ABAQUS中的断裂力学及裂纹分析总结

合集下载

abaqus裂纹模拟问题汇总

abaqus裂纹模拟问题汇总

关键字:crack,裂纹,断裂,cohesive,XFEM这个问题不大好总结,比较复杂,我能想到什么就说些什么吧,这个任务已经托了很长时间了,抱歉!有新的想法我会更新。

求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。

俩者不是一个概念,断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等;损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。

这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。

如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这个就是基于断裂力学的方法,大家可以参考敦诚版主做的这个例子(一个简单的裂纹模拟例子:/thread-858322-1-1.html),这种方法可以计算裂纹的应力强度因子,J积分及T-应力等,详细情况可以参考下这个帖子:/thread-821531-1-1.html考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。

debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。

cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等,详细情况可参看yaooay的这个帖子,总结的相当不错!/thread-853029-1-1.html除VCCT(虚拟裂纹闭合技术)和低周疲劳判据外,其他debond技术只能适用于二维模型,所以应用范围受到很大的限制。

VCCT是基于线弹性断裂力学的应变能释放率判据,适用于模拟脆性断裂扩展,且只能沿着事先确定的扩展面扩展,分析前需指定初始裂纹(缺陷),详细信息请查看分析手册11.4.3。

ABAQUS-2fXFEM在断裂力学分析中的应用

ABAQUS-2fXFEM在断裂力学分析中的应用
r刚9--14均是f≈川AB,~OUS/XFEM拉术对断艇山学模艰的H算结粜。

圈9裂纹n『ll城扯单i山Ⅻ
一。。嚣唣.。.
嘲10:试件拉”∞例
圈11:试件竹dn断裂
习J 曩蹬11
3.结论
^蛾
|_
嚣鬻鬻
目13:压力弈器承裁能力仿真
剧14:符台材料断裂脱层分析
化楼ij黜嚣黜麓;麓嚣碧辜善燃嚣蓉繇:;i簿耋学‰i
断裂力学采用小范围塑性应变假设,认为塑性变形发牛在裂纹尖端附近很小的区域内
如图6所示。
鹱 魑 箩|;
目4
,.:lt’jo。一“

Ⅷ6:小#喟韧忭应娈暇&F城划n目7:传统FEMi上火裂故幔《幽8:传统FEM浊钝裂故横Ⅲ
麟攀
载荷々裂纹甲“
幽5:玻荷沿裂牧横向
2加帅us/xF凹在断裂力学研究中的应用:
参考文献
化模型网格划分与边界定义,程序中有丰富的材料破坏模型并支持材料m线性,几何}l: 线性,・口以有效的预测存在裂纹结构的承载能力.对复台材料进行基辩断裂与铺层脱层 现象进行仿真。
^b…,‰]yslsUⅫ'M…l
AbMusTheofyM蚰叫

Babummd J
Melcak,mf J
N—Moth.En口g(1997),40:727-758
Bcl,IschkoInt J
Bel衄hko N叩吼M劬Engagfl999).45:691_620 ~Hambo刊P HalⅡb仉c咖P Mdh^ppI M“h Engng(2004), 193:3523-3540
t andT Black,ht J J H
s邮B
PM
A^…a叫r
N…fMcth
Engng【!【l|16】67:86t{t893

abaqus 模拟裂纹技术总结解析

abaqus 模拟裂纹技术总结解析

理论
技术方法 debond
应用类型
LEFM cohesive element
脆性断裂
Damage
collapse element
韧性断裂
XFEM
理 论 模 型
1.线弹性断裂力学 (LEFM) 2.基于牵引分离规则的损伤力学 (damage base traction-separation laws)
开裂前:
开裂后:
特点: • • • • 适合模拟脆性或韧性裂纹 能输出裂纹扩展时的能量释放率 不一定要设置预置裂纹 只能沿预定裂纹扩展路径扩展
3. Collapes element
在abaqus中的操作步骤:
设置预制 裂纹的扩 展方向, 裂纹尖端 的奇异性 参数
实现 裂纹 扩展 模拟
实例:
开裂前:
开裂前:
开裂后:
特点: • 需预置裂纹和裂纹扩展路径 • 只适合于模拟脆性裂纹 • 能输出裂纹扩展时的能量释放率
2. Cohesive element
在abaqus中的操作步骤:
建立一个 连接两个 部件的part
给part设定 cohesive属 性断裂准则 和厚度
实现 裂纹 模拟
实例:
结果:
目的:通过对各种软件和技术的分析和实验找出适合于模 拟热障涂层裂纹的软件和技术
Chen X. Surface & Coatings Technology, 2006, 200: 3418-3427.
abaqus简介
• abaqus能提供从热障涂层建模到有限元计 算这整个过程所需的软件支持 • abaqus最擅长于动态非线性分析 • abaqus操作简单,使用方便
1.debond 2.cohesive element 3.collapes element 4.XFEM

《2024年基于ABAQUS的裂纹扩展仿真软件及应用》范文

《2024年基于ABAQUS的裂纹扩展仿真软件及应用》范文

《基于ABAQUS的裂纹扩展仿真软件及应用》篇一一、引言随着现代工程领域对材料性能要求的不断提高,裂纹扩展仿真技术成为了研究材料力学行为的重要手段。

ABAQUS是一款功能强大的工程仿真软件,其基于有限元方法,广泛应用于各种复杂的工程问题。

本文将详细介绍基于ABAQUS的裂纹扩展仿真软件及其应用,分析其原理、特点及在实际工程中的应用效果。

二、ABAQUS裂纹扩展仿真软件原理ABAQUS裂纹扩展仿真软件基于有限元方法,通过构建材料的几何模型、设置材料属性、加载边界条件等步骤,实现对裂纹扩展过程的仿真。

软件采用先进的断裂力学理论,可以模拟裂纹的萌生、扩展、合并等过程,为研究材料的力学行为提供有力支持。

三、ABAQUS裂纹扩展仿真软件特点1. 高度灵活性:ABAQUS裂纹扩展仿真软件具有高度的灵活性,可以模拟各种复杂的裂纹扩展过程。

2. 准确性高:软件采用先进的断裂力学理论,能够准确模拟裂纹的萌生、扩展和合并等过程。

3. 易于操作:软件界面友好,操作简便,用户可以轻松构建几何模型、设置材料属性及加载边界条件。

4. 广泛适用性:ABAQUS裂纹扩展仿真软件可应用于各种工程领域,如航空航天、汽车制造、建筑等。

四、ABAQUS裂纹扩展仿真软件应用1. 材料研发:通过模拟裂纹扩展过程,可以帮助研究人员了解材料的力学性能,为材料研发提供有力支持。

2. 产品设计:在产品设计阶段,通过仿真分析可以预测产品在使用过程中可能出现的裂纹扩展问题,从而优化设计,提高产品的可靠性。

3. 结构安全评估:ABAQUS裂纹扩展仿真软件可用于对结构进行安全评估,预测结构在使用过程中可能出现的裂纹扩展问题,为结构的安全使用提供保障。

4. 实际工程应用:ABAQUS裂纹扩展仿真软件已广泛应用于航空航天、汽车制造、建筑等领域。

例如,在航空航天领域,通过仿真分析可以预测飞机、火箭等结构在极端环境下的裂纹扩展情况,确保其安全性能;在汽车制造领域,通过仿真分析可以优化汽车零部件的设计,提高其耐用性和安全性。

浙江大学abaqus裂纹技巧

浙江大学abaqus裂纹技巧

浙江大学abaqus裂纹技巧浙大BBS:abaqus分析技巧采用abaqus的cae进行力学问题的分析,其对模型的处理存在很多的技巧,对abaqus的一些分析技巧进行一些概述,希望对大家有所帮助1.abaqus的多图层绘图abaqus的cae默认一个视区仅仅绘出一个图形,譬如contor图,变形图,x-y 曲线图等,其实在abaqus里面存在一个类似于origin 里面的图层的概念,对于每个当前视区里面的图形都可以建立一个图层,并且可以将多个图层合并在一个图形里面,称之为Overlay Plot,譬如你可以在同一副图中,左边绘出contor图,右边绘出x-y图等等,并且在abaqus里面的操作也是很简单的。

1.首先进入可视化模块,当然要先打开你的模型数据文件(。

odb)2.第一步要先创建好你的图形,譬如变形图等等3.进入view里面的overlay plot,点击creat,创建一个图层,现在在viewport layer 里出现了你创建的图层了4.注意你创建的图层,可以看到在visible 下面有个选择的标记,表示在视区里面你的图层是否可见,和autocad里面是一样,取消则不可见current表示是否是当前图层,有些操作只能对当前图层操作有效,同cad name是你建立图层的名称,其他的属性值和你的模型数据库及图形的类型有关,一般不能改动的。

5.重复2-4步就可以创建多个图层了6.创建好之后就可以选择plot/apply,则在视区显示出所有的可见的图层1.什么是子结构子结构也叫超单元的(两者还是有点区别的,文后会谈到),子结构并不是abaqus 里面的新东东,而是有限元里面的一个概念,所谓子结构就是将一组单元组合为一个单元(称为超单元),注意是一个单元,这个单元和你用的其他任何一种类型的单元一样使用。

2.为什么要用子结构使用子结构并不是为了好玩,凡是建过大型有限元模型的兄弟们都可能碰到过计算一个问题要花几个小时,一两天甚至由于单元太多无法求解的情况,子结构正是针对这类问题的一种解决方法,所以子结构肯定是对一个大型的有限元模型的,譬如在求解非线性问题的时候,因为对于一个非线性问题,系统往往经过多次迭代,每次这个系统的刚度矩阵都会被重新计算,而一般来说一个大型问题往往有很大一部分的变形是很小的,把这部分作为一个子结构,其刚度矩阵仅要计算一次,大大节约了计算时间。

ABAQUS中的断裂力学及裂纹分析总结

ABAQUS中的断裂力学及裂纹分析总结

ABAQUS中的断裂力学及裂纹分析总结ABAQUS中的断裂力学及裂纹分析总结(转自simwe)(1)做裂纹ABAQUS有几种常见方法。

最简单的是用debond命令, 定义*FRACTURE CRITERION, TYPE=XXX,参数。

***DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1,……......time,0要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在*INITIAL CONDITIONS, TYPE=CONTACT中定义master, slave, 及指定的Nset这种方法用途其实较为有限。

(2)另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数.裂尖及奇异性定义:在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。

这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。

如果midside nodes 不移动到1/4处, 则对应(1/r)奇异性,适合perfect plasticity的情况.网格划分:裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上布点,记住要点constraint, 然后选第三个选项do not allow the number of elements to change不准seed变化,密度可以自己调整. 最里面靠近圆的正方形可以只在对角线上布点. 也可以进一步分割内圆及在圆周上布点. 里面裂尖周围的内圆选free mesh, element type 选cps6或者cpe6,外面四边形选sweep mesh, element type选cps8或者cpe8, 记住把quad下那个缩减积分的勾去掉。

abaqus预应力混凝土轨枕断裂分析

abaqus预应力混凝土轨枕断裂分析

abaqus 预应力混凝土轨枕断裂分析路轨枕是一种混凝土结构,作为缓冲,把铁路的负荷转移到地面,把它放在铁路和砾石或沥青地面之间的支持表面。

一般情况下,它是由混凝土结构嵌入钢筋核心,并安装在底部和侧面的振动垫,以防止振动的火车被传输到地面。

这些轨枕频繁的故障导致了维修费用的增加,对经济运行产生了很大的影响。

混凝土结构失效模式的分析和预测是铁路运营中的一个重要技术因素。

当然,这不是一个昂贵的结构,但铁路是一种主要的运输形式,巨大的成本和投资的问题不能被轻易忽视。

在本研究中,我们将分析铁路枕木这种钢筋混凝土结构的破坏。

通过这次练习,我们将练习分析方法,如混凝土结构的物理建模,使用具有初始抗拉强度的加固结构材料,以及脆性开裂,这是一种脆性材料,如混凝土的破坏模型。

预应力钢筋的使用是为了提高铁路轨枕在反复冲击荷载作用下的耐久性。

这是一个设计元素,已被称为实验和经验的很长一段时间。

下图展示了典型的铁路部件和轨枕,以及整块轨枕和双块轨枕模型。

国内地铁的大部分卧铺都采用了双块式几何模型该模型由四个部分组成:铁路车轮位于铁路荷载、轨道和枕木的路径上,枕木中的预应力钢筋芯。

注意,模型的单位为[mm, sec ,公吨,MPa] 。

通过将CAD 模型导入CAE ,采用几何模型。

导入模型创建六个钢筋和一个铁路,车轮和卧铺。

在轮子部分,在轮子的中心点创建一个参考点来设置负载和边界条件。

当轨枕用混凝土制成并与铁路轨道一起安装后,在某些情况下需要对检修孔进行处理。

维修孔的处理是管理的需要,如何以及在哪里制造孔与这个轨枕的故障行为是相关的。

因此,我们将创建两个模型:一个没有孔,另一个顶部有32mm 的孔,将失效机理与实验值进行比较。

网格划分要创建零件的网格,展开模型树,双击钢轨部分的网格来创建网格。

如果您在输入全局种子= 10 后执行automesh ,请确保网格创建如下图所示,并将元素类型选择为C3D8R 。

本分析过程为脆性混凝土材料的失效模式分析。

abaqus断裂准则详解

abaqus断裂准则详解

abaqus断裂准则详解断裂是材料在受到外力作用下发生破裂的过程,它在工程设计和材料研究中具有重要的意义。

为了预测和分析材料断裂行为,需要使用合适的断裂准则。

本文将详细介绍abaqus断裂准则的原理和应用。

abaqus是一种常用的有限元分析软件,它可以用于模拟和分析各种结构和材料的力学性能。

在abaqus中,断裂准则是用来预测材料何时会发生破裂的方法。

abaqus提供了多种不同的断裂准则,包括线性弹性断裂准则、最大剪应力断裂准则、最大正应力断裂准则、最大应变断裂准则等。

线性弹性断裂准则是最简单的一种断裂准则,它假设材料在破裂前是线性弹性的,当应力达到材料的强度极限时,材料会发生破裂。

这种准则适用于某些脆性材料,如陶瓷和玻璃。

然而,对于许多金属和塑料等材料来说,线性弹性断裂准则并不适用,因为它们在破裂前会发生塑性变形。

最大剪应力断裂准则是一种常用的断裂准则,它假设材料在破裂前会发生最大剪应力。

当材料中的剪应力达到材料的剪切强度时,材料会发生破裂。

这种准则适用于某些金属材料,如铝合金和钢材。

最大正应力断裂准则是另一种常用的断裂准则,它假设材料在破裂前会发生最大正应力。

当材料中的正应力达到材料的抗拉强度时,材料会发生破裂。

这种准则适用于某些脆性材料和复合材料。

最大应变断裂准则是一种基于材料的最大应变来判断破裂的准则。

当材料中的应变达到材料的应变极限时,材料会发生破裂。

这种准则适用于某些塑性材料,如聚合物和橡胶。

除了上述几种常用的断裂准则外,abaqus还提供了其他一些断裂准则,如能量释放率准则、J积分准则等。

这些准则可以更准确地预测材料的断裂行为,但需要更复杂的计算和分析。

在abaqus中,断裂准则的选择取决于材料的特性和所需的分析结果。

根据不同的应用场景和材料类型,选择合适的断裂准则可以提高模拟和分析的准确性。

同时,也需要注意断裂准则的局限性,避免错误的预测和分析结果。

abaqus断裂准则是用来预测材料何时会发生破裂的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABAQUS中的断裂力学及裂纹分析总结(转自simwe)
(1)
做裂纹ABAQUS有几种常见方法。

最简单的是用debond命令, 定义
*FRACTURE CRITERION, TYPE=XXX,
参数。

**
*DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX
0,1,
……
......
time,0
要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在
*INITIAL CONDITIONS, TYPE=CONTACT中定义
master, slave, 及指定的Nset
这种方法用途其实较为有限。

(2)
另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数.
裂尖及奇异性定义:
在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。

这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。

如果midside nodes 不移动到1/4处, 则对应(1/r)奇异性, 适合perfect plasticity的情况.
网格划分:
裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上
布点,记住要点constraint, 然后选第三个选项do not allow the number of elements to change不准seed变化,密度可以自己调整. 最里面靠近圆的正方形可以只在对角线上布点. 也可以进一步分割内圆及在圆周上布点. 里面裂尖周围的内圆选free mesh, element type 选cps6或者cpe6,外面四边形选sweep mesh, element type选cps8或者cpe8, 记住把quad下那个缩减积分的勾去掉。

这种方法的几个值得注意的问题,见不少朋友问过。

主要是对断裂力学的理解问题。

1.为什么设置理想弹塑性(epp)分析的时候得到的xx,yy方向或者最大应力值Sxx, Syy会超过材料的屈服强度Sy呢, 这分析结果可能吗?
这是因为在ABAQUS中对应等于材料的屈服强度的是von Mises等效应力Se=Sy,因此在平面应变的条件下,xx方向的应力Sxx=Sy*pi/SRQT(3)>Sy, 而Syy=Sy*(2+pi)/SRQT(3), 大概是3倍的屈服应力。

所以得到大于材料的屈服强度的xx及yy方向应力是正常的。

2.为什么设置collapse element的时候对弹性分析在中间就一个点而要把单元边上的中点移到1/4处,但弹塑性分析却要在中间设置一圈点并且保持单元边上的中点位置不变呢?这个其实不是随便定的,在有限元中分析裂纹时,对弹性分析需要模拟裂尖1/SQRT(r)的奇异性,这样在把单元边上的中点移到1/4处后计算出来的等参单元拉格郎日型函数对应的u field正好包含1/ SQRT(r)项,事实上这一方法在断裂力学的数值模拟发展史上是很巧妙的一个发现,至今仍然被广泛采用。

至于理想弹塑性分析需要模拟裂尖1/r的奇异性, 这样大家都知道在把单元边上的点放在到1/2处后计算出来的正常的等参单元拉格郎日型函数对应的u field包含1/ r项, 可以模拟弹塑性分析需要的裂尖1/r的奇异性。

所以在看似动手点几下就能实现的分析模式后面有很清楚漂亮的理论作支持。

还有就是比较新的cohesive element单元。

我仔细读了ABAQUS cohesive element的理论帮助,个人意见ABAQUS的cohesive element采用的是广泛应用于混凝土的类似fictitious crack的方法。

只考虑了Dugdale-Barenblatt energy mechanism。

这其中softening law 的影响是非常重要的。

但ABAUQS似乎只提供了linear 或者exponential 的softening law,复杂的本构关系还需要另想办法。

至於基于Griffith-Irwin energy dissipation mechanism的J-integral值可以在LEFM分析中单独算。

(ABAQUS用的是Suo Zhigang 和Hutchinson在1990一篇论文中提出的方法) 目前cohesive fracture mechnics已经被应用于各种材料。

不过在使用到纳米或者更小数量级的研究中碰到了不少问题,可能需要结合位错和分子动力学
的一些理论。

现有的cohesive element单元需要定义damage initiation和evolution的准则,softening准则目前好像只有linear和exponential,但对一般材料也够用了。

然后通过设置后处理display group可以看到裂纹扩展情况。

裂纹扩展不是ABAQUS的强项,目前比较方便的只能用cohesive element,我做过几个模型效果还可以,但对应的参数需要一定的实验数据支持,否则做出来了也不知道对不对。

要注意geometric thickness和constitutive thickness;material stiffness和interfacial stiffness的区别以及厚度与精度的影响。

Cohesive element的核心主要是TS-Law,无论里面的数据如何选取,厚度如何变化,cohesive element的表现取决于TS-Law的定义。

具体dava的popo10已经给过详细的解释的讨论,可以搜索他们的帖子。

如图是我做的3d cohesive element interfacial crack 的例子。

相关文档
最新文档