第十六章二次根式

合集下载

第十六章:二次根式

第十六章:二次根式

第十六章 二次根式.. 最简二次根式:① ; ② ; ③ . . . . ;文字语言: . ; 文字语言: . . ..①分母形如的二次根式.给分子、分母同时乘以 ;②分母形如.给分子、分母同时乘以 .2的区别与联系:例一:下列各式一定是二次根式的是()分析:判定一个代数式是否是二次根式,要看该式子是否同时具备两个要素:(1)含有二次根号;(2)被开方数是非负数.对应训练:1.下列各式中,一定是二次根式的是()A专题二:二次根式有意义的条件对于非负数x,如果有x2=a,那么x就是a的算术平方根,也是a在这里a是x的平方数,它的值是一个正数或零(因为任何数的平方都不可能是负数).由此得出:只有当a≥0时,.(1a≥0a<0.(2)从具体的情况总结,如下:a≥0; a≥0,n+有意义的条件: b≥0,…n≥0;a>0;1b有意义的条件:a≥0且b≠0;有意义的条件:a≥0且b>0.例二:当x是怎样的实数时,下列各式在实数范围内有意义?(1;(2(3;(4;(5(6分析:对于含有二次根式和分式的式子,求其有意义的条件时:首先找出二次根式的被开方数,根据二次根式的被开方数为非负数列不等式,其次找分式的分母,根据分母不为0,列出所需的不等式,将这些不等式组成不等式组,不等式组的解集就是字母的取值范围.解:(1)13103x x-≥≥当,即.(4)32301012x x x x+≥+>≥->-当,且,即且.对应训练:1.x的取值范围是()A、x>3B、x≥3C、 x>4 D 、x≥3且x≠42.x的取值范围是 .3.有意义,那么,直角坐标系中点P(m,n)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限例三:若y=++2009,则x+y=分析:式子(a ≥0), ,y=2009,则x+y=2014对应训练:1.,则x -y 的值为( ) A .-1 B .1 C .2 D .3 2.若x 、y 都是实数,且4,求xy 的值3.当a 1取值最小,并求出这个最小值.专题四:二次根式的整数部分与小数部分例四:已知a b 是12a b ++的值. 分析:因为23<<2,即a=2;其小数部分等于此数本身减去其整数部分,即对应训练:1.若3的整数部分是a ,小数部分是b ,则=-b a 3 。

八年级数学下册《第十六章 二次根式》单元测试题含答案(人教版)

八年级数学下册《第十六章 二次根式》单元测试题含答案(人教版)

八年级数学下册《第十六章二次根式》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式是二次根式的是()A.√2B.√n C.√−16D.√2732.下列x的取值中,可以使√7−x有意义的是()A.0 B.16 C.20 D.20233.在下列二次根式中,是最简二次根式的是()A.√4B.√0.8C.√2D.√154.若√(b−3)2=3−b,则()A.b>3B.b<3C.b≥3D.b≤35.下列计算正确的是()A.3√5−√5=3B.√2×√3=√6C.√2+√3=√5D.√12÷√3=4 6.√50·√a的值是一个整数,则正整数a的最小值是()A.1 B.2 C.3 D.57.下列计算正确的是()A.√(−1)2=±1B.√27÷√3=9C.√14√6=√213D.13√18−3√89=√28.如图,从一个大正方形中裁去两个小正方形,则留下部分的面积为()A.11cm2B.4√6cm2C.2√6cm2D.√11cm2二、填空题9.计算√84÷√21的结果是.10.若式子√2−x在实数范围内有意义,则x的取值范围是.11.√3+√27=.12.已知xy<0,化简二次根式x√−yx2的正确结果为.13.已知√a−3+√2−b=0,则√a √6√b=.三、解答题14.计算:(1)√27+3√13−√24×√2(2)(√5−2)(2+√5)−(√3−1)215.已知a=2+√5,b=2-√5,求a2+b2+ab的值.16.若矩形的面积是(6+2√6)cm²,一边长是√6cm,求它的周长.17.在解决问题“已知a=√2−1,求3a2﹣6a﹣1的值”时,小明是这样解答的:∵a=√2−1=√2+1(√2+1)(√2−1)=√2+1∴a﹣1=√2∴(a﹣1)2=2,即a2﹣2a+1=2∴a2﹣2a=1∴3a2﹣6a=3∴3a2﹣6a﹣1=2.请你根据小明的解答过程,解决下面的问题:若a=3−√7,求2a2﹣12a+1的值.18.已知二次根式√x+2.(1)求使得该二次根式有意义的x的取值范围;(2)已知√x+2是最简二次根式,且与√52可以合并.①求x的值;②求√x+2与√52的乘积.参考答案1.A2.A3.D4.D5.B6.B7.C8.B9.210.x≤211.4√312.√−y13.4√3314.(1)解:原式=3√3+√3−2√6×√2=4√3−4√3=0(2)解:原式=(√5)2−22−4+2√3=−3+2√3 15.解:∵a=2+√5,b=2-√5∴a-b=2+√5-2+√5=2√5ab=(2+√5)×(2-√5)=22-(√5)2=-1∴a2+b2+ab=(a-b)2+3ab=(2√5)2+3×(-1)=17.16.解:∵矩形的面积是(6+2√6)cm2,一边长是√6cm ∴另一边长为:(6+2√6)÷√6=(√6+2)cm∴矩形的周长为:2×(√6+2)+2√6=(4√6+4)cm.=3+√717.解:a=3−√7∴a−3=√7∴ 2a2﹣12a+1=2(a-3)2-17=2×(√7)2-17=14-17=-3.18.(1)解:∵二次根式√x+2有意义∴x+2≥0解得x≥−2;(2)解:①√52=√102∵√x+2与√102能合并,并且√x+2是最简二次根式∴x+2=10解得x=8;②由①可得√x+2×√52=√10×√102=5.。

人教版八年级数学下册 第十六章 二次根式 教学设计及教学反思

人教版八年级数学下册 第十六章 二次根式  教学设计及教学反思

第十六章二次根式16.1二次根式第1课时学习目标【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.教学重难点0的基本性质【教学难点】经历知识产生的过程,探索新知识.课前准备无教学过程一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.二次根式:一般地,a≥0)形式的式子称为二次根式,其中”称为二次根号.针对上述定义,教师可强调以下几点:(1a必须是大于等于0的数或式子,否则它就没有意义了;(2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必然也是非负0(a≥0)三、典例精析,掌握新知例1 下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2 当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突破口,选择中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.课后作业1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.教学反思1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.16.1二次根式第2课时学习目标【知识与技能】≥0)2a(a≥0),并利理解并掌握二次根式的性质,正确区分=a(a用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.教学重难点【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.课前准备无教学过程一、情境导入,初步认识试一试:请根据算术平方根填空,猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2a=a(a≥0).进一步地,引导学生探究新的问题.探究(1)填空:(2)通过(1a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1 计算:(1)2;(2)( 2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(2)进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.课后作业1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.教学反思1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.16.2 二次根式的乘除第1课时学习目标【知识与技能】a≥0,b≥0)a≥0,b≥0),并能运用它们进行化简计算.【过程与方法】经历探索二次根式乘法法则的过程,发展观察、归纳猜想、验证等能力.【情感态度】培养学生主动探索知识的能力以及分析问题和解决问题的能力,增强学好数学的信心. 教学重难点【教学重点】a≥0,b≥0)(a≥0,b≥0).【教学难点】a≥0,b≥0).课前准备无教学过程一、情境导入,初步认识问题1 计算下列各式,观察计算结果,你发现什么规律?问题2用你发现的规律填空,并用计算器进行验算.【教学说明】问题1通过被开方数都是完全平方数,让学生容易获取结果,发现规律.通过问题2的验证加深对规律的认识,为本节学习作好铺垫.上述两个问题均应由学生自主完成,相互交流,感受新知.二、思考探究,获取新知选几名学生口述所发现的规律,然后师生共同归纳:一般地,对二次根式的乘法规定:.【教学说明】对上述二次根式的乘法公式,教学时应引导学生关注其后面的附加条件a≥0,b≥0.三、典例精析,掌握新知【教学说明】让学生自主探究,独立完成,加深对二次根式乘法运算和化简方法的理解.教师巡视,对有困难的同学适时给予指导,最后可选派四名学生上黑板完成解答,师生共同评析,巩固所学新知识.【教学说明】在学生探索本题解答过程中,教师可补充说明,在本章中,如果没有特别说明,所有的字母都表示正数.四、运用新知,深化理解4.一个矩形的长和宽分别是10cm和22cm,求这个矩形的面积.5.一个底面为30cm×30cm的长方体容器中装满了水.现将一部分水倒入一个底面为正方形,高为10cm的铁桶中.当铁桶装满水时,容器内水面下降了20cm.铁桶的底面边长是多少厘米?【教学说明】学生自主完成,教师巡视,对学生解题过程中出现的问题及时予以指正,帮助学生加深理解,对优秀者应予以表扬鼓舞,让学生体验成功的快乐.【答案】1.A2.(1)原式五、师生互动,课堂小结通过这节课的学习你有哪些收获和体会?谈谈你的想法,并与同伴相互交流.课后作业1.布置作业:从教材“习题16.2”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,给出实例.学生积极主动探索,教师引导启发,按照由特殊到一般的规律,降低学生理解的难度.2.二次根式乘法法则的形成过程中,由学生大胆猜测,经过思考、分析、讨论的过程,让学生在交流中体会成功.3.前面的讲练能帮助学生理解二次根式乘法法则,培养学生利用概念解题的能力.16.2 二次根式的乘除第2课时学习目标【知识与技能】a≥0,b>0(a≥0,b>0),能用它们进行化简计算,能将二次根式化为最简二次根式.【过程与方法】通过具体实例的探究活动,发现二次根式除法的规律,归纳出二次根式除法法则及其逆向等式,能用它们进行化简计算.【情感态度】让学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,增强合作交流意识和能力.教学重难点【教学重点】a≥0,b>0(a≥0,b>0)的理解和应用.【教学难点】探索二次根式的除法法则.课前准备无教学过程一、情境导入,初步认识问题1 计算下列各式,观察计算结果,你能发现其中的规律吗?问题2 用你发现的规律填空,并用计算器进行验算:【教学说明】让学生自主探究,感受二次根式除法运算中所蕴含的规律性特征,获得二次根式相除的感性认识,导入新课.二、思考探究,获取新知想一想通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你.师生共同回顾思考,总结出二次根式a≥0,b>0a≥0,b>0)【教学说明】在师生共同探索出上述二次根式的除法公式后,教师应引导学的类似错误.三、典例精析,掌握新知【教学说明】教师给出例题后,让学生独立作业,同时分别选派四名同学上黑板演算.教师巡视,对学生演算过程中的失误及时予以指正,最后师生共同评析,让学生加深对二次根式除法的理解和掌握,并保留每道题的最后结果.议一议观察上述各题的最后结果,它们有什么特点?在学生相互交流过程中可感受到所有结果中的二次根式有如下两个特征:(1)被开方数中不含分母(或分母中不含二次根式);(2)被开方数中不含能开得尽方的因数或因式.我们把具有上述两个条件的二次根式,叫做最简二次根式.小练习:1.下列二次根式中,是最简二次根式的有_______(填序号).【教学说明】感受二次根式乘除在数学问题和实际生活中的应用,体会二次根式的乘除法在二次根式的化简中的重要作用.四、运用新知,深化理解【教学说明】让学生自主完成,加深对已学知识的复习,并检查对新学知识的掌握情况,对学生的困惑,教师应及时予以指导,并进行必要的反思.五、师生互动,课堂小结师生共同回顾:a≥0,b>0a≥0,b>0)及其应用;(1【教学说明】教师应让学生自由交流,总结本节课的知识要点,同时进行自我反思,提高认知,加深对所学知识的理解.课后作业1.布置作业:从教材“习题16.2”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,复习二次根式的乘积,旨在类比学习二次根式的除法,培养学生继续探究的兴趣.2.二次根式除法的学习过程,按照由特殊到一般的规律,由学生经历思考、讨论、分析的过程,让学生大胆猜测,使学生在交流中体会成功.16.3 二次根式的加减第1课时学习目标【知识与技能】会进行二次根式的加减运算,利用二次根式的加减法解决生活实际问题.【过程与方法】经历由实际问题引入数学问题的过程,提高学生的抽象概括能力,进而掌握二次根式的加减运算方法.【情感态度】培养学生认真观察、思考的习惯,锻炼严谨细致、一丝不苟的科学精神.教学重难点【教学重点】二次根式的加减法运算方法.【教学难点】二次根式的加减法的实际应用.课前准备无教学过程一、情境导入,初步认识问题现有一块长7.5dm,宽5dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8dm2和18dm2的正方形木板?【教学说明】可借助多媒体(或幻灯片)展示木板,尝试截取两个正方形木块,并引导学生思考.解决问题的关键在哪里?如何解决?激发学生的学习兴趣和求知欲望.二、思考探究,获取新知让学生相互讨论,共同探究,寻求解决问题的方案.与此同时,教师可设置如下问题帮助学生进行理解和分析:1.两个正方形木块的边长分别是多少?2.最大正方形木板的边长与原长方形木板的宽5dm的大小如何?3.两个正方形木板的边长之和与长方形木板的长7.5dm的大小关系如何?你认为用什么办法来得出结论的?4.谈谈你获得结论的过程中的想法,你有哪些新的认识?在学生充分交流,二次根式的和,我们可以这样来计算:【教学说明】本环节教师要放手让学生自主探究,自主发现问题,并尝试解决问题,并能总结规律,形成认知.同时,教师应关注学生的完成情况,能否正确进行二次根式的化简,能否运用分配律将二次根式合并.【归纳结论】二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.三、典例精析,掌握新知【教学说明】以上两例,应让学生先独立完成,并分别选派两名中等成绩同学上黑板进行演算.教师巡视,了解全班学生的掌握情况,并对有困难的同学及时予以点拨,帮助他们加深对新知的理解.最后,师生共同评析黑板上的作业,教师还可适时将巡视中发现的问题展示给全班同学,达到理解新知的目的.例3 如图,实验中学计划在校园内修建一个正方形的花坛,在花坛中央还要修一个正方形的小喷水池,设计者需要考虑有关的周长,如果小喷水池的面积为8m2,花坛的绿化面积为10m2,则花坛的外周与小喷水池的周长一共是多少米?分析:利用正方形的面积公式求出边长,再根据周长公式即可得解..【教学说明】本例展示了二次根式的加减在实际问题中的应用,在实际教学过程中,教师应引导学生进行合理分析,理清解题思路与步骤,再让学生自主完成解答过程.最后教师可以给出示范性解题过程,也可以用幻灯片展示学生的优秀作业及有代表性问题作业,让学生通过观察与反思,加深对知识的理解.四、运用新知,深化理解1.下列计算是否正确?为什么?5.先化简,再求值:【教学说明】学生自主完成上面前3个题,教师巡视,后两个题稍难,教师适当予以点拨.【答案】1.(1)不正确,两边不相等;(2)不正确,两边不相等;(3)正确.2.①和④;五、师生互动,课堂小结师生共同回顾本节主要知识点及需要注意的问题.(1)知识要点:二次根式加减的一般思路,①不是最简二次根式的,应化成最简二次根式;②相同的二次根式一定要进行合并.(2)需注意的问题:①应能将化简的二次根式化简后再进行计算,不要出是最后结果的类似错误;②相同的二次根式合并时,只需把它们的系数相加减,根式不变,不相同的二次根式不能进行加减,防止出现=(3-2))的错误.课后作业1.布置作业:从教材“习题16.3”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,给出实例.由学生主动参与,经过思考、讨论、分析的过程,老师加以启发和引导,类比得出二次根式的加减运算法则.2.三个例题,旨在帮助学生理解二次根式的加减运算.尤其是例2,要按照两个步骤进行计算,培养了学生利用概念、法则进行计算和化简的严谨态度和科学精神,此外,例3还展示了二次根式的加减在实际问题中的应用.16.3 二次根式的加减第2课时学习目标【知识与技能】1.会进行二次根式的乘、除、加、减混合运算;2.能用多项式的乘法公式进行二次根式的化简计算.【过程与方法】通过具体问题进一步体会有理数运算、二次根式的运算以及整式的运算之间的联系,掌握二次根式混合运算方法.【情感态度】通过多项式乘除法则及乘法公式在二次根式运算中的应用,体验迁移、化归思想,使学生进一步形成符号感,提高数学应用意识.教学重难点【教学重点】二次根式的混合运算.【教学难点】多项式的乘除法则及乘法公式在二次根式运算中的应用方法.课前准备无教学过程一、情境导入,初步认识问题我们知道:(x+y)·xy=x·xy+y·xy=x2y+xy2,(2x2y+3xy2)÷xy=2x2y÷xy+3xy2÷xy=2x+3y,(x+y)(x-y)=x2-y2及(x+y)2=x2+2xy+y2,……试问:如果上述各式中的x,y分别代表着一个二次根式,我们会有哪些新的收获呢?【教学说明】引入上述关于多项式的乘除算式及乘法公式,进而提出新的问题的目的在于暗示二次根式的运算与多项式的运算之间的联系,激发学生的求知欲望和探究意识. 二、思考探究,获取新知探究1由(x+y)·z=x·z+y·z=xz+yz,你能求出的值吗?你是怎样做的?探究2由,你能求出的值吗?由此你有何发现?类似地,请解决以下几个小题.【教学说明】让全班同学共同参与探究,相互交流,在类比的过程中尝试给出问题的答案.教师巡视,予以点拨,肯定学生的成绩,并引导学生完善对二次根式混合运算的初步认识,最后师生共同给出问题的结果.【归纳结论】1.二次根式的混合运算与整式的运算方法完全相同,即先算乘方,再算乘除,最后算加减,有括号先算括号.2.在二次根式的运算中,多项式的乘法法则和乘法公式仍然适用.三、典例精析,掌握新知例1 计算下列各题:分析:对算式的结构进行观察分析,运用二次根式加、减、乘、除的法则进行运算,需注意乘法公式(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2的灵活运用.解:(1)原式=()÷=(÷÷;例2 已知,,求下列代数式的值.(1)x2+2xy+y2;(2)x2-y2.分析:由条件易知x-y=2,而需求代数式中的(1)可化为(x+y)2,(2)可化为(x+y)(x-y),因而整体代入更简洁些,当然直接代入求值也是可行的,只不过要复杂多了.解:∵,,∴x-y=2.(1)原式=(x+y)2=()2=12;(2)原式=(x+y)·(x-y)×【教学说明】第1题可让学生自主完成,并选派三名代表上黑板进行演算.教师巡视,了解学生对二次根式混合运算的掌握情况,及时予以帮助,帮助学生更好地掌握新知识.最后全班同学分析三位代表的解答过程及结果,深化理解.第2题仍可让学生先自主探究,如果大部分学生选用直接代入求值时,教师仍应肯定他们的成绩,但需展示本例的最佳解题思路,达到融会贯通的目的.四、运用新知,深化理解3.(1)若,,求a2b-ab2的值;(2)若-1,求x2+2x+2011的值.【教学说明】第1、2两题可让学生自主完成,然后相互交流,教师根据反馈情况,及时查漏补缺,优化课堂教学.第3题即可让学生尝试解决,也可由师生共同分析,形成解题思路后再由学生自主完善解题过程.3.(1)由,a·b=1得a2b-ab2=ab(a-b)=1×;(2)∵,∴,两边平方,得x2+2x+1=2.∴x2+2x=1.故x2+2x+2011=1+2011=2012.五、师生互动,课堂小结通过这节课的学习,你有哪些收获?你还有哪些疑惑?谈谈你的看法,并与同伴交流.【教学说明】教师以设问的形式和学生一道回顾本节主要知识及所涉及到的解题方法、技巧和数学思想方法,既是对知识的一次梳理,也是一次必要的提炼升华,完善认知.课后作业1.布置作业:从教材“习题16.3”中选取.2.完成练习册中本课时练习.教学反思1.情境引入,复习整式运算的知识,旨在迁移到利用乘法公式进行含二次根式式子的运算,培养学生继续探究的兴趣.2.例题的设计,旨在帮助学生理解乘法公式在二次根式运算中的应用.。

人教版八年级下册数学教案:第十六章《二次根式》复习课优秀教学案例

人教版八年级下册数学教案:第十六章《二次根式》复习课优秀教学案例
2.教授二次根式的运算规则。通过例题和练习,让学生掌握二次根式的加减乘除以及乘方等运算方法,注重引导学生运用归纳法和演绎法进行学习和解决问题。
3.结合生活实际,讲解二次根式在几何、物理等领域的应用,提高学生的应用能力。
(三)学生小组讨论
1.教师分配任务,让学生分组讨论二次根式的性质和运算方法。鼓励学生发表自己的观点,培养学生独立思考和解决问题的能力。
2.利用多媒体课件、实物模型等教学资源,直观地展示二次根式的运算过程和性质,帮助学生形象地理解和记忆。
3.设计具有挑战性和探究性的问题,激发学生的思考欲望,引导学生主动参与学习。
(二)问题导向
1.引导学生提出问题,激发他们的思考。例如,在讲解二次根式的性质时,让学生思考:“二次根式有哪些性质?如何运用这些性质进行运算?”
(三)情感态度与价值观
1.激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神风貌。
2.培养学生团队合作意识和互助精神,提高他们的社会适应能力。
3.通过数学教学,培养学生坚持真理、勇于创新的人格品质。
4.引导学生认识数学在实际生活中的重要性,提高他们对数学价值的认识。
三、教学策略
(一)情景创设
1.结合生活实际,创设生动有趣的情境,激发学生的学习兴趣。例如,通过讲解实际问题,引入二次根式的概念和应用,让学生感受到数学与生活的紧密联系。
2.启发式教学与问题导向相结合:本节课采用启发式教学法,引导学生通过自主学习、合作交流的方式,深入理解和掌握二次根式的相关知识。同时,结合问题导向,鼓励学生提出问题、分享思路,培养他们的数学思维能力和解决问题的能力。
3.小组合作与反思评价并重:本节课注重小组合作,组织学生进行讨论和合作交流,培养他们的团队合作意识和沟通能力。同时,引导学生进行自我反思和评价,总结自己在学习过程中的优点和不足,提高他们的自我认知和自我调整能都能发挥自己的特长,提高他们的自信心。

第16章二次根式单元计划

第16章二次根式单元计划

第十六章《二次根式》单元计划一.单元教学内容及教材分析1.本单元教学的主要内容:本章内容设计了三小节.具体为:第一节介绍二次根式的概念,学习二次根式的性质,第二节给出二次根式乘除运算的方法和化简二次根式,第三节学习二次根式的加减运算,并在四则混合运算的基础上,总结实数的运算律在二次根式的运算中仍然适用。

方法阐释:(1)根据学生的认知规律,坚持“以学生为主体,以教师为主导”的原则,采用小组学习、合作探究的教学模式,在师生互动中,让学生亲身经历知识的生成过程,潜移默化地培养学生从具体到一般的推理能力.(2)引导学生采用类比、分类、转化、归纳、逆向思维、新旧知识迁移等研究问题的方法探索二次根式的性质及运算法则,让学生感受到“转化”的实质,倡导学生独立思考、自主学习、互助学习.2.本单元在教材中的地位和作用:二次根式的概念和性质是建立在“实数”基础上的,整式、分式的运算是二次根式运算的重要基础,反过来,通过二次根式的学习又能复习和巩固整式、分式运算的知识和技能.本章将在学生已有知识的基础上,对式进行扩张,引入二次根式,将整式扩充到根式,使学生对式有进一步的认识,同时为一元二次方程、解直角三角形等后续知识打下必要的基础.二、单元教学重难点教学重点:运用二次根式的概念和性质熟练进行化简和运算。

教学难点:正确理解与运用二次根式的性质三.教学目标●知识与技能1.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式.2.掌握二次根式的性质及加减乘除法则.3.熟练进行二次根式的化简和加、减、乘、除四则运算.●过程与方法1.经历二次公式运算法则的形成过程。

经过观察、比较、总结等数学活动,经历从具体问题到一般规律的探索过程,用具体数据探究规律,用不完全归纳法得出二次根式的性质,•利用逆向思维,得出二次根式的乘(除)法规定,并运用它们进行化简和计算.感受和体验发现的快乐,提高应用意识.2.体会类比和归纳的数学思想方法。

第十六章 二次根式(二次根式的乘法)

第十六章   二次根式(二次根式的乘法)

基础巩固
随堂演练
1.化简 45= 5 9=3 5,同理可得 28 74 2 7 .
2.计算 12 8= 4 6 .
3.若直角三角形两条直角边的边长分别为 15cm和
12cm,那么此直角三角形的面积是 3 5 .
4.下列各等式成立的是( D)
A.4 5 2 5 8 5 C.4 3 3 2 7 6
你发现了什么规律?请用一个等式表示这个规律.
知识点 1 二次根式的乘法法则
二次根式相乘,把被开方数相乘, 根指数不变.
a· b ab(a 0, b 0)
例 计算:
(1) 3 5;
(2)
1 3
27 .
解:(1) 3 5 35 15
(2)
1 3
27 Βιβλιοθήκη 1 3279 3选自教材例题
练习
计算:
在本章中,如果没有特别说明 ,所有的字母都表示正数.
(1) 16 81 ;
(2) 4a2b3 .
解:(1) 16 81 16 81 49 36
(2) 4a2b3 = 4 a2 b3
开得尽方的因 式可以开方后
移到根号外
选自教材例题
2 a b2 b 2a b2 b
2ab b
abc a b c ( a≥0,b≥0,c≥0 )
解: (1) 24 27
38 39
332 2 18 2
(2) 6 ( 15)
(2) 6 ( 15)
615 2335 3 10
(3) 18 20 75 ;
(4) 2 xy 1 1 3x
解:(3) 18 20 75
(4) 2 xy 1 1 3x
2 9 4 5 3 25 3 22 5 5 3 30 30

数学人教版八年级下册第十六章 二次根式 教学反思

不足
1、没有进一步引导学生经历数学知识的应用过程,提高应用所学数学知识解决简单实际问题的能力和创新意识,让学生在应用知识解决问题的过程中进一步体会数学的价值。
2、没有真正体现学生的主导作用。因为时间的关系,没有尝试让学生来主导这一堂课的教学。
3、师生的双边活动没有很好的体现。学生的学习积极性与主动性没有充分发挥。
3、通过小组讨论交流,培养团队合作精神,提高学生学习数学的兴趣。
教学过程:
一、切实理解三个概念:
二次根式、最简二次根式、同类二次根式
二、熟练掌握五条性质——运算依据
三、正确进行四种运算.
四、三个非负数:
实数的偶次幂,实数的绝对值,一个正实数的算术平方根
1、实数的偶次幂是非负数.
2、实数的绝对值是非负数。
二次根式复习课教学反思
通过复习发现不少同学遇到了这样的情况:每个新学的知识点都懂,后面的习题也会做,但到了一章学完以后,不仅综合性的题不会做,甚至连做过的习题也不会做了.对这一奇怪现象,我认为是由于知识遗忘、综合运用能力不高而造成的正常现象,不必为此惊慌.事实真的是如此吗?其实,正常现象之说是站不住脚的,由于教材上每节课后面的习题与知识点同步,因此多数题能用本节知识对号入座地解出,所以根本原因在于平时的学习之后出了问题。也就是学生缺乏一定的整理、归纳、小结和复习知识的能力。整理和复习在数学教学中占有重要的地位,做好这一内容的教学对提高整个数学复习效率,促进学生素质全面发展具有重要的意义。
3、一个正实数的算术平方根是非负数。
复习课既不同于新授课,更不同于练习课。复习课不是旧知识的简单再现和机械重复,而是把平时相对独立地进行教学的知识,其中特别重要的、带有规律性的知识,以再现、整理、归纳等办法串起来,进而加深学生对知识的理解、沟通,并使之条理化、系统化。

第16章《 二次根式》单元复习课件


同类二次根式的定义: 几个二次根式化成最简二次 根式以后,如果被开方数相同, 这几个二次根式叫做同类二次 根式.
⑴ 同类二次根式的判断,一般首先需 要把所需判断的二次根式化成最简二次根 式,再观察被开方数是否相同.若相同, 则是同类二次根式,否则不是.
⑵ 几个二次根式是不是同类二次根式, 只与被开方数和根指数有关,而与根号外 的因式或因数无关.
⑶ 只有同类二次根式才可以合并,不 是同类二次根式的不能合并. ⑷ 合并同类二次根式时,将同类二次 根式的系数相加减,根指数与被开方数 (式)保持不变.
二次根式加减运算的一般步骤
⑴ 将每个二次根式化为最简二次根式; ⑵ 找出其中同类二次根式; ⑶ 合并同类二次根式. 1、在运算过程中要注意,根号外的因 式就是这个二次根式的系数,如果系数 是带分数,还要化成假分数. 2、二次根式化为最简二次根式后,被 开方数不同的二次根式不能合并,但是 绝不能丢弃,它们也是结果的一部分.
( )
求下列各式的值:
4 2 ⑴ ( 300)² ⑵ 3 9 ⑶ (- 2.7)² ⑷ (-2 5)²
⑴ 可直接运用性质 1 ,⑵ ⑶ ⑷ 先利用积的乘方性质 (ab)² = a² b²进行 变形,然后再计算.
( )
解: ⑴ ( 300)² =300

( ) ( )
3 4 9
2
=3² ×
4 9
2
1.从形式上看,二次根式必须含有 9 =3 “ ”如: ,等号左边是二 次根式,右边不是二次根式.
a (a≥o)的式子叫做二次根 形如__ 式。在二次根式 a中,字母 a 必须满 a≥0 足___,即被开方数必须是非负数 .
2. 被开方数 a 可以是一个数,也可 以是一个含有字母的式子,但前提是 a≥0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离石一中八年级数学组教案 备课人:薛建梅 艾 强 1 / 10 第十六章 二次根式 16.1 二次根式(1) 教学目标 1.根据算术平方根的意义了解二次根式的概念;知道被开方数必须是非负数的理由; 2.能用二次根式表示实际问题中的数量和数量关系. 教学重、难点 从算术平方根的意义出发理解二次根式的概念. 教学过程设计 一、创设问题,激发兴趣 电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视

塔高h(单位:km)与电视节目信号的传播半径r之间存在近似关系Rhr2,其中地球半径R≈6 400 km.

如果两个电视塔的高分别是h1 km、h2 km,那么它们的传播半径之比是2122RhRh 你能化简这个式子吗? 式子2122RhRh表示什么?

公式中Rhr2中的Rh2表示什么意义? 二、知识应用,巩固提高 问题: (1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______. (1)中式子你是怎么得到?得到的两个式子有什么不同? (2)一个长方形围栏,长是宽的2 倍,面积为130m2,则它的宽为______m. (2)中得到的式子有什么意义? (3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系 h =5t2,如果用含有h 的式子表示 t ,则t _____.

(3)中当h 的值分别为0,10,15,20,25时,得到的结果分别是什么?5h表示的数怎样变化? 上面问题中,得到的结果分别是:3,S,65,5h。 (1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?

分别表示3,S,65,5h的算术平方根. 离石一中八年级数学组教案 备课人:薛建梅 艾 强 2 / 10 这些式子的共同特征是: 都表示一个非负数(包括字母或式子表示的非负数)的算术平方根. (3)根据你的理解,请写出二次根式的定义.

把形如3,S,65,用来表示一个非负数的算术平方根的式子,叫做二次根式. 二次根式: 一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.

三、应用提高、拓展创新 例1 当x 是怎样的实数时,2x在实数范围内有意义?

例2 当x 是怎样的实数时,2x在实数范围内有意义?3x

呢?

例3 a 取何值时,下列根式有意义?

变式 a 取何值时,下列根式有意义? 四、归纳小结 (1)本节课你学到了哪一类新的式子? (2)二次根式有意义的条件是什么?二次根式的值的范围是什么? (3)二次根式与算术平方根有什么关系? 五、布置作业: 教科书第5页第1,3,5,6,7,10题. 教后反思:

16.1 二次根式(2) 教学目标 1.经历探索性质aa2(a≥0)和aa2(a≥0)的过程,并理解其意义; 2.会运用性质aa2(a≥0)和aa2(a≥0)进行二次根式的化简; 3.了解代数式的概念. 教学重、难点 理解二次根式的两个基本性质,并能用它们进行计算和化简. 离石一中八年级数学组教案 备课人:薛建梅 艾 强 3 / 10 教学过程设计 一、创设问题,激发兴趣 问题1 根据算术平方根的意义填空,并说出得到 结论的依据.

把上述计算结论推广到一般,并用字母表示: aa

2(a≥0)

二、知识应用,巩固提高 例1 计算下列各式:

(1) 25.1 ;(2)252

问题2 填空,你能说说这样做的依据吗?

把得到的结论推广到一般,并用含字母的二次根式表示: aa

2

(a≥0)

三、应用提高、拓展创新 例2 计算下列各式:

(1)16 ;(2)25 .

问题3 回顾我们学过的式子,这些式子有哪些共同特征? (1)含有表示数的字母; (2)用基本运算符号连接数或表示数的字母. 用基本运算符号把数或表示数的字母连接起来得到的式子叫代数式. 四、归纳小结 (1)你知道了二次根式的哪些性质? (2)运用二次根式性质进行化简需要注意什么? (3)请谈谈发现二次根式性质的思考过程? (4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识. 五、布置作业: 教科书第4页练习第1,2题;习题16.1第2,4题. 教后反思: 离石一中八年级数学组教案 备课人:薛建梅 艾 强 4 / 10 16.2 二次根式的乘除(1) 教学目标 1.探索二次根式乘法法则; 2.能根据二次根式乘法法则进行二次根式的乘法运算. 教学重、难点 二次根式乘法法则的探究和应用. 教学过程设计 一、创设问题,激发兴趣

问题1 当a 是正数或0 时,a是实数吗?取a 值分别为1,2,3,4,5试一试 类比有理数的运算,你认为任何两个实数之间可以进行哪些运算? 加、减、乘、除四则运算 问题2 两个二次根式能否进行加、减、乘、除运算?怎样运算?让我们从研究乘法开始. 请写出两个二次根式,猜一猜,它们的积应该是多少? 二、知识应用,巩固提高 特殊化,从能开得尽方的二次根式乘法运算开始思考! 计算下列式子,并观察它们之间有什么联系?

能用字母表示你所发现的规律吗? 二次根式乘法法则:

一般地有abba(a≥0,b≥0) 二次根式与二次根式相乘,等于各被开方数相乘的算术平方根. 反之:baab(a≥0,b≥0) 三、应用提高、拓展创新 例1 计算:

本章中,如未特别说明,所有的字母都表示正数. 例2 计算:

四、归纳小结 (1)二次根式乘法法则是怎样讲的?我们是通过什么方法得到的? (2)二次根式的乘法运算的依据是什么? 离石一中八年级数学组教案 备课人:薛建梅 艾 强 5 / 10 (3)在本节课学习中你认为容易出错的地方在哪里?出错的原因是什么? 五、布置作业: 教科书第10页,习题16.2第1,3(1)(2),8(1)题. 教后反思:

16.2 二次根式的乘除(2) 教学目标 1.探索二次根式除法法则; 2.能根据二次根式除法法则进行二次根式的除法运算. 教学重、难点 二次根式除法法则的探究和应用. 教学过程设计 一、创设问题,激发兴趣 我们知道,两个二次根式可以进行乘法运算,那么,两个二次根式能否进行除法运算呢?

二、知识应用,巩固提高 问题1 计算下列各式,观察计算结果,你能发现什么规律?

问题1 计算下列各式,观察计算结果,你能发现什么规律? 三、应用提高、拓展创新 问题2 计算:

问题3 能否将二次根式643化简? 离石一中八年级数学组教案 备课人:薛建梅 艾 强

6 / 10 问题4 化简:

四、归纳小结 (1)如何进行二次根式除法运算? (2)如何逆用二次根式除法法则化简二次根式? (3)能推导出二次根式除法法则吗? 五、布置作业: 教科书第10页练习第1题;习题16.2第2,4题. 教后反思:

16.2 二次根式的乘除(3) 教学目标 1.理解最简二次根式的概念; 2.能用最简二次根式的概念进行二次根式的化简. 教学重、难点 把二次根式化简到最简二次根式. 教学过程设计 一、创设问题,激发兴趣 问题1 计算:

二、知识应用,巩固提高 问题2 观察上面各小题计算的最后结果并思考: (1)你觉得这些结果能否再化简,它们已经是最简二次根式了吗? (2)这些结果有什么共同特点,你认为一个二次根式满足什么条件就可以说它是最简了? 可以发现这些式子有如下两个特点: (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式. 我们把满足上述两个条件的二次根式,叫做最简二次根式. 问题3 辨别下列二次根式是否是最简二次根式.

三、应用提高、拓展创新 问题4 把下列二次根式化成最简二次根式. 离石一中八年级数学组教案 备课人:薛建梅 艾 强 7 / 10 四、归纳小结 (1)最简二次根式有何特征? (2)如何化去分母中的根号,请举例说明. (3)把一个二次根式化为最简二次根式的依据是什么? 五、布置作业: 教科书第10页练习第3题;习题16.2第6,7,10,11题. 教后反思:

16.3 二次根式的加减(1) 教学目标 1.探索二次根式加减运算的方法和步骤; 2.会进行二次根式的加减运算. 教学重、难点 在化简二次根式的基础上,应用分配律进行二次根式的加减运算. 教学过程设计 一、创设问题,激发兴趣 问题1 现有一块长7.5 dm、宽5 dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8 dm2和18 dm2的正方形木板? 能截出两块正方形木板的条件是什么?能用数学式子表示吗?

188能否进一步计算?这是一种什么运算?

能进一步计算,这种计算是两个二次根式的加法运算. 二、知识应用,巩固提高

问题2 怎样计算188?

如果看不出188能否化简,我们不妨把问题简化,先看算式2322能否化简.

这里的两个二次根式有什么特征? 被开方数相同,即为同类二次根式. 你能得到这样的两个二次根式加减的方法吗? 将同类二次根式用分配律合并.

算式188与算式2322有什么相同点与不同点?

请化简算式188,并说出每一步化简的理由.

相关文档
最新文档