浙江省大学物理试题库413-夫琅禾费单缝衍射教学文案

合集下载

11[1].2_单缝夫琅禾费衍射

11[1].2_单缝夫琅禾费衍射

夫琅禾费集工艺家和理论家的才干于一身, 夫琅禾费集工艺家和理论家的才干于一身,把理论与丰 富的实践经验结合起来,对光学和光谱学作出了重要贡献。 富的实践经验结合起来,对光学和光谱学作出了重要贡献。 1814年他用自己改进的分光系统 年他用自己改进的分光系统, 1814年他用自己改进的分光系统,发现并研究了太阳光谱中 的暗线(现称为夫琅禾费谱线), ),利用衍射原理测出了它们的 的暗线(现称为夫琅禾费谱线),利用衍射原理测出了它们的 波长。他设计和制造了消色差透镜, 波长。他设计和制造了消色差透镜,首创用牛顿环方法检查光 学表面加工精度及透镜形状, 学表面加工精度及透镜形状,对应用光学的发展起了重要的影 他所制造的大型折射望远镜等光学仪器负有盛名。 响。他所制造的大型折射望远镜等光学仪器负有盛名。他发表 了平行光单缝及多缝衍射的研究成果( 了平行光单缝及多缝衍射的研究成果(后人称之为夫琅禾费衍 ),做了光谱分辨率的实验 第一个定量地研究了衍射光栅, 做了光谱分辨率的实验, 射),做了光谱分辨率的实验,第一个定量地研究了衍射光栅, 用其测量了光的波长,以后又给出了光栅方程。 用其测量了光的波长,以后又给出了光栅方程。
Aϕ a a B C BC=aSinϕ ϕ
P P0
用半波带法) 任意点 P (用半波带法) 抓住缝边缘两光线光程差: 抓住缝边缘两光线光程差:
P
a
λ 2 λ 2
a sin ϕ = 2
λ
2
θ
P0

λ
将缝分成两部份(两个半波带), 将缝分成两部份(两个半波带), 相邻半波带对应子波光程差为 λ 2 点叠加相消, 处为第一暗纹。 在 P 点叠加相消,故P 处为第一暗纹。 再考虑另一点
单 缝 衍 射 条 纹

《大学物理》光的衍射(一)

《大学物理》光的衍射(一)

放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
③影响衍射图样的a和
由暗纹条件: asin k 若λ 一定时,
sin 1 : 缝越窄,衍射越显著,但a不能小于(a小于时 也有衍射,a但此时半波带理论不成立);缝越宽,衍射越不明显, 条纹向中心靠近,逐渐变成直线传播。
由暗纹条件: asin k 若a一定时, sin λ 越大,衍射越显著,
20 2sin0 2 / a 1.092102 rad
易得中央明条纹的线宽度为
x=2 f tan0 2 f sin0 5.46103 m
(2)浸入水中,折射率改变,设折射率为n,则波长改变为
=/n 2
an
n , ,即中央明条纹的角宽度减小
大学物理 习题练习 光的衍射
光的衍射
• 什么是光的衍射?
波在传播中遇到障碍物,使波面受到限制时,能够绕过障碍物 继续前进的现象。
光通过宽缝时,是沿直线传播的,若将缝的宽度减小到约104m及更 小时,缝后几何阴影区的光屏上将出现衍射条纹。
菲涅耳衍射
衍射屏、光源和接收屏之间(或 二者之一)均为有限远
夫琅禾费衍射
衍射屏与光源和接收屏三者之间 均为无限远。
单缝夫琅禾费衍射
衍射屏 透镜L
透镜L
B
S
*
a

Aδ f
f
观察屏
·p
0
衍射角:
①衍射图样中明、暗纹公式:
亮纹条件: a sin (2k 1)
2
(近似值)
暗纹条件: a sin 2k k
2
②单缝衍射条纹特点—条纹宽度
对K级暗纹有

物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论1

物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论1

物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论2020年春季大学物理实验单缝夫琅禾费衍射专业班级:学号:姓名:日期:实验名称:单缝夫琅禾费衍射实验目的:观察激光通过单缝后的夫琅禾费衍射现象,测量出单缝宽度参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告实验仪器材料:激光笔、书本、墙壁、皮尺、胶水、直尺实验方案设计:1.设单缝宽度AB=a,单缝到接收屏之间的距离是L,衍射角为Ф的光线聚到屏上P 点,P点到中央明纹中心距离X K,那么A、B出射光线到P点的光程差则为asinФ2.当光程差是半波长的偶数倍时形成暗纹,由于Ф很小,asinФ≈aX K /L,即当aX K /L=kλ时,出现暗纹,由此得到单缝宽度:a=LKλ/ X K实验过程:参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告1. 用两张银行卡自制狭缝,并用书本固定,激光笔发出红光,照射狭缝,调整远处墙壁可初步观察到明显的夫琅禾费衍射现象2. 测量狭缝和墙壁的距离L,测量暗环中心到中央明纹中心的距离X K,可选择第1级(K=±1)或第2级(K=±2)暗纹,共测量5次,取平均值3. 通过上述公式计算出狭缝宽度,激光波长参考:红光650nm问题:手持激光笔摇晃严重,增加测量难度;办法:用胶水固定激光笔数据分析处理:参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告将上述实验数据代入公式a=LKλ/ X K,可以得到K=1时,计算得到狭缝的宽度为0.455mm;K=2时,计算得到狭缝的宽度为0.456mm K=3时,计算得到狭缝的宽度为0.455mm综上,测量得到狭缝的宽度为0.455mm实验小结:激光笔红光波长与参考值存在误差;狭缝和墙壁的距离L因皮尺精度有限,读数不准虽然大学物理的课程未涉及本次实验知识,但通过这次实验也让我对光学相关知识有了更深层次的了解,提高了兴趣-全文完-。

大学物理--光的衍射

大学物理--光的衍射
N A 2 R si n 2
R

/2
N
Q
由OPa可看出
A0 2 R sin 2
A合
N sin 2 A A0 sin 2
请大家自行练习!
O
b a C A0 B
X
当N=2k 时的合振幅为零。请记住这个结论!
4.惠更斯—菲涅耳原理直接计算 x
L1 L2
P
2 x sin k x sin
k , k 1, 2,
以 sin 或为横轴,中央亮纹两侧暗纹是等间距的
(4)次极大 I 的极大值
tg 1 1.43 , 2 2.46 , 3 3.47 , k (k 1 ) 2 以 sin 为横轴,亮纹分布近似等间距
I1 4.7% I0 , I2 1.7% I0 , I3 0.8% I0 ,
- 3 - 2 - a a a
d ( sin 2 ) 0 d 2
2 sin I ( ) I 0 2

π a sin
I
sin
O
a
2 3 a a
(5)条纹宽度 零级亮纹 2 arcsin 2 a a 其它亮纹 反比 arcsin
0
d
2.光学仪器的分辨本领
几何光学: 物点 波动光学: 物点 象点
象斑
瑞利判据: 对于两个等光强的非相干点光源 ( 物点 ) ,如果其一个的衍射主极大恰 好和另一个的衍射第一极小相重合, 则此两物点被认为是刚刚可以分辨。
清晰分辨
刚可分辨
不可分辨
光学仪器的最小分辨角
0 ,
1.22 D

浙江大学《大学物理》课件光的衍射1

浙江大学《大学物理》课件光的衍射1

这是具体的白光单缝夫琅禾费衍射
光的衍射
单缝夫琅禾费衍射图样特征的讨论: ③衍射效应还与缝宽 a、入射光的波长 密切相关。 只有 a~ 才有明显的衍射效应
分析书上P49页例17.1,注意各种物理量单位的统一
【例题】用单色平行光垂直照射到宽度为 a=0.5mm的单缝上, 在缝后放置一个焦距为 f=100cm的透镜,则在焦平面的屏幕 上形成衍射条纹,若在离屏上中央明纹中心距离为1.5mm处 的P点为一亮纹,试求: ①入射光的波长;②P点条纹的级数和该条纹对应的衍射角; ③狭缝处波面可分为几个半波带;④中央明纹的宽度。
②原中央明纹变为3 个小明纹,相当于 插入二条暗纹
光的衍射
2.振幅矢量叠加法:(只须了解其基本原理)
sinu u I A2 sin 2u 2 2 I 0 A0 u A A0
光的衍射
四、光栅衍射:
任何能周期性地分割波阵面的衍射屏------衍射光栅,相邻 两缝(或刻痕)中心间距称为光栅常数-----d
光的衍射
光栅衍射的整个过程是平行光先经各个单缝衍射后,再 进行多光束干涉! 对光栅的每一条缝而言,单缝衍射的结论完全适用,故 光栅的衍射条纹应看作单缝衍射和多光束干涉的综合结果。
光的衍射
多缝衍射的明暗情况:
相邻的两个主 极大之间均有 N 1个极小 N 2个次极大
光的衍射
光的衍射
光栅衍射条纹的明暗条件为: dsin k k 0,1, 2,...主极大 k dsin k 1, 2,..., N 1, N 1,...极小 N
光的衍射
三、单缝夫琅禾费衍射:
原来垂直入射的平行光经过衍射能出射各种角度的平行光, 到达观察屏的光的强度是各个平行衍射光的相干叠加。

夫琅禾费单缝衍射实验的教学研究

夫琅禾费单缝衍射实验的教学研究
3.1“焦面接收”装置
把单色点光源 放在凸透镜 的前焦面上,经透镜 后的光束成为平行光垂直照在单缝 上,由惠更斯—菲涅耳原理,位于狭缝波阵面上每一点都可看成新的子波波源,它们向各个方向发射球面次波,这些次波经透镜 会聚于 的后焦面上,把接收屏 放在凸透镜 的后焦面上,则由几何光学可知 、 相当于距单缝 无限远。
2夫琅禾费衍射
由光源、衍射屏和接收屏组成的系统,按它们相互间距的大小,将衍射分为两大类。一类是光源和接收屏(或两者之一)距离衍射屏有限的为菲涅尔衍射;另一类是光源和接收屏都距离衍射屏为无限远的夫琅和费衍射[1]。
3实现夫琅和费单缝衍射的几种实验装置
要实现夫琅禾费衍射,必须保证光源到单缝的距离和单缝到衍射屏的距离均无限远(或相当于无限远),但是,把光源及接收屏放在离衍射屏无限远在实际上是做不到的。因此,必须采取相应的措施,才能实际形成夫琅禾费衍射。要使光源距狭缝无限远,实际上可以把光源置于第一个透镜的焦平面上,使之成为平行光束;要使观察屏距狭缝无限远,实际上可以再第二个透镜的焦平面上放置观察屏幕。下面介绍下面将介绍三种形成夫琅禾费衍射的装置[2]。
(a) (b)
图3 两种像面接收装置
Fig.3Two surface receivers
4夫琅禾费衍射图样规律
本实验采用的是如图2所示的远场接受装置,S是波长为 的单色光源,置于透镜 的前焦面上,单色光经透镜 后形成一束平行光投射于狭缝为 的单缝AB上。狭缝上各点可以看成是新的波源,由新的波源向各个方向发出球面次波。这些次波可以看成很多不同方向的平行光束。当衍射屏距离单缝的距离Z满足 ,由惠更斯—菲涅尔原理可推出衍射屏上任意一点 光强 的分布规律为[6]:
可以对L的取值范围进行估算:实验时,若取 ,入射光是 激光,其波长为632.80nm, ,所以只要取 ,就可满足夫琅和费衍射的远场条件。但实验证明,取 ,结果较为理想。

物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论

物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论

物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论家庭单缝夫琅禾费衍射实验实验目的:1、了解夫琅禾费(Fraunhofer Lines)被用于把窄线宽的原子谱线用来测量光谱中的原子或分子信号2、研究夫琅禾费把反谱仪角度和反谱仪对散射算法的影响实验材料:铂家具,反谱仪,单缝夫琅禾费模板,衍射模板,记录仪等实验方法使用反射仪配合衍射模板测量夫琅禾费的宽度和强度,同时配合相应的数据记录仪记录下测量得到的值。

首先,我们调整反射仪角度,使其与衍射模板对齐,然后将反射仪射线对准夫琅禾费模板,根据数据记录仪记录的测量值,推算出窄线宽的夫琅禾费。

然后,我们可以确定单缝夫琅禾费模板反射仪角度和反射仪对散射算法的影响。

最后,我们可以使用夫琅禾费把反谱仪角度和反谱仪对散射算法进行测量,记录数据,并比较结果。

实验结果通过实验,我们测量出夫琅禾费窄线宽的宽度,测量结果如下所示:第一组:夫琅禾费宽度为0.64 nm。

第二组:夫琅禾费宽度为0.62 nm。

第三组:夫琅禾费宽度为0.61 nm。

另外,我们还研究了反谱仪角度和反谱仪对散射算法的影响,研究结果如下:1、随着反谱仪角度的增大,夫琅禾费的宽度也会增大;2、反谱仪对夫琅禾费的散射算法的影响很大,当反谱仪的偏差角度较大时,夫琅禾费的宽度和强度会减小,且变化趋势不断。

结论本次实验通过配合衍射模板测量夫琅禾费的宽度和强度,我们可以推算出窄线宽的夫琅禾费。

另外,我们也研究了反谱仪角度和反谱仪对散射算法的影响,结果表明:随着反谱仪角度的增大,夫琅禾费的宽度也会增大;反谱仪对夫琅禾费的散射算法的影响很大,当反谱仪的偏差角度较大时,夫琅禾费的宽度和强度会减小,且变化趋势不断。

本次实验为理解夫琅禾费的原理,及其对光谱中原子或分子信号的测量提供了重要的实验经验。

大学物理题库-波动光学 光的衍射习题与答案解析

大学物理题库-波动光学  光的衍射习题与答案解析

11、波动光学光的衍射一、选择题(共15题)1.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[]2.一束波长为λ的平行单色光垂直入射到一单Array缝AB上,装置如图.在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.[]3.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]4.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[]5.在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的(A) 3 / 4倍. (B) 2 / 3倍.(C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ] 6.λ在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a 稍梢变宽,同时使单缝沿y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕C 上的中央衍射条纹将(A) 变窄,同时向上移; (B) 变窄,同时向下移;(C) 变窄,不移动;(D) 变宽,同时向上移;(E) 变宽,不移. [ ] 7.一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现? (A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ] 8.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b .(C) a=2b . (D) a=3 b . [ ]λ9.测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ ] 10.波长λ=550 nm(1nm=10−9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D) 5. [ ] 11.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少. (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多. (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变. (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.[ ] 12.某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是(A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12...... [ ] 13.当单色平行光垂直入射时,观察单缝的夫琅禾费衍射图样.设0I 表示中央极大(主极大)的光强,1θ表示中央亮条纹的半角宽度.若只是把单缝的宽度增大为原来的3倍,其他条件不变,则(A) 0I 增大为原来的9倍,1sin θ减小为原来的 31.(B) 0I 增大为原来的3倍,1sin θ减小为原来的 31.(C) 0I 增大为原来的3倍,1sin θ增大为原来的3倍.(D) 0I 不变,1sin θ减小为原来的 31. [ ]14.波长为0.168 nm (1 nm = 10-9 m)的X 射线以掠射角θ 射向某晶体表面时,在反射方向出现第一级极大,已知晶体的晶格常数为0.168 nm ,则θ 角为(A) 30°. (B) 45°.(C) 60°. (D) 90°. [ ] 15.X 射线射到晶体上,对于间距为d 的平行点阵平面,能产生衍射主极大的最大波长为 (A) d / 4. (B) d / 2.(C) d . (D) 2d . [ ]二、填空题(共15题)1.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =___________________________. 2.如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为___________.3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a =2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个. 4.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于_________. 5.波长为 600 nm 的单色平行光,垂直入射到缝宽为a=0.60 mm 的单缝上,缝后有一焦距f '=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为_______,两个第三级暗纹之间的距离为______.(1 nm =10﹣9 m) 6.a λ在单缝夫琅禾费衍射示意图中,所画出的各Array条正入射光线间距相等,那末光线1与2在幕上P点上相遇时的相位差为______ P点应为_____ 点.7.测量未知单缝宽度a的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D处测出衍射花样的中央亮纹宽度为l(实验上应保证D≈103a,或D为几米),则由单缝衍射的原理可标出a 与λ,D,l的关系为a =_ ___.8.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为___________.9.一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为________.10.若光栅的光栅常数d、缝宽a和入射光波长λ都保持不变,而使其缝数N增加,则光栅光谱的同级光谱线将变得___________.11.用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440 nm的第3级光谱线将与波长为λ2=______nm的第2级光谱线重叠.(1 nm =10 –9 m)12.一双缝衍射系统,缝宽为a,两缝中心间距为d.若双缝干涉的第±4,±8,±12,±16,…级主极大由于衍射的影响而消失(即缺级),则d/ a的最大值为____ ____________.13.汽车两盏前灯相距l,与观察者相距S= 10 km.夜间人眼瞳孔直径d= 5.0 mm.人眼敏感波长为λ = 550 nm (1 nm = 10-9 m),若只考虑人眼的圆孔衍射,则人眼可分辨出汽车两前灯的最小间距l = _________m.14.在通常亮度下,人眼瞳孔直径约为3 mm.对波长为550 nm的绿光,最小分辨角约为_______rad.(1 nm = 10-9 m)15.X射线入射到晶格常数为d的晶体中,可能发生布喇格衍射的最大波长为____________.三、计算题(共6题)1. (6分)在单缝的夫琅禾费衍射中,缝宽a =0.100 mm ,平行光垂直入射在单缝上,波长λ=500 nm ,会聚透镜的焦距f =1.00 m .求中央亮纹旁的第一个亮纹的宽度∆x . (1 nm =10–9 m)2. (5分)如图所示,设波长为λ的平面波沿与单缝平面法线成θ角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角ϕ.3. (5分)一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b(2) 波长λ24. (10分)波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21范围内可能观察到的全部主极大的级次.5.(10分)以波长为λ = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为d = 2.10 μm 、缝宽为a = 0.700 μm 的光栅上,入射角为i = 30.0°,求能看到哪几级光谱线.6. (5分)设汽车前灯光波长按λ = 550 nm (1 nm = 10-9 m)计算,两车灯的距离d = 1.22 m ,在夜间人眼的瞳孔直径为D = 5 mm ,试根据瑞利判据计算人眼刚能分辨上述两只车灯时,人与汽车的距离L .11、波动光学 光的衍射 答案一、选择题(共15题) 1-5:D 、B 、B 、A 、D 、 6-10:C 、B 、B 、D 、B 、 11-15:D 、D 、A 、A 、D 二、填空题(共15题)1、答案:30°2、答案:π3、答案:24、答案:λ / sin θ5、答案:1.2 mm ;3.6 mm6、答案:2π 暗7、答案:2λD / l8、答案:d sin ϕ =k λ ( k =0,±1,±2,···) 9、答案:0,±1,±3,........ 10、答案:更窄更亮 11、答案:660nm 12、答案:413、答案:1.34m14、答案:2.24×10-4 rad 15、答案:2d三、计算题(共6题)1、解:单缝衍射第1个暗纹条件和位置坐标x 1为:a sin θ1 = λa f f f x /sin tg 111λθθ≈≈= (∵θ1很小) 2分单缝衍射第2个暗纹条件和位置坐标x 2为: a sin θ2 = 2λa f f f x /2sin tg 222λθθ≈≈= (∵θ2很小) 2分 单缝衍射中央亮纹旁第一个亮纹的宽度 ()a a f x x x //2121λλ-≈-=∆= f λ / a=1.00×5.00×10-7 / (1.00×10-4) m=5.00 mm 2分2、解:1、2两光线的光程差,在如图情况下为ϕθδsin sin a a BD CA -=-= 2分由单缝衍射极小值条件a (sin θ-sin ϕ ) = ± k λ k = 1,2,…… 2分 (未排除k = 0 的扣1分)得 ϕ = sin —1( ± k λ / a+sin θ ) k = 1,2,……(k ≠ 0) 1分3、解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分4、解:(1) 由光栅衍射主极大公式得a +b =ϕλsin k =2.4×10-4 cm 3分(2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3)()λϕk b a =+sin ,(主极大) λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)L θ2 θ1 Cx 2 x 1 ∆x f因此 k =3,6,9,........缺级. 2分又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分5、解:(1) 斜入射时的光栅方程λθk i d d =-sin sin ,k = 0,±1,±2,… 2分规定i 从光栅G 的法线n -n 起,逆时针方向为正;θ 从光栅G 的法线n -n 起,逆时针方向为正.(2) 对应于i = 30°,设θ = 90°, k = k max1,则有λ1max 30sin 90sin k d d =︒-︒ )30sin 90)(sin /(1max ︒-︒=d d k λ= 2.10取整 k max1 = 2. 2分 (3) 对应于i = 30°,设θ = -90°, k = k max2, 则有 λ2max 30sin )90sin(k d d =︒-︒-]30sin )90)[sin(/(2max ︒-︒-=d d k λ = - 6.30取整 k max1 = -6. 2分 (4) 但因 d / a = 3,所以,第-6,-3,… 级谱线缺级. 2分 (5) 综上所述,能看到以下各级光谱线: -5,-4,-2,-1,0,1,2,共7条光谱线. 2分6、解:人眼最小分辨角为 θr = 1.22 λ /D 2分汽车两前灯对人眼的张角 L d /≈'θ1分 人眼刚能分辨两灯时,θθ'=r ,或 d / L =1.22 λ /D∴ ==)22.1/(λDd L 9.09 km 2分d 屏 光栅 透镜11、波动光学光的衍射一、选择题(共15题)1.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[]2.一束波长为λ的平行单色光垂直入射到一单Array缝AB上,装置如图.在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.[]3.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]4.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[]5.在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的(A) 3 / 4倍. (B) 2 / 3倍.(C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ] 6.λ在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a 稍梢变宽,同时使单缝沿y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕C 上的中央衍射条纹将(A) 变窄,同时向上移; (B) 变窄,同时向下移;(C) 变窄,不移动;(D) 变宽,同时向上移;(E) 变宽,不移. [ ] 7.一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现? (A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ] 8.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b .(C) a=2b . (D) a=3 b . [ ]λ9.测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ ] 10.波长λ=550 nm(1nm=10−9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D) 5. [ ] 11.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少. (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多. (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变. (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.[ ] 12.某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是(A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12...... [ ] 13.当单色平行光垂直入射时,观察单缝的夫琅禾费衍射图样.设0I 表示中央极大(主极大)的光强,1θ表示中央亮条纹的半角宽度.若只是把单缝的宽度增大为原来的3倍,其他条件不变,则(A) 0I 增大为原来的9倍,1sin θ减小为原来的 31.(B) 0I 增大为原来的3倍,1sin θ减小为原来的 31.(C) 0I 增大为原来的3倍,1sin θ增大为原来的3倍.(D) 0I 不变,1sin θ减小为原来的 31. [ ]14.波长为0.168 nm (1 nm = 10-9 m)的X 射线以掠射角θ 射向某晶体表面时,在反射方向出现第一级极大,已知晶体的晶格常数为0.168 nm ,则θ 角为(A) 30°. (B) 45°.(C) 60°. (D) 90°. [ ] 15.X 射线射到晶体上,对于间距为d 的平行点阵平面,能产生衍射主极大的最大波长为 (A) d / 4. (B) d / 2.(C) d . (D) 2d . [ ]二、填空题(共15题)1.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =___________________________. 2.如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为___________.3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a =2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个. 4.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于_________. 5.波长为 600 nm 的单色平行光,垂直入射到缝宽为a=0.60 mm 的单缝上,缝后有一焦距f '=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为_______,两个第三级暗纹之间的距离为______.(1 nm =10﹣9 m) 6.a λ在单缝夫琅禾费衍射示意图中,所画出的各Array条正入射光线间距相等,那末光线1与2在幕上P点上相遇时的相位差为______ P点应为_____ 点.7.测量未知单缝宽度a的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D处测出衍射花样的中央亮纹宽度为l(实验上应保证D≈103a,或D为几米),则由单缝衍射的原理可标出a 与λ,D,l的关系为a =_ ___.8.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为___________.9.一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为________.10.若光栅的光栅常数d、缝宽a和入射光波长λ都保持不变,而使其缝数N增加,则光栅光谱的同级光谱线将变得___________.11.用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440 nm的第3级光谱线将与波长为λ2=______nm的第2级光谱线重叠.(1 nm =10 –9 m)12.一双缝衍射系统,缝宽为a,两缝中心间距为d.若双缝干涉的第±4,±8,±12,±16,…级主极大由于衍射的影响而消失(即缺级),则d/ a的最大值为____ ____________.13.汽车两盏前灯相距l,与观察者相距S= 10 km.夜间人眼瞳孔直径d= 5.0 mm.人眼敏感波长为λ = 550 nm (1 nm = 10-9 m),若只考虑人眼的圆孔衍射,则人眼可分辨出汽车两前灯的最小间距l = _________m.14.在通常亮度下,人眼瞳孔直径约为3 mm.对波长为550 nm的绿光,最小分辨角约为_______rad.(1 nm = 10-9 m)15.X射线入射到晶格常数为d的晶体中,可能发生布喇格衍射的最大波长为____________.三、计算题(共6题)1. (6分)在单缝的夫琅禾费衍射中,缝宽a =0.100 mm ,平行光垂直入射在单缝上,波长λ=500 nm ,会聚透镜的焦距f =1.00 m .求中央亮纹旁的第一个亮纹的宽度∆x . (1 nm =10–9 m)2. (5分)如图所示,设波长为λ的平面波沿与单缝平面法线成θ角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角ϕ.3. (5分)一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b(2) 波长λ24. (10分)波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21范围内可能观察到的全部主极大的级次.5.(10分)以波长为λ = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为d = 2.10 μm 、缝宽为a = 0.700 μm 的光栅上,入射角为i = 30.0°,求能看到哪几级光谱线.6. (5分)设汽车前灯光波长按λ = 550 nm (1 nm = 10-9 m)计算,两车灯的距离d = 1.22 m ,在夜间人眼的瞳孔直径为D = 5 mm ,试根据瑞利判据计算人眼刚能分辨上述两只车灯时,人与汽车的距离L .11、波动光学 光的衍射 答案一、选择题(共15题) 1-5:D 、B 、B 、A 、D 、 6-10:C 、B 、B 、D 、B 、 11-15:D 、D 、A 、A 、D 二、填空题(共15题)1、答案:30°2、答案:π3、答案:24、答案:λ / sin θ5、答案:1.2 mm ;3.6 mm6、答案:2π 暗7、答案:2λD / l8、答案:d sin ϕ =k λ ( k =0,±1,±2,···) 9、答案:0,±1,±3,........ 10、答案:更窄更亮 11、答案:660nm 12、答案:413、答案:1.34m14、答案:2.24×10-4 rad 15、答案:2d三、计算题(共6题)1、解:单缝衍射第1个暗纹条件和位置坐标x 1为:a sin θ1 = λa f f f x /sin tg 111λθθ≈≈= (∵θ1很小) 2分单缝衍射第2个暗纹条件和位置坐标x 2为: a sin θ2 = 2λa f f f x /2sin tg 222λθθ≈≈= (∵θ2很小) 2分 单缝衍射中央亮纹旁第一个亮纹的宽度 ()a a f x x x //2121λλ-≈-=∆= f λ / a=1.00×5.00×10-7 / (1.00×10-4) m=5.00 mm 2分2、解:1、2两光线的光程差,在如图情况下为ϕθδsin sin a a BD CA -=-= 2分由单缝衍射极小值条件a (sin θ-sin ϕ ) = ± k λ k = 1,2,…… 2分 (未排除k = 0 的扣1分)得 ϕ = sin —1( ± k λ / a+sin θ ) k = 1,2,……(k ≠ 0) 1分3、解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分4、解:(1) 由光栅衍射主极大公式得a +b =ϕλsin k =2.4×10-4 cm 3分(2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3)()λϕk b a =+sin ,(主极大) λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)L θ2 θ1 Cx 2 x 1 ∆x f因此 k =3,6,9,........缺级. 2分又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分5、解:(1) 斜入射时的光栅方程λθk i d d =-sin sin ,k = 0,±1,±2,… 2分规定i 从光栅G 的法线n -n 起,逆时针方向为正;θ 从光栅G 的法线n -n 起,逆时针方向为正.(2) 对应于i = 30°,设θ = 90°, k = k max1,则有λ1max 30sin 90sin k d d =︒-︒ )30sin 90)(sin /(1max ︒-︒=d d k λ= 2.10取整 k max1 = 2. 2分 (3) 对应于i = 30°,设θ = -90°, k = k max2, 则有 λ2max 30sin )90sin(k d d =︒-︒-]30sin )90)[sin(/(2max ︒-︒-=d d k λ = - 6.30取整 k max1 = -6. 2分 (4) 但因 d / a = 3,所以,第-6,-3,… 级谱线缺级. 2分 (5) 综上所述,能看到以下各级光谱线: -5,-4,-2,-1,0,1,2,共7条光谱线. 2分6、解:人眼最小分辨角为 θr = 1.22 λ /D 2分汽车两前灯对人眼的张角 L d /≈'θ1分 人眼刚能分辨两灯时,θθ'=r ,或 d / L =1.22 λ /D∴ ==)22.1/(λDd L 9.09 km 2分d 屏 光栅 透镜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省大学物理试题库413-夫琅禾费单缝衍射浙江工商大学 学校 413 条目的4类题型式样及交稿式样1. 选择题 题号:41311001 分值:3分 难度系数等级:1在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为 (A) 2 个。

(B) 4 个。

(C) 6 个。

(D) 8 个。

[ ]答案:(B )题号:41311002 分值:3分 难度系数等级:1一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .[ ]答案:(B )题号:41312003 分值:3分屏难度系数等级:2在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹(A) 间距变大。

(B) 间距变小。

(C) 不发生变化。

(D) 间距不变,但明暗条纹的位置交替变化。

[ ]答案:(C )题号:41312004 分值:3分 难度系数等级:2在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小。

(B) 对应的衍射角变大。

(C) 对应的衍射角也不变。

(D) 光强也不变。

[ ] 答案:(B )题号:41314005 分值:3分 难度系数等级:4屏幕一单色平行光束垂直照射在宽度为1.0 mm的单缝上,在缝后放一焦距为2.0 m的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm,则入射光波长约为 (1nm=10−9m)(A) 100 nm (B) 400 nm(C) 500 nm (D) 600 nm[]答案:(C)题号:41312006分值:3分难度系数等级:2在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小。

(B) 宽度变大。

(C) 宽度不变,且中心强度也不变。

(D) 宽度不变,但中心强度增大。

[]答案:(A)题号:41312007分值:3分难度系数等级:2在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小。

[]答案:(B)题号:41313008分值:3分 难度系数等级:3在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成 3个半波带,则缝宽度a 等于 (A) λ. (B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ ] 答案:(D ) 题号:41315009 分值:3分 难度系数等级:5在如图所示的单缝的夫琅禾费衍射实验中,将单缝K沿垂直于光的入射方向(沿图中的x 方向)稍微平移,则(A) 衍射条纹移动,条纹宽度不变。

(B) 衍射条纹移动,条纹宽度变动。

(C) 衍射条纹中心不动,条纹变宽。

(D) 衍射条纹不动,条纹宽度不变。

[ ] 答案:(D ) 题号:41313010 分值:3分 难度系数等级:3在白光垂直照射单缝而产生的衍射图样中,波长为λ1的光的第3级明纹与波长为λ2的光的第4级明纹相重合,则这两种光的波长之比λ1 /λ2为(A) 3/4 (B) 4/3 (C) 7/9 (D) 9/7 [ ] 答案:(D )2S2. 判断题题号:41322001分值:2 分难度系数等级:2对应衍射角不为零的衍射屏上某处,如果能将做夫琅和费单缝衍射的波面分割成偶数个半波带,则在屏幕上该处将呈现明条纹。

答案:错题号:41321002分值:2 分难度系数等级:1对应衍射角不为零的衍射屏上某处,如果能将做夫琅和费单缝衍射的波面分割成奇数个半波带,在屏幕上该处将呈现明条纹。

答案:对题号:41322003分值:2 分难度系数等级:2在用半波带法求解单缝夫琅和费衍射时,当衍射角不为零时,任何两个相邻的、完整的波带所发出的子波在屏幕上同一点引起的光振动将完全相互抵消。

答案:对题号:41323004分值:2 分难度系数等级:3用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第二个暗条纹中心相对应的半波带的数目是2。

答案:错(半波带数目是4)题号:41324005分值:2 分难度系数等级:4用菲涅耳半波带法可以精确求解出夫琅和费单缝衍射的光强分布函数。

答案:错3. 填空题题号:41332001分值:2分难度系数等级:2He-Ne激光器发出 =632.8 nm (1nm=10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm,则单缝的宽度a=________.答案:7.6×10-2 mm题号:41331002分值:2分难度系数等级:1在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为__________ 个半波带。

答案:6题号:41331003分值:2分难度系数等级:1波长为λ的单色光垂直入射在缝宽a=4λ的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带。

答案:4题号:41333004分值:2分难度系数等级:3在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589 nm) 中央明纹宽度为4.0 mm,则λ2=442 nm (1 nm = 10-9 m)的蓝紫色光的中央明纹宽度为____________________答案:3.0 mm题号:41334005分值:2分难度系数等级:4平行单色光垂直入射在缝宽为a=0.15 mm的单缝上.缝后有焦距为f=400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为λ=_______________。

答案:500 nm(或5×10-4 mm)题号:41332006分值:2分难度系数等级:2将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于________________。

答案:λ / sinθ题号:41332007分值:2分难度系数等级:2如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长λ=500 nm (1 nm = 10-9 m),则单缝宽度为_____________________m.答案:1×10-6m题号:41333008分值:2分难度系数等级:3在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a=2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个。

答案:2题号:41333009分值:2分难度系数等级:3在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =_______________. 答案:30°题号:41335010 分值:2分 难度系数等级:5波长为λ=480.0 nm 的平行光垂直照射到宽度为a =0.40 mm 的单缝上,单缝后透镜的焦距为f =60 cm ,当单缝两边缘点A 、B 射向P 点的两条光线在P 点的相位差为π时,P 点离透镜焦点O 的距离等于__________. 答案:0.36 mm 4. 计算题 题号:41343001 分值:10分 难度系数等级:3在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? 解答及评分标准:(1) 由单缝衍射暗纹公式得111sin λθ=a 222sin λθ=a (2分) 由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ= (3分)(2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……) (2分)a k /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合.(3分)题号:41341002分值:10分难度系数等级:1波长为600 nm (1 nm=10-9 m)的单色光垂直入射到宽度为a =0.10 mm 的单缝上,观察夫琅禾费衍射图样,透镜焦距f =1.0 m ,屏在透镜的焦平面处.求:(1) 中央衍射明条纹的宽度∆ x 0;(2) 第二级暗纹离透镜焦点的距离x 2 .解答及评分标准:(1) 对于第一级暗纹,有a sin ϕ 1≈λ因ϕ 1很小,故 tg ϕ 1≈sin ϕ 1 = λ / a (2分)故中央明纹宽度 ∆x 0 = 2f tg ϕ 1=2f λ / a = 1.2 cm (3分)(2) 对于第二级暗纹,有 a sin ϕ 2≈2λ (2分) x 2 = f tg ϕ 2≈f sin ϕ 2 =2f λ / a = 1.2 cm (3分)题号:41342003分值:10分难度系数等级:2某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长。

解答及评分标准:设第三级暗纹在ϕ3方向上,则有a sin ϕ3 = 3λ此暗纹到中心的距离为x3 = f tgϕ3(4分)因为ϕ3很小,可认为tgϕ3≈sinϕ3,所以x3≈3fλ / a.两侧第三级暗纹的距离是 2 x3 = 6f λ / a=8.0mm∴λ = (2x3) a / 6f(4分)= 500 nm (2分)题号:41344004分值:10分难度系数等级:4在夫琅禾费单缝衍射实验中,如果缝宽a与入射光波长λ的比值分别为(1) 1,(2) 10,(3) 100,试分别计算中央明条纹边缘的衍射角.再讨论计算结果说明什么问题。

解答及评分标准:(1) a=λ,sinϕ =λ/ λ=1 , ϕ=90°(2分)(2) a=10λ,sinϕ=λ/10 λ=0.1 ϕ=5︒44'(2分)(3) a=100λ,sinϕ=λ/100 λ=0.01ϕ=34'(2分)这说明,比值λ /a变小的时候,所求的衍射角变小,中央明纹变窄(其它明纹也相应地变为更靠近中心点),衍射效应越来越不明显.(2分)(λ /a)→0的极限情形即几何光学的情形: 光线沿直传播,无衍射效应.(2分)题号:41343005分值:10分难度系数等级:3在单缝的夫琅禾费衍射中,缝宽a=0.100 mm,平行光垂直入射在单缝上,波长λ=500 nm,会聚透镜的焦距f =1.00 m.求中央亮纹旁的第一个亮纹的宽度∆x.(1 nm =10–9 m)解答及评分标准:单缝衍射第1个暗纹条件和位置坐标x 1为: a sin θ1 = λa f f f x /sin tg 111λθθ≈≈= (∵θ1很小) (3分)单缝衍射第2个暗纹条件和位置坐标x 2为: a sin θ2 = 2λa f f f x /2sin tg 222λθθ≈≈= (∵θ2很小) (3分)单缝衍射中央亮纹旁第一个亮纹的宽度 ()a a f x x x //2121λλ-≈-=∆ = f λ / a=1.00×5.00×10-7 / (1.00×10-4) m (4分) =5.00 mmL θ2 θ1 C x 2 x 1 ∆x f。

相关文档
最新文档