第三章 水环境化学..

合集下载

【环境化学】第3.2章 水环境化学——第二节 水中无机污染物的迁移转化

【环境化学】第3.2章 水环境化学——第二节  水中无机污染物的迁移转化
影响因素:表面积越大,吸附作用越强 特点:表面吸附属于物理吸附
22
吸附等温线和等温式
吸附等温线: 在固定的温度下,当吸附达到平衡时, 颗粒物表面上的吸附量(G)与溶液中溶质平衡浓度 (C)之间的关系,可用吸附等温线来表示。
吸附等温线类型:
Henry型(H型) Freundlich型(F型) Langmuir型(L型)
腐植质分子与金属络合的机理★
Hum
COO OH
-
+[Fe(OH)(H2O)x-1]2+
低pH
Hum
COO O
Fe
OH (O) x-1
+ H+
在低pH时,从腐植质的酸性基团中置换出一个质子
Hum COOHO-+ [Fe(OH)(H2O)x-1]2+
高pH
[ Hum
COO O
Fe
OOHH(H2O)x-2]-+2H+
23
H型等温式为: G = kc
k: 分配系数;等温线为直线型
F型等温式为:G = kc(1/n)
1)k 是c=1的吸附量,大致表示 吸附能力的强弱; 2)1/n为斜率,表示吸附量随 浓度增长的强度; 3)该等温线不能给出饱和吸附 量。
L型等温式: G = G0c/(A+c)
G0—单位面积上达到饱和时的 最大吸附量; A—常数。
胶体表面的化学反应(见下页胶片)
25
胶体表面的化学反应
是氢氧化物和氧化物的典型行为 与pH值有关
在酸性介质中 M(OH)n (s) + H+ → M(OH)n-1(H2O)+(s) 粒子带净正电荷
在碱性介质中 M(OH)n (s) → MO(OH)n-1-(s) + H+ 粒子带净负电荷

第三章 水环境化学水中无机污染物的迁移转化汇总

第三章  水环境化学水中无机污染物的迁移转化汇总

20
1. 胶体颗粒凝聚的基本原理和方式

1) 带电胶粒稳定性的经典理论--DLVO理论 带电胶粒的两种相互作用力

双电层重叠时的静电排斥力 粒子间的长程范德华吸引力


DLVO理论认为,当吸引力占优势时,溶胶发生聚 沉; 当排斥力占优势,并大到足以阻碍胶粒由于 布朗运动而发生聚沉时,则胶体处于稳定状态。 颗粒在相互接近时两种力相互作用的总位能随相 隔距离的变化而变化: 总位能 VT=VR+VA 式中:VA——由范德华力所产生的位能; VR——由静电排斥力所产生的位能。
4
一 、 颗粒物与水之间的迁移
2、水环境中颗粒物的吸附作用
专属吸附是指吸附过程中,除了化学键的作
用外,尚有加强的憎水键和范德华力或氢键在 起作用。
专属吸附作用不但可使表面电荷改变符号, 而且可使离子化合物吸附在同号电荷的表面上。
5
表3-8水合氧化物对金属离子的专属吸附 与非专属吸附的区别
项目 非专属吸附 专属吸附 发生吸附的表面净电荷的符号 - -、0、+ 金属离子所起的作用 反离子 配位离子 吸附时发生的反应 阳离子交换 配位体交换 发生吸附时体系的PH值 >零电位点 任意值 吸附发生的位置 扩散层 内层 对表面电荷的影响 无 负电荷减少, 正电荷增多 注:本表摘自陈静生主编,1987。
(4)水体悬浮沉积物
悬浮沉积物是以矿物微粒,特别是粘土矿物 为核心骨架,有机物和金属水合氧化物结合在矿 物微粒表面上,成为各微粒间的粘附架桥物质, 把若干微粒组合成絮状聚集体(聚集体在水体中 的悬浮颗粒粒度一般在数十微米以下),经絮凝 成为较粗颗粒而沉积到水体底部。
(5)其他
3
一、 颗粒物与水之间的迁移

环境化学课后答案(戴树桂)主编-第二版(1-7章)完整版

环境化学课后答案(戴树桂)主编-第二版(1-7章)完整版

环境化学课后答案第一章绪论1.如何认识现代环境问题的发展过程?环境问题不止限于环境污染,人们对现代环境问题的认识有个由浅入深,逐渐完善的发展过程。

a、在20世纪60年代人们把环境问题只当成一个污染问题,认为环境污染主要指城市和工农业发展带来的对大气、水质、土壤、固体废弃物和噪声污染。

对土地沙化、热带森林破环和野生动物某些品种的濒危灭绝等并未从战略上重视,明显没有把环境污染与自然生态、社会因素联系起来。

b、1972年发表的《人类环境宣言》中明确指出环境问题不仅表现在水、气、土壤等的污染已达到危险程度,而且表现在对生态的破坏和资源的枯竭;也宣告一部分环境问题源于贫穷,提出了发展中国家要在发展中解决环境问题。

这是联合国组织首次把环境问题与社会因素联系起来。

然而,它并未从战略高度指明防治环境问题的根本途径,没明确解决环境问题的责任,没强调需要全球的共同行动。

c、20世纪80年代人们对环境的认识有新的突破性发展,这一时期逐步形成并提出了持续发展战略,指明了解决环境问题的根本途径。

d、进入20世纪90年代,人们巩固和发展了持续发展思想,形成当代主导的环境意识。

通过了《里约环境与发展宣言》、《21世纪议程》等重要文件。

它促使环境保护和经济社会协调发展,以实现人类的持续发展作为全球的行动纲领。

这是本世纪人类社会的又一重大转折点,树立了人类环境与发展关系史上新的里程碑。

2.你对于氧、碳、氮、磷、硫几种典型营养性元素循环的重要意义有何体会?(1)氧的循环:(2)碳的循环:(4)磷的循环(6)体会:氧、碳、氮、磷和硫等营养元素的生物地球化学循环是地球系统的主要构成部分,它涉及地层环境中物质的交换、迁移和转化过程,是地球运动和生命过程的主要营力。

3.根据环境化学的任务、内容和特点以及其发展动向,你认为怎样才能学好环境化学这门课程?(1)环境化学的任务、内容、特点:环境化学是在化学科学的传统理论和方法基础上发展起来的,以化学物质在环境中出现而引起的环境问题为研究对象,以解决环境问题为目标的一门新兴学科。

3水中污染物的分布和存在形态

3水中污染物的分布和存在形态

第三章:水环境化学——污染物存在形态一、水和水分子结构的特异性二、天然水的基本特征1、天然水的组成(离子、溶解气体、水生生物)2、天然水的化学特征3、天然水的性质4、天然水指标三、水中污染物的分布和存在形态1、20世纪60年代美国学者曾把水中污染物大体划分为八类:>①耗氧污染物(一些能够较快被微生物降解成为二氧化碳和水的有机物);>②致病污染物(一些可使人类和动物患病的病原微生物与细菌);>③合成有机物;>④植物营养物;>⑤无机物及矿物质;>⑥由土壤、岩石等冲刷下来的沉积物;>⑦放射性物质;>⑧热污染。

2、污染物毒性取决于形态•这些污染物进入水体后通常以可溶态或悬浮态存在,其在水体中的迁移转化及生物可利用性均直接与污染物存在形态相关。

例如,水俣病就是食用了含有甲基汞的鱼所致。

重金属对鱼类和其他水生生物的毒性,不是与溶液中重金属总浓度相关,主要取决于游离(水合)的金属离子,对镉则主要取决于游离Cd2+浓度,对铜则取决于游离CU2+及其氢氧化物。

而大部分稳定配合物及其与胶体颗粒结合的形态则是低毒的,不过脂溶性金属配合物是例外,因为它们能迅速透过生物膜,并对细胞产生很大的破坏作用。

•近年来的研究表明,通过各种途径进入水体中的金属,绝大部分将迅速转入沉积物或悬浮物内,因此许多研究者都把沉积物作为金属污染水体的研究对象。

目前已基本明确了水体固相中金属结合形态通过吸附、沉淀、共沉淀等的化学转化过程及某些生物、物理因素的影响。

由于金属污染源依然存在,水体中金属形态多变,转化过程及其生态效应复杂,因此金属形态及其转化过程的生物可利用性研究仍是环境化学的一个研究热点。

3、难降解有机物和金属污染物环境中有机污染物的种类繁多,其环境化学行为至今还知之甚少。

一些全球性污染物如多环芳烃、有机氯等,一直受到各国学者的高度重视。

特别是一些有毒、难降解的有机物,通过迁移、转化、富集或食物链循环,危及水生生物及人体健康。

环境化学水环境化学第三节讲解

环境化学水环境化学第三节讲解

例:某有机分子量为192,溶解在含有悬浮物的水体中, 若悬浮物种85%为细颗粒,有机碳含量为5%,其余 粗颗粒有机碳含量为1%,已知该有机物在水中溶解 度为0.05mg/L,那么其分配系数(Kp)如何计算?
lgKow=5.00-0.670×lg(0.05×103/192 ) Kow=2.46×105 由公式Koc=0.63Kow Koc=0.63×2.46×105=1.55×105 由公式Kp= Koc[ 0.2(1-f) Xocs + f Xocf ] Kp =1.55×105 [ 0.2(1-0.85) ×0.01 + 0.85×0.05 ] Kp =6.63×103
解;烷ቤተ መጻሕፍቲ ባይዱ芳基磺酸盐LAS,含磷,泡沫减少,可生物降解) 有机农药(有机氯农药DDT、六六六等毒性大,难分解,
禁用,有机磷农药含杀虫剂与除草剂,毒性大,难降解)
取代苯类化合物(苯环上的氢被硝基、胺基取代后生成的芳 香族卤化物,主要来自染料、炸药、电器、塑料、制药、 合成橡胶等工业)。
六、水体的污染小结
四、光解作用
光解作用是有机污染物真正的分解过程,因为它不可逆 的改变了反应分子,强烈的影响水环境中某些污染物 的归趋。
光解过程可分为三类: 1、直接光解:化合物本身直接吸收了光能而进行分解反
应。
2、敏化光解:水体中存在的天然物质被阳光激发后,又 将其激发态的能量转移给化合物而导致的分解反应。
3、氧化反应:天然物质被辐照而产生自由基获纯态氧等 中间体,这些中间体又与化合物作用而生成转化的产 物。
许多有机毒物可以像天然有机化合物那样作为 微生物的生长基质。只要用这些有毒物质作为 微生物培养的唯一碳源便可鉴定是否属于生长 代谢。在这种代谢过程中微生物对这些有毒物 质可以进行较彻底的降解或矿化,因而是解毒 生长基质。

水环境化学讲义精选全文完整版

水环境化学讲义精选全文完整版

可编辑修改精选全文完整版水环境化学讲义水圈包括海洋水、大气水、陆地水。

陆地水包括:地下水:潜水,承压水,冻土水,岩石、土壤分子水。

地表水:冰帽水、径流水、湖泊水、沼泽水。

生物水。

从分子与溶液的角度看水与天然水作为分子的水的组成、结构、特性:易作溶剂:氢键、异性相吸、六边形、较大分子间隙。

作为溶液的天然水的物理化学性质粘度:流体运动过程中,分子之间形成的剪切应力的物理量,水的粘度相对较大且随温度升高而急剧减少。

离子活度(ɑ)及离子强度(L)离子活度系数:反映溶液体系中某离子表现活性的物理量。

当量数:相当于1摩尔氢离子所含电子量的物理化学量。

当量浓度:1L溶液中所有某种物质的当量数的量。

当量=【M Zi】/|Zi| ,摩尔浓度【M Zi】=|Zi|*当量。

一切化学反应都是当量平衡。

离子缔合体。

范德华力包括静电力、诱导力、色散力。

溶液体系中因分子与分子间碰撞作用形成的离子束称为离子缔合体。

第二章天然水化学成分最早形成于大气层(凝结核),成分的直接影响因素包括生物、土壤、岩石。

生物是最大来源;成分的间接影响因素包括气候、地貌(接触时间)、水文要素(容量、流速等)天然水主要离子化学水化学反应回顾:(1)中和反应(2)沉淀-溶解反应:CaCO3<==>Ca2++CO32-(3)氧化还原反应(4)水解反应Fe3++3OH-<==>Fe(OH)3↓Fe(OH)3+3OH-<==>Fe(OH)63-未脱水而先形成配位体(配位反应特例)(5)配位反应Fe3++CN-<==>Fe(CN)63-氰化物处理(6)置换反应(7)吸附-解吸反应:2Na++Mg(胶体)2+<==>(Na胶体Na)2++Mg2+ 2Na++Cd(胶体)2+<==>(Na胶体Na)2++Cd2+骨痛病(8)缔和反应:在离子强度很高的条件下发生。

AgCl+Cl -<==>AgCl2-标准海水矿化度35.5g/L ,碱金属一般不发生配位反应。

水中有机污染物的迁移转化(ppt46张)

水中有机污染物的迁移转化(ppt46张)
能成为生长基质的有毒物质,能快速的被微生物 降解,对环境的威胁较小。 对于生长代谢过程,微生物群落对有毒物质一般 需要较长的适用期(2-50天)


生长代谢过程中的转化速率方程--Mond模型

Monod方程用来描述当化合物作为唯一碳源时的降解速率
E(酶)+S(底物)
ES
E+P(产物)
dB dc B c 1 1K s 1 R Y max dt dt K c R B c s max max

半衰期与有机物属性、温度、 pH有关,与有机物 初始浓度无关.
水解速率与pH的关系

Mabey等把水解速率归纳为
◎酸性催化过程 ◎碱性催化过程 ◎中性催化过程

水解速率为三个催化过反应速度的和:
d[RX] K [RX] h dt K K [H ] K K [OH ] K [H ] K K K /[H ] h A N B A N BW
①分配作用

②吸附作用

土壤矿物质对有机化合物的表面吸附作用
2. 标化分配系数

有机物在沉积物与水之间的分配
Kp cs cw cT cscp cw cw( 1Kpcp) cw cT ( 1Kpcp)
Kp —分配系数(与沉积物中有机质浓度有关) cT —总有机物浓度(μg/L) cs —沉积物中有机物浓度(μg/kg) cw —溶解在溶液中的有机物浓度(μg/L) cp —沉积物浓度(kg/L)
KA、KB、KN的计算

在lg Kh—pH图中,三个交点相对应于三个pH值
IAN-酸性催化与中性催化直线的交点的pH值 IAB-酸性催化与碱性催化直线的交点的pH值 INB-中性催化与碱性催化直线的交点的pH值

环境化学课后答案(戴树桂)主编_第二版(1-7章)完整版

环境化学课后答案(戴树桂)主编_第二版(1-7章)完整版

环境化学课后答案第一章绪论1.如何认识现代环境问题的发展过程?环境问题不止限于环境污染,人们对现代环境问题的认识有个由浅入深,逐渐完善的发展过程。

a、在20世纪60年代人们把环境问题只当成一个污染问题,认为环境污染主要指城市和工农业发展带来的对大气、水质、土壤、固体废弃物和噪声污染。

对土地沙化、热带森林破环和野生动物某些品种的濒危灭绝等并未从战略上重视,明显没有把环境污染与自然生态、社会因素联系起来。

b、1972年发表的《人类环境宣言》中明确指出环境问题不仅表现在水、气、土壤等的污染已达到危险程度,而且表现在对生态的破坏和资源的枯竭;也宣告一部分环境问题源于贫穷,提出了发展中国家要在发展中解决环境问题。

这是联合国组织首次把环境问题与社会因素联系起来。

然而,它并未从战略高度指明防治环境问题的根本途径,没明确解决环境问题的责任,没强调需要全球的共同行动。

c、20世纪80年代人们对环境的认识有新的突破性发展,这一时期逐步形成并提出了持续发展战略,指明了解决环境问题的根本途径。

d、进入20世纪90年代,人们巩固和发展了持续发展思想,形成当代主导的环境意识。

通过了《里约环境与发展宣言》、《21世纪议程》等重要文件。

它促使环境保护和经济社会协调发展,以实现人类的持续发展作为全球的行动纲领。

这是本世纪人类社会的又一重大转折点,树立了人类环境与发展关系史上新的里程碑。

2.你对于氧、碳、氮、磷、硫几种典型营养性元素循环的重要意义有何体会?(1)氧的循环:(2)碳的循环:(4)磷的循环(6)体会:氧、碳、氮、磷和硫等营养元素的生物地球化学循环是地球系统的主要构成部分,它涉及地层环境中物质的交换、迁移和转化过程,是地球运动和生命过程的主要营力。

3.根据环境化学的任务、内容和特点以及其发展动向,你认为怎样才能学好环境化学这门课程?(1)环境化学的任务、内容、特点:环境化学是在化学科学的传统理论和方法基础上发展起来的,以化学物质在环境中出现而引起的环境问题为研究对象,以解决环境问题为目标的一门新兴学科。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章水环境化学1.请推导出封闭和开放体系碳酸平衡中[H2CO3*]、[HCO3-]和[CO32-]的表达式,并讨论这两个体系之间的区别。

解:(1)封闭体系(溶解性CO2与大气没有交换)中存在下列平衡CO2 + H2O H2CO3* pK0=1.46H2CO3* HCO3- + H+pK1=6.35HCO3-CO32- + H+pK2=10.33其中K1=[HCO3-][H+] / [H2CO3*] ,K2=[CO32-][H+] / [HCO3-]用α0、α1和α2分别表示三种碳酸化合态在总量中所占比例,得下面表达式α0= [H2CO3*]/{[H2CO3*] + [HCO3-] + [CO32-]}α1= [HCO3-]/{[H2CO3*] + [HCO3-] + [CO32-]}α2= [CO32- ]/{[H2CO3*] + [HCO3-] + [CO32-]}把K1、K2的表达式代入以上三式,得α0= (1 + K1/[H+] + K1K2/[H+]2)-1α1= (1 + [H+]/ K1 + K2/ [H+] )-1α2= (1 + [H+]2/ K1K2 + [H+]/ K2)-1设C T = [H2CO3*] + [HCO3-] + [CO32-],则有[H2CO3*] = C T(1 + K1/[H+] + K1K2/[H+]2)-1[HCO3-] = C T(1 + [H+]/ K1 + K2/ [H+] )-1[CO32- ] = C T(1 + [H+]2/ K1K2 + [H+]/ K2)-1(2)开放体系中CO2在气相和液相之间平衡,各种碳酸盐化合态的平衡浓度可表示为P CO2和pH的函数。

依亨利定律:[CO2(aq)]=K H·P CO2溶液中,碳酸化合态相应为:C T = [CO2]/ α0= K H·P CO2/ α0[HCO3-]= (α1/ α0 )K H·P CO2= (K1/[H+])K H·P CO2[CO32-]= (α2/ α0 ) K H·P CO2= (K1K2/[H+]2)K H·P CO2(3)比较封闭体系和开放体系可发现,在封闭体系中,[H2CO3*]、[HCO3-]、[CO32-]等可随pH 值变化,但总的碳酸量C T 始终不变。

而对于开放体系C T 、[HCO 3-]、[CO 32-]均随pH 值改变而变化,但[H 2CO 3*]总保持与大气相平衡的固定数值。

4.在一个pH 为6.5、碱度为1.6mmol/L 的水体中,若加入碳酸钠使其碱化,问需加多少mmol/L 的碳酸钠才能使水体pH 上升至8.0。

若用NaOH 强碱进行碱化,又需加入多少碱?解:总碱度=K W / [H +] + C T (α1 + 2α2) - [H +]C T =2121αα+{[总碱度] + [H +] - [OH -]}令α=2121αα+当pH 在5~9范围内、[碱度]≥10-3mol/L 时, [H +]、[OH -]项可以忽略不计,得到简化式:C T =α[碱度]当pH =6.5时,查教材P110表得α1=0.5845,α2=8.669×10-5,则α=1.71,C T =α[碱度]=1.71×1.6=2.736mmol/L若加入碳酸钠将水的pH 升至8.0,查表得α′=1.018,此时C T 值与碱度值均有变化。

设加入的碳酸钠量为Δ[CO 32-],则有C T + Δ[CO 32-]=α′{[碱度] + 2Δ[CO 32-]} 即2.736 + Δ[CO 32-]=1.018{1.6 + 2Δ[CO 32-]}解得,Δ[CO 32-]=1.069 mmol/L若加入氢氧化钠将水的pH 升至8.0,其C T 值并不变化,可得:[碱度] =C T / α′=2.736/1.018=2.688 mmol/L 碱度增加值就是应加入的氢氧化钠强碱量:Δ[OH -]=2.688-1.6=1.088 mmol/L5. 具有2.00×10-3mol/L 碱度的水,pH 为7.0,请计算[H 2CO 3*]、[HCO 3-]和[CO 32-]和[OH -]的浓度各是多少?([H +]=1.00×10-7mol/L ,[HCO 3-]=2.00×10-3mol/L ,[CO 32-]=9.38×10-7mol/L ,[H 2CO 3*] =4.49×10-74mol/L )解:当pH = 7.00时,CO 3-的浓度与 HCO 3-的浓度相比可以忽略,查表pH = 7.00时, α= 1.224,则[HCO 3-] = [碱度] = 2.00×10-3mol/l/l 。

[H +] = [OH -] = 10-7 mol/l 。

[HCO 3※] = [H +][HCO 3-]/K 1 = 1.00×10-7×2.00×10-3/(4.55×10-7) = 4.49×10-4mol/l 。

[CO 3-] = K 2[HCO 3-]/[H +] = 4.69×10-11×2.00×10-3/(1.00×10-7) = 9.38×10-7 mol/l 。

6. 若有水A ,pH 为7.5,其碱度为6.38mmol/L, 水B 的pH 为9.0,碱度为0. 80mmol/L ,若以等体积混合,问混合后的pH 值是多少?解: 查表 pH = 7.5时, α1 = 1.069, pH = 9.0时, α2 = 0.9592;C T1 = [碱度]×α1 = 6.38×1.069 = 6.82 mmol/l C T2 = [碱度]×α2 = 0.80×0.959 = 0.767 mmol/l;L mmol C C C T T T /79.3277.082.6221=+=+=混合后 L mmol /59.3280.038.6][=+=碱度 005.159.379.3][===碱度T C α 查表知pH = 7.58 7. 溶解1.00×10-4mol/L 的Fe(NO 3)3于1L 具有防止发生固体Fe(OH)3沉淀作用所需最小[H +]浓度的水中,假定溶液中仅形成Fe(OH)2+和Fe(OH)2+而没有形成Fe 2(OH)24+。

请计算平衡时溶液中[Fe 3+]、[Fe(OH)2+]、[Fe(OH)2+]、[H +]和pH ([Fe 3+]=6.24×10-5 mol/L 、[Fe(OH)2+]=2.92×10-5 mol/L 、[Fe(OH)2+]=8.47×10-6 mol/L 、pH=2.72。

)解:由题意知 [Fe 3+] + [Fe(OH)2+] + [Fe(OH)2+] = 1.00×10-4 mol/l ; (1) [Fe(OH)2+][H +]/[Fe 3+] = 8.9×10-4(2)[Fe(OH)2+][H +]2/[Fe 3+] = 4.9×10-7(3)SP WK H K Fe OH Fe ==++-+33333][][]][[查表知Fe(OH)3的K SP = 3.2×10-38代入(1)得[H +] = 1.9×10-3mol/l (∵pH =2.72)∴[Fe 3+] = 3.2×104[H +]3 = 3.2×104×1.9×10-3×3 = 6.24×10-5 mol/l ; [Fe(OH)2+] = 4.9×10-7[Fe 3+]/[H +]2 = 4.9×10-7 K SP [H +]/ K W 3 = 15.68×10-3×1.9×10-3 = 8.47×10-6mol/l;[Fe(OH)2+] = 8.9×10-4[Fe3+]/[H+] = 8.9×10-4 KSP [H+]2/ KW3= 28.48×(1.9×10-3)2 = 2.92×10-5mol/l。

11.什么是表面吸附作用、离子交换吸附作用和专属吸附作用?并说明水合氧化物对金属离子的专属吸附和非专属吸附的区别。

(1)表面吸附:由于胶体表面具有巨大的比表面和表面能,因此固液界面存在表面吸附作用。

胶体表面积越大,吸附作用越强。

(2)离子交换吸附:环境中大部分胶体带负电荷,容易吸附各种阳离子。

胶体每吸附一部分阳离子,同时也放出等量的其他阳离子,这种作用称为离子交换吸附作用,属于物理化学吸附。

该反应是可逆反应,不受温度影响,交换能力与溶质的性质、浓度和吸附剂的性质有关。

(3)专属吸附:指在吸附过程中,除了化学键作用外,尚有加强的憎水键和范德化力或氢键作用。

该作用不但可以使表面点荷改变符号,还可以使离子化合物吸附在同号电荷的表面上。

(4)水合氧化物对金属离子的专属吸附与非金属吸附的区别如下表所示。

18.已知Fe3+与水反应生成的主要配合物及平衡常数如下:Fe3+ + H2O Fe(OH)2+ + H+lgK1=- 2.16Fe3+ + 2H2O Fe(OH)2+ + 2H+lgK2=- 6.74Fe(OH)3(s)Fe3+ + 3OH-lgK so=- 38Fe3+ + 4H2O Fe(OH)4- + 4H+ lgK4=- 232Fe3+ + 2H2O Fe2(OH)24+ + 2H+ lgK=- 2.91请用pc-pH图表示Fe(OH)3(s)在纯水中的溶解度与pH的关系。

解:(1)K1=[Fe(OH)2+][H+]/ [Fe3+]=[Fe(OH)2+]K W3/K so[H+]2p[Fe(OH)2+]=3lgK W - lgK so + 2pH - lgK1=2pH - 1.84(2)K2=[Fe(OH)2+][H+]2/ [Fe3+]=[Fe(OH)2+]K W3/K so[H+]p[Fe(OH)2+]=3lgK W - lgK so + pH - lgK2=pH + 2.74(3)K so=[Fe3+][OH-]3=[Fe3+]K W3/[H+]3p[Fe3+]=3lgK W - lgK so + 3pH=3pH - 4(4)K4=[Fe(OH)4-][H+]4/ [Fe3+]=[Fe(OH)4-][H+]K W3/ K sop[Fe(OH)4-]=3lg K W - lgK4 - lgK so - pH=19 - pH(5)K=[Fe2(OH)24+][H+]2/ [Fe3+]2=[Fe2(OH)24+]K W6/ K so2[H+]4 p[Fe2(OH)24+]=6lg K W - lgK - 2lgK so + 4pH=4pH - 5.09用pc-pH图表示Fe(OH)3(s)在纯水中的溶解度与pH的关系如下:19.已知Hg2++2H2O = 2H++ Hg(OH)2,lg K= -6.3。

相关文档
最新文档