二、电场强度E三、磁场强度H1.2自由空间中的电磁场定律1.2.1场定律中符号的意义1.2.2各电磁场定律的数学物理意义一、法拉第电磁感应定律的意义二、修正的安培环路定律的意义三、电场高斯定律的意义四、磁场高斯定律的意义五、电荷守恒定律的意义1.2.3电磁场定律整体的物理意义1.3积分形式场定律的应用习题第二章矢量分析2.1标量场的梯度2.1.1标量场的等值面2.1.2标量场的梯度一、位移的方向余弦和单位矢量二、方向导数三、标量场的梯度2.1.3梯度的性质2.1.4标量场梯度的物理意义2.1.5例题2.2矢量场的散度和高斯定理2.2.1矢量场的场流图2.2.2矢量场的散度一、散度的定义二、散度的数学计算式2.2.3矢量场散度的性质2.2.4矢量场散度的物理意义2.2.5高斯定理一、高斯定理二、高斯定理的证明2.2.6自由空间中微分形式场定律的散度关系式2.2.7拉普拉斯运算符2.2.8例题2.3矢量场的旋度和斯托克斯定理2.3.1保守场和非保守场2.3.2矢量场的旋度一、旋度的定义二、旋度的数学计算式2.3.3矢量场的旋度的性质2.3.4矢量场旋度的物理意义2.3.5斯托克斯定理一、斯托克斯定理二、定理证明三、保守场的判据2.3.6自由空间微分场定律中的旋度关系式2.3.7例题习题第三章自由空间的微分场定律3.1微分场定律3.1.1微分场定律的数学物理意义一、法拉第电磁感应定律的意义二、修正的安培定律的意义三、电场高斯定律的意义四、磁场高斯定律的意义五、电荷守恒定律的意义3.1.2微分场定律整体的意义3.1.3例题3.2边界条件3.2.1电磁场中的不连续界面3.2.2边界条件一、边界法线方向上的关系式(法向边界条件)二、边界切线方向上的关系式(切向边界条件)3.2.3边界条件的物理意义一、电场强度切向边界条件的意义二、磁场强度切向边界条件的意义三、电场法向边界条件的意义四、磁场法向边界条件的意义五、电场和磁场边界条件的物理解释六、电流边界条件的意义七、边界条件所含的方向关系3.2.4微分场定律与边界条件的形式对应关系3.3微分场定律(含边界条件)的应用3.3.1已知场分布求源分布3.3.2已知源分布求场分布习题第四章静电场的标量位4.1静电场的标量位4.1.1静电场标量位的引入一、在原点的点电荷电场的标量位二、在空间某点的点电荷电场的标量位三、点电荷系电场的标量位四、分布在有限区域的带电系统的标量位4.1.2标量位(电位)的物理意义4.1.3电偶极子的电场和电位一、直接计算电场二、使用标量位计算电场4.1.4标量位的微分方程和边界条件一、微分方程二、一般边界条件三、边界为偶极层时的条件四、导体表面的边界条件4.1.5泊松方程的解4.2标量位的性质4.2.1极值定理4.2.2平均值定理一、格林定理二、平均值定理的证明三、平均值定理的应用4.2.3唯一性定理一、定理内容二、唯一性定理的证明4.3唯一性定理的应用4.3.1静电镜象法一、在无限大接地导体平板上方放置一个点电荷的系统二、接地导体角域内放置点电荷的系统三、接地导体球外放置一个点电荷的系统四、不接地不带电的导体球外放置一个点电荷的系统五、不接地、带电量为Q的导体球外放置一个点电荷的系统六、在一个接地的无限大导电平面上方放置一个偶极子的系统4.3.2电轴法一、两根相互平行且带等量异号电荷的无限长直导线的场二、两个等截面导体圆柱系统三、两个截面不相等的导体圆柱系统4.4复变函数在静电场问题中的应用4.4.1复电位(复位函数)4.4.2保角变换(保角映射)4.4.3许瓦兹-克瑞斯托弗尔变换4.5静电场示意场图的画法4.5.1静电场示意场图的作用4.5.2绘制静电场示意场图的基本法则4.5.3静电场示意场图实例一、在球形接地导体空腔内有一个点电荷二、两个不等量的异号电荷三、接地导体上的矩形空气槽四、矩形空气域五、两个同轴圆柱面间的空气域习题第五章静电场的分离变量法求解5.1拉普拉斯方程的变量可分离解5.1.1在直角坐标系中一、平凡解(明显解)二、一般解5.1.2在柱坐标系中一、平凡解二、与z变量无关的二维一般解三、柱坐标中拉普拉斯方程解的物理意义5.1.3在球坐标系中一、平凡解二、一般解三、球坐标中拉普拉斯方程解的物理意义5.2静电场问题求解实例5.2.1边界电位值已知的静电系统例1(上下为导体板,左右为源的矩形二维空气域)例2(扇形域)例3(锥面间域)例4(导体块上的空气槽)例5(有导体角的矩形域,迭加原理)例6(立方域)5.2.2带有自然边界条件的静电系统例1(导体上的半无界缝)例2(已知电位分布的圆柱面)例3(已知电位分布的球面)5.2.3带有电位导数边界条件的静电系统例1(平板电容器)例2(长方体形电阻器)例3(矩形导体片)例4(内有面电荷的二维矩形空腔)例5(带面电荷的圆柱面)例6(带面电荷的球面)例7(两种导体构成的半圆形电阻)5.2.4带有趋势性边界条件的静电系统例1(中心放置电偶极子的导体球壳)例2(中心放置点电荷的导体球壳)例3(上下异号的线电荷)例4(均匀电流场中的导体球)例5(均匀电场中的导体圆柱)5.3柱坐标系中三维拉普拉斯方程的分离变量解习题第六章静磁场与位函数的远区多极子展开式6.1静磁场的矢量位6.1.1毕奥-沙瓦定律一、电流元产生的磁场二、闭合电流线产生的磁场三、分布电流产生的磁场6.1.2磁场的矢量位一、静磁场方程二、磁场的矢量位三、磁矢位的方程四、磁矢位方程的解五、磁矢位的物理意义六、边界条件6.1.3例题6.2静磁场的标量位6.2.1磁标位一、磁标位的定义二、一个电流环的磁标位三、磁标位的方程和方程解族四、边界条件6.2.2例题6.3位函数在远区的多极子展开式6.3.1静电标量位Φ(r)的多极子展开式一、1/RQP的级数展开式二、Φ(r)的展开式三、电位Φ(r)多极子展开式的物理意义四、多极子展开式的应用6.3.2磁矢位A(r)的远区多极子展开式习题第七章有物质存在时的宏观场定律7.1物质极化的宏观模型7.1.1极化的概念7.1.2极化强度P7.1.3极化电荷与电场高斯定律一、极化电荷二、宏观极化模型下的电场高斯定律7.1.4极化电流与修正的安培定律一、极化电流二、宏观极化模型下的修正安培定律7.2极化问题举例7.2.1永久极化物体一、永久极化板二、永久极化球7.2.2非永久极化物体一、均匀电场中的电介质球二、填充均匀∈材料的平行板电容器三、填充非均匀∈材料的电容器四、空心介质球心放置一个电偶极子7.3物质磁化的安培电流模型7.3.1物质磁化的机理7.3.2磁化强度M7.3.3磁化电流密度7.3.4安培电流模型下的场定律7.3.5永久磁化圆柱的磁场7.4物质磁化的磁荷模型7.4.1物质磁化的机理7.4.2磁荷模型下的磁化强度7.4.3物质中的磁场高斯定律7.4.4物质中的法拉第电磁感应定律7.4.5永久磁化圆柱的磁场7.4.6有均匀磁介质的磁场系统一、均匀磁场中的磁介质球二、空心磁介质球心放置一个磁偶极子7.5物质中的场量组成关系和场定律7.5.1物质中的场量组成关系一、单值关系二、多值关系三、各向同性和各向异性7.5.2物质中的电磁场定律一、B-D形式的场定律二、E-H形式的场定律三、对称形式的场定律习题第八章电磁场的能量和功率8.1静电场和静磁场的能量8.1.1静电场的能量8.1.2静电场能计算举例8.1.3静磁场能量8.1.4静磁场能计算举例8.2坡印廷定理8.2.1电磁场供给运动电磁荷的功率一、电磁场对运动电磁荷的电磁力二、电磁场供给运动电磁荷的功率8.2.2坡印廷定理一、微分形式的坡印廷定理二、积分形式的坡印廷定理8.2.3坡印廷定理的量纲单位分析8.2.4坡印廷定理的物理解释一、对微分形式坡印廷定理的物理解释二、对积分形式坡印廷定理的物理解释三、在解释坡印廷定理上的假说性8.2.5对S和w的补充规定8.2.6坡印廷定理在物质中的应用8.3静态功率流与损耗8.4物质中的极化能和磁化能8.4.1极化能和电能8.4.2磁化能和磁能8.4.3磁能计算举例8.4.4物质宏观模型与坡印廷定理的关系8.5小结习题第九章时变场的低频特性9.1平行板系统中的交变电磁场9.1.1交变电磁场的严格解9.1.2平行板系统的低频响应9.2时变场的幂级数解法9.3低频系统中的场9.3.1平行板系统一、参考点的选取二、零阶场三、一阶场四、高阶场五、场分布和等效电路9.3.2单匝电感器一、系统的参考点二、零级近似场三、一级近似场四、二级近似场五、高阶场9.3.3多匝线圈一、不考虑线圈存在时的一阶电场二、放入线圈后的一阶电场三、计算a、b两点间的端电压9.4电路理论与电磁场理论的关系习题第十章平面电磁波10.1自由空间中均匀平面波的时域解10.1.1均匀平面波的电场和磁场时域解10.1.2均匀平面波的传播特性10.2正弦律时变场10.2.1复矢量10.2.2复数形式的场定律10.2.3复矢量乘积的物理意义10.3正弦律均匀平面波10.3.1均匀平面波的频域解10.3.2复数形式的坡印廷定理10.3.3复数坡印廷定理与微波网络的关系10.4平面波在有耗媒质中的传播10.4.1有耗媒质中的均匀平面波解10.4.2半导电媒质中均匀平面波的传播10.4.3良导体的趋肤效应10.4.4相速、群速和色散10.5电磁波的极化状态10.5.1电场极化状态的概念10.5.2极化方向的工程判断法一、瞬时场极化方向的判断二、复数场极化方向的判断10.5.3波的分解与合成一、线极化波的分解二、椭圆极化波的分解三、圆极化波的分解10.6沿任意方向传播的均匀平面波10.6.1波的数学表达式一、一般形式二、在直角坐标系中的表达式三、在柱坐标系和球坐标系中的表达式10.6.2波的特性10.7无耗媒质中的非均匀平面波10.8频率极高时媒质中的波10.8.1电介质中的波10.8.2金属中的波10.8.3电离层和等离子体中的波习题第十一章平面波的反射与折射11.1在自由空间与理想导体分界面处的反射现象11.1.1正入射11.1.2斜入射一、垂直极化二、平行极化11.2在两种介质分界面处的反射和折射现象11.2.1垂直极化一、入射角θi=0二、入射角θi>011.2.2平行极化11.3导电媒质表面的反射和折射11.3.1导电媒质中的实数折射角一、媒质Ⅱ是良导体二、媒质Ⅱ是不良导体11.3.2良导体中的透射功率11.3.3导电表面的反射一、媒质Ⅱ是良导体二、媒质Ⅱ是不良导体11.4透波和吸波现象11.4.1透波现象一、电磁波正入射二、电磁波斜入射三、多层介质板的透波现象11.4.2吸波现象一、干涉型吸收材料二、宽带吸收材料习题第十二章电磁波的辐射12.1时变场的位函数12.1.1标量位和矢量位12.1.2赫兹电矢量Ⅱ12.2时变场位函数方程的解12.2.1克希荷夫积分12.2.2达朗贝尔公式12.3交变电偶极子的辐射12.3.1交变电偶极子的电磁场量一、矢量位二、磁场强度三、电场强度12.3.2交变电偶极子场的分析一、近区场二、远区场三、辐射场的方向性四、辐射功率五、辐射电阻12.4交变磁偶极子的辐射12.4.1通过复数矢量位求电磁场12.4.2使用电磁对偶原理求电磁场12.5缝隙元的辐射12.6半波天线12.7天线阵12.8线天线电磁场的精确计算12.9天线的输入功率和输入阻抗习题第十三章电磁场的基本定理13.1格林定理13.1.1标量格林定理13.1.2广义格林定理13.1.3矢量格林定理13.2亥姆霍尔兹定理13.3静态场的几个定理13.3.1标量位Φ的唯一性定理13.3.2平均值定理13.3.3无极值定理13.3.4汤姆生定理13.3.5恩绍定理13.3.6矢量位A的唯一性定理13.4坡印廷定理13.5电磁力的定理――麦克斯韦定理13.6时变场的唯一性定理13.7相似原理13.8二重性原理和电磁对偶原理13.9等效原理13.10感应定理13.11互易定理13.12天线远场定理13.13克希荷夫-惠更斯原理13.14费马原理附录A 矢量的代数运算附录B 坐标系的有关概念附录C 立体角的有关概念。

工程电磁场导论


电磁场的近似计算方法
格林函数法
利用格林函数表示电磁场,通过求解格林函数的积分方程来得到 电磁场的近似解。
模式匹配法
将复杂的电磁场分解为若干个简单模式的叠加,对每个模式进行 单独分析,最后再综合得到整体解。
摄动法
将原问题转化为摄动问题,利用摄动展开的方法得到问题的近似 解。
电磁场实验测量方法
1 2
磁感应线
表示磁感应强度的闭合曲 线,其疏密程度表示磁场 强度的大小。
磁通量
穿过某一面积的磁感应线 的代数和,表示磁场对某 一区域的穿透程度。
磁场力
安培力
01
通电导线在磁场中受到的力,与电流和磁感应强度的方向垂直。
洛伦兹力
02
带电粒子在磁场中受到的力,与粒子速度和磁感应强度的方向
垂直。
磁场力的应用
03
磁场测量
利用磁力计、磁通门等设备测量磁场的大小和方 向。
电场测量
利用电场探头、电压表等设备测量电场的大小和 方向。
3
电磁波测量
利用天线、频谱分析仪等设备测量电磁波的强度、 频率、极化等参数。
THANKS.Βιβλιοθήκη 工程电磁场导论目录
• 工程电磁场的基本概念 • 静电场 • 恒定磁场 • 时变电磁场 • 工程电磁场中的问题和方法
工程电磁场的基本概
01

电磁场的定义
01
电磁场是由电荷和电流产生的物 理场,它具有能量、动量和电荷 守恒等基本物理属性。
02
电磁场由电场和磁场组成,电场 和磁场是相互依存、相互制约的 。
电磁波在传播过程中会受到介质的影响,发生折 射、反射、散射等现象。
电磁波的传播规律可用于通信、雷达、遥感等领 域。

电磁场的基本特性与场强计算

电磁场的基本特性与场强计算电磁场是由电荷和电流引起的一种物理现象。

在电磁场中,电荷和电流产生的作用力可通过场强进行描述。

本文将介绍电磁场的基本特性,以及如何计算电磁场的场强。

一、电磁场的基本特性在物理学中,电磁场是关于电场和磁场的统称。

电场是由电荷引起的一种力场,而磁场则是由电流引起的一种力场。

电磁场遵循麦克斯韦方程组,描述了电场和磁场之间的相互作用。

1. 电场的基本特性电场是由带电粒子周围所产生的力场。

任何带电粒子都会在其周围产生电场,电场会对带电粒子施加作用力。

电场的强弱可以用电场强度来衡量,电场强度的单位是伏特/米(V/m)。

2. 磁场的基本特性磁场是由电流或磁化物质产生的力场。

电流通过导线时会产生磁场,磁场会对磁性物体或电流施加作用力。

磁场的强弱可以用磁感应强度来衡量,磁感应强度的单位是特斯拉(T)。

二、电磁场的场强计算方法在电磁场中,场强是描述电场或磁场强度的物理量。

场强可以通过计算得到,具体计算方法如下:1. 电场场强的计算电场场强的计算公式为:E = k * (Q / r^2)其中,E表示电场场强,k表示电场常量,Q表示电荷量,r表示观测点到电荷的距离。

2. 磁场场强的计算磁场场强的计算公式根据不同的情况有所不同。

以下是一些常见情况下的磁场场强计算公式:a) 直导线电流的磁场场强计算公式:B = (μ0 * I) / (2 * π * r)其中,B表示磁场场强,μ0表示真空磁导率,I表示电流,r表示观测点到导线的距离。

b) 矩形线圈电流的磁场场强计算公式:B = (μ0 * N * I) / (2 * π * r)其中,B表示磁场场强,μ0表示真空磁导率,N表示线圈匝数,I 表示电流,r表示观测点到线圈的距离。

c) 环形线圈电流的磁场场强计算公式:B = (μ0 * I * R^2) / (2 * (R^2 + r^2)^(3/2))其中,B表示磁场场强,μ0表示真空磁导率,I表示电流,R表示线圈半径,r表示观测点到线圈中心的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档